MA54200 HOMEWORK

ASSIGNMENT 2: SOLUTIONS

2.1. Show that

$$\frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2} \to \delta \quad \text{in } \mathcal{D}'(\mathbb{R}) \text{ as } \epsilon \to 0+.$$

Proof. Let $\eta_{\epsilon}(x) := \frac{1}{\pi} \epsilon/(x^2 + \epsilon^2)$. Then we have the following properties

•
$$\eta_{\epsilon} \ge 0$$

• $\int_{\mathbb{R}} \eta_{\epsilon}(x) dx = 1$
• $\int_{|x| \ge \alpha} \eta_{\epsilon}(x) dx \to 0 \text{ as } \epsilon \to 0 \text{ for any given } \alpha > 0.$

We claim that any family $\{\eta_{\epsilon}\}$ of L^1 functions satisfying the properties above converges to δ -function in $\mathcal{D}'(\mathbb{R})$. That is, we need to show that

$$\int_{\mathbb{R}} \phi(x) \eta_{\epsilon}(x) dx \to \phi(0), \quad \text{for any } \phi \in C_{c}^{\infty}(\mathbb{R})$$

Indeed, for a given $\kappa > 0$, let $\alpha > 0$ be such that $|\phi(x) - \phi(0)| < \kappa$ for $|x| \le \alpha$. Then

$$\begin{split} \left| \int_{\mathbb{R}} \phi(x) \eta_{\epsilon}(x) dx - \phi(0) \right| &= \left| \int_{\mathbb{R}} [\phi(x) - \phi(0)] \eta_{\epsilon}(x) dx \right| \\ &\leq \int_{|x| \leq \alpha} |\phi(x) - \phi(0)| \eta_{\epsilon}(x) dx + \int_{|x| \geq \alpha} |\phi(x) - \phi(0)| \eta_{\epsilon}(x) dx \\ &\leq \kappa + \sup |\phi| \int_{|x| \geq \alpha} \eta_{\epsilon}(x) dx \leq 2\kappa, \end{split}$$

if ϵ is sufficiently small. Since κ was arbitrary, we obtain that $\eta_{\epsilon} \to \delta$ in $\mathcal{D}'(\mathbb{R})$.

2.3. Show that, if $u \in \mathcal{D}'(\mathbb{R})$ and $x \partial u + u = 0$, then

$$u = A(1/x) + B\delta,$$

where A and B are complex numbers and 1/x is the principal value distribution.

Proof. Using the Leibniz rule, we can write the equation as $\partial(xu) = 0$, which implies (by Theorem 2.4.1) that

$$vu = A$$

for a complex constant A. Now let us show that A(1/x) is a particular solution of the above equation. Namely, we need to verify that

$$\langle x(1/x), \phi \rangle = \langle 1/x, x\phi(x) \rangle = \langle 1, \phi \rangle$$

Indeed, we have

$$\langle x(1/x), \phi \rangle = \lim_{\epsilon \to 0+} \int_{-\infty}^{-\epsilon} \frac{x\phi(x)}{x} dx + \int_{\epsilon}^{\infty} \frac{x\phi(x)}{x} dx = \int_{\mathbb{R}} \phi(x) dx = \langle 1, \phi \rangle.$$

Finally, a general solution to the equation xu = A will be

$$u = A(1/x) + B\delta$$

by Theorem 2.7.1

2.6. Let $I \subset \mathbb{R}$ be an interval. Show that, if $u \in \mathcal{D}'(I)$ and $\partial u \in C^{\infty}(I)$ then $u \in C^{\infty}(I)$.

Let

$$P(x,\partial) = a_0(x)\partial^m + a_1(x)\partial^{m-1} + \dots + a_m(x)$$

be a differential operator with C^{∞} coefficients, defined on I, and suppose that $a_0 \neq 0$ on I. Show that, if $u \in D'(I)$ and $Pu \in C^{\infty}(I)$, then $u \in C^{\infty}(I)$.

Remark. If we don't specify, interval means open interval.

