MA54200 HOMEWORK

ASSIGNMENT 2: SOLUTIONS

2.1. Show that
1 €

T a2+ €2
Proof. Let ne(z) := £ ¢/(2? + €2). Then we have the following properties

e n. >0

— 4§ in D'(R) as € — 0+.

. /né(x)da: =1
R

. / Ne(x)dx — 0 as € — 0 for any given a > 0.
o] >a

We claim that any family {7} of L' functions satisfying the properties above
converges to d-function in D'(R). That is, we need to show that

/qu(x)ne(a:)dx — ¢(0), for any ¢ € C°(R)

Indeed, for a given x > 0, let & > 0 be such that |¢(x) — ¢(0)] < & for |z] < «a.
Then

[ otom e - o) -

Awm—mwmmm

Sﬁxﬁamﬂmm@ﬂwﬁ/ 9(z) = 6(0) e (w)dz

< K+ sup|d| Ne(x)dx < 2k,

|| >a
if € is sufficiently small. Since k was arbitrary, we obtain that 7. — § in D’'(R).
O

2.3. Show that, if u € D'(R) and zdu + v = 0, then

u= A(l/z) + B¢,
where A and B are complex numbers and 1/x is the principal value distribution.
Proof. Using the Leibniz rule, we can write the equation as d(zu) = 0, which
implies (by Theorem 2.4.1) that

zu=A

for a complex constant A. Now let us show that A(1/x) is a particular solution of
the above equation. Namely, we need to verify that

(@(1/2),d) = (1/z,x9(x)) = (1, )
Indeed, we have

(@(1/x),6) = lim /76 gci(z)dﬂ[o x(ic(z)dx:/Rqﬁ(x)dajzﬂ,@.

e—0+ oo
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Finally, a general solution to the equation zu = A will be
u=A(l/z) + B¢
by Theorem 2.7.1

]
2.6. Let I C R be an interval. Show that, if v € D'(I) and du € C*°(I) then
u e C>®(I).
Let

P(z,0) = ag(x)0™ + a1 (x)0™ ' + -+ + am(x)
be a differential operator with C'* coefficients, defined on I, and suppose that
ag # 0 on I. Show that, if u € D'(I) and Pu € C*°(I), then u € C*(I).

Remark. If we don’t specify, interval means open interval.

Proof. 1) Suppose u € D'(u) and du = f € C*°(I). Fix a point ¢ € I and define
F(z) = [ f(t)dt for € I. Then F € C*®(I) and OF = f. Hence d(u — F) = 0,
which means u — F' = C for a complex number C. Thus, u € C*(I).

2) Suppose u € D'(I) and Pu = f € C*(I). We need to show that u € C>(I).
We will use induction in m (the order of P).

i) If m = 0, we have agu = f € C*°(I) hence u = f/ag € C°(I), as ap # 0 in I.

ii) Suppose we know that the statement holds for differential operators of order
up to m — 1 for some m > 1. We need to prove the statement for m.

From the localization property, it will be sufficient to show that for any xq there
exists a small interval J 3 z( such that u|J € C>®(J).

Now, for any zg € I, there exists a C'* solution ¢ of the equation Pp = 0 in
a possibly small interval J 3 zy such that ¢(xg) = 1. We may assume also that
¢ # 0 in J, by taking J smaller if needed. Consider then a distribution v = u/¢ in
J. Plugging u = v¢ and in the equation

a0(@)0™u+ -+ + 1 (1)U + am (@)u = f(a)
and using the Leibniz rule, we obtain that v satisfies a similar equation
bo(2)0™v + -+ - + byy—1(2) 00 + by ()0 = f(2),

where by = ap¢ # 0 and b,, = a,, P¢ = 0 in J. Thus, if w = Jv, it will satisfy
(m — 1)-order equation

bo(2)0™ w4 -+ by (2)w = f(x),

and by the inductive assumption we will obtain that w € C*°(J). Consequently,
Qv e C™®(J),veC™®(J)and u e C>®(J). O

2.14. Define the function 2 — z_ on R by x_ = (—z);. Show that for A €
C\ {0,—1,...} there is a distribution 2~ which is an analytic function of X and
equal to the locally integrable function z2~' when ReX > 0. Show that it has
simple poles at A =0, —1,..., and calculate the residues at these.

Put, also,

|z}t = acg\fl + 2271, ()M Lsigna = xifl — L

Determine the regions of C on which these distribution are defined and analytic in
A and compute the residues at the poles.
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Solution. We may use the properties of xj\;l as follows. Note that for Re A > 0 we

have that
/x’l_lgb(x)dx:/xj\fl (—x)dx
R

R
Thus, for A € C\ {0, —1,...} we may define

(@21 9()) = (227 o (—a)).

(Clearly, this defines a distribution.) For any test function ¢ we therefore have that

foQN) = (@271, ¢(x))
is an analytic function in C\ {0, —1,...}, with simple poles at 0, —1,..., from the

properties of xf‘[l. Hence, the mapping A — 271 is a distribution valued analytic
function with simple poles. Now, to compute the residues, recall that

9%¢(0)
< (A1 _
Jes (@47, 0(2)) = —
Hence
A1 _ A1 _ (=1)*d%¢(0)
res (2 () = res (o)) = 00
Therefore,
oFs
r-1_ 970
A TR
Recalling also that
a1 _ (=D)F9%
AT T k!
we obtain that |z|*~! is analytic in C \ {0, —2, —4,...} with simple poles and
202§
res |z} = 0 .
A=—2m (2m)'

Similarly, (2)*~!signx is analytic in C\ {—1, —3,...} with simple poles and

262771—16
A—1 _: _
o 5,y (@) siene = — i

3.3. Determine all u € D’(R?) such that
(z1 +iz2)u = 0.
Solution. Let u be as in the statement of the problem. Then we claim that
supp u = {0}.
Indeed, for any ¢ such that 0 & supp ¢ we have
(u, ) = (u, (21 + i22) @/ (21 +i22)) = ((21 + iz2)u, ¢/ (21 + ix2)) = 0.

Hence, by Theorem 3.2.1 , u = ZO<k+j<N ckjafaéé. For further analysis, it will
be more convenient to use complex notations. Introduce

z =x1 + 129, 82:%(6171'82), 85:%(81 +i32)
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Then u can be written as
u= Y ay0kol.
0<k+j<N
Now we claim that ap; = 0 for £ > 1. To this end, observe that we have the
following identities

which imply that

; Kl k=m,j=n
kol (zmz" = ’ ’
20:( )’Z:O {0, otherwise
Thus, if ¥ is a cut-off function, identically 1 in a neighborhood of the origin, and
k > 1 then
(_1)k+j

.
ak; = Tj!@h%z 7)) =

(_1)k+j

Tj,<w, o2 127) =0

Thus,
N .
u= Z ¢;0%9.
§=0
Conversely, every linear combination u of 8;5 solves zu = 0. Indeed,

(2028, 0) = (—1)7(6,0%(29)) = (3,201(¢)) =0,

where we have used that 8% (z¢) = z8§¢7 which is a consequence of Jzz = 0. (]



