THE 3RD SYMPOSIUM ON ANALYSIS AND PDES

PURDUE UNIVERSITY, MAY 27-30, 2007

REGULARITY OF THE STOKES OPERATOR IN THIN DOMAINS

LUAN THACH HOANG, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN

The problem arises in the study of the Navier-Stokes equations with Navier friction boundary conditions in a 3D thin domain Ω_{ε} which has thickness of order $O(\varepsilon)$ as $\varepsilon \to 0$, and non-flat top and bottom boundaries. Our aim is to obtain the estimate $||u||_{H^2(\Omega_{\varepsilon})} \leq C_{\varepsilon}||Au||_{L^2(\Omega_{\varepsilon})}$, with explicit dependence of C_{ε} on ε , where u belongs to the domain D_A of the Stokes operator A which is related to the mentioned boundary conditions. Because of the boundary's non-trivial geometry and the involved boundary conditions, the constant C_{ε} is not known to have a uniform bound when $\varepsilon \to 0$. Our result is the following estimate

$$\|u\|_{H^2(\Omega_{\varepsilon})} \le c \|Au\|_{L^2(\Omega_{\varepsilon})} + c_{\varepsilon} \|u\|_{L^2(\Omega_{\varepsilon})}, \quad u \in D_A,$$

where c is independent of ε , the positive number c_{ε} depends explicitly on ε and the friction coefficients, and may blow up as $\varepsilon \to 0$. (This estimate is used in the theory of the global strong solutions to the Navier-Stokes equations considered above.)