Proof. 1) Suppose $u \in \mathcal{D}'(u)$ and $\partial u = f \in C^{\infty}(I)$. Fix a point $x_0 \in I$ and define $F(x) = \int_{x_0}^x f(t)dt$ for $x \in I$. Then $F \in C^{\infty}(I)$ and $\partial F = f$. Hence $\partial(u - F) = 0$, which means u - F = C for a complex number C. Thus, $u \in C^{\infty}(I)$.

2) Suppose $u \in \mathcal{D}'(I)$ and $Pu = f \in C^{\infty}(I)$. We need to show that $u \in C^{\infty}(I)$. We will use induction in m (the order of P).

i) If m = 0, we have $a_0 u = f \in C^{\infty}(I)$ hence $u = f/a_0 \in C^{\infty}(I)$, as $a_0 \neq 0$ in I.

ii) Suppose we know that the statement holds for differential operators of order up to m-1 for some $m \ge 1$. We need to prove the statement for m.

From the localization property, it will be sufficient to show that for any x_0 there exists a small interval $J \ni x_0$ such that $u|_J \in C^{\infty}(J)$. Now, for any $x_0 \in I$, there exists a C^{∞} solution ϕ of the equation $P\phi = 0$ in

Now, for any $x_0 \in I$, there exists a C^{∞} solution ϕ of the equation $P\phi = 0$ in a possibly small interval $J \ni x_0$ such that $\phi(x_0) = 1$. We may assume also that $\phi \neq 0$ in J, by taking J smaller if needed. Consider then a distribution $v = u/\phi$ in J. Plugging $u = v\phi$ and in the equation

$$a_0(x)\partial^m u + \dots + a_{m-1}(x)\partial u + a_m(x)u = f(x)$$

and using the Leibniz rule, we obtain that v satisfies a similar equation

$$b_0(x)\partial^m v + \dots + b_{m-1}(x)\partial v + b_m(x)v = f(x),$$

where $b_0 = a_0 \phi \neq 0$ and $b_m = a_m P \phi = 0$ in J. Thus, if $w = \partial v$, it will satisfy (m-1)-order equation

$$b_0(x)\partial^{m-1}w + \dots + b_{m-1}(x)w = f(x),$$

and by the inductive assumption we will obtain that $w \in C^{\infty}(J)$. Consequently, $\partial v \in C^{\infty}(J), v \in C^{\infty}(J)$ and $u \in C^{\infty}(J)$.

2.14. Define the function $x \mapsto x_{-}$ on \mathbb{R} by $x_{-} = (-x)_{+}$. Show that for $\lambda \in \mathbb{C} \setminus \{0, -1, \ldots\}$ there is a distribution $x_{-}^{\lambda-1}$ which is an analytic function of λ and equal to the locally integrable function $x_{-}^{\lambda-1}$ when $\operatorname{Re} \lambda > 0$. Show that it has simple poles at $\lambda = 0, -1, \ldots$, and calculate the residues at these.

Put, also,

$$|x|^{\lambda-1} = x_{+}^{\lambda-1} + x_{-}^{\lambda-1}, \quad (x)^{\lambda-1} \operatorname{sign} x = x_{+}^{\lambda-1} - x_{-}^{\lambda-1}.$$

Determine the regions of \mathbb{C} on which these distribution are defined and analytic in λ and compute the residues at the poles.

Solution. We may use the properties of $x_+^{\lambda-1}$ as follows. Note that for $\operatorname{Re}\lambda>0$ we have that

$$\int_{\mathbb{R}} x_{-}^{\lambda-1} \phi(x) dx = \int_{\mathbb{R}} x_{+}^{\lambda-1} \phi(-x) dx$$

Thus, for $\lambda \in \mathbb{C} \setminus \{0, -1, \ldots\}$ we may define

$$\langle x_{-}^{\lambda-1}, \phi(x) \rangle := \langle x_{-}^{\lambda-1}, \phi(-x) \rangle.$$

(Clearly, this defines a distribution.) For any test function ϕ we therefore have that

$$f_{\phi}(\lambda) = \langle x_{-}^{\lambda-1}, \phi(x) \rangle$$

is an analytic function in $\mathbb{C} \setminus \{0, -1, \ldots\}$, with simple poles at $0, -1, \ldots$, from the properties of $x_+^{\lambda-1}$. Hence, the mapping $\lambda \mapsto x_-^{\lambda-1}$ is a distribution valued analytic function with simple poles. Now, to compute the residues, recall that

$$\operatorname{res}_{\lambda=-k} \langle x_{+}^{\lambda-1}, \phi(x) \rangle = \frac{\partial^{k} \phi(0)}{k!}$$

Hence

$$\mathop{\mathrm{res}}_{\lambda=-k}\langle x_-^{\lambda-1},\phi(x)\rangle = \mathop{\mathrm{res}}_{\lambda=-k}\langle x_+^{\lambda-1},\phi(-x)\rangle = \frac{(-1)^k\partial^k\phi(0)}{k!}$$

Therefore,

$$\operatorname{res}_{\lambda=-k} x_{-}^{\lambda-1} = \frac{\partial^k \delta}{k!}$$

Recalling also that

$$\operatorname{res}_{\lambda=-k} x_{+}^{\lambda-1} = \frac{(-1)^k \partial^k \delta}{k!}$$

we obtain that $|x|^{\lambda-1}$ is analytic in $\mathbb{C} \setminus \{0, -2, -4, \ldots\}$ with simple poles and

$$\operatorname{res}_{\lambda = -2m} |x|^{\lambda - 1} = \frac{2\partial^{2m}\delta}{(2m)!}$$

Similarly, $(x)^{\lambda-1}$ sign x is analytic in $\mathbb{C} \setminus \{-1, -3, \ldots\}$ with simple poles and

$$\operatorname{res}_{\lambda = -(2m-1)} (x)^{\lambda - 1} \operatorname{sign} x = -\frac{2\partial^{2m-1}\delta}{(2m-1)!}.$$

3.3. Determine all $u \in \mathcal{D}'(\mathbb{R}^2)$ such that

$$(x_1 + ix_2)u = 0.$$

Solution. Let u be as in the statement of the problem. Then we claim that

$$supp \, u = \{0\}.$$

Indeed, for any ϕ such that $0\not\in \operatorname{supp} \phi$ we have

$$\langle u,\phi\rangle = \langle u,(x_1+ix_2)\phi/(x_1+ix_2)\rangle = \langle (x_1+ix_2)u,\phi/(x_1+ix_2)\rangle = 0.$$

Hence, by Theorem 3.2.1 , $u = \sum_{0 \le k+j \le N} c_{kj} \partial_1^k \partial_2^j \delta$. For further analysis, it will be more convenient to use complex notations. Introduce

$$z = x_1 + ix_2, \quad \partial_z = \frac{1}{2}(\partial_1 - i\partial_2), \quad \partial_{\bar{z}} = \frac{1}{2}(\partial_1 + i\partial_2)$$

Then u can be written as

$$u = \sum_{0 \le k+j \le N} a_{kj} \partial_z^k \partial_{\bar{z}}^j \delta$$

Now we claim that $a_{kj} = 0$ for $k \ge 1$. To this end, observe that we have the following identities

$$\partial_z z = 1, \quad \partial_{\bar{z}} z = 0, \quad \partial_{\bar{z}} \bar{z} = 1, \quad \partial_z \bar{z} = 0,$$

which imply that

$$\partial_z^k \partial_{\bar{z}}^j (z^m \bar{z}^n) \big|_{z=0} = \begin{cases} k! j!, & k = m, j = n \\ 0, & \text{otherwise} \end{cases}$$

Thus, if ψ_0 is a cut-off function, identically 1 in a neighborhood of the origin, and $k\geq 1$ then

$$a_{kj} = \frac{(-1)^{k+j}}{k!j!} \langle u, \psi_0 z^k \bar{z}^j \rangle = \frac{(-1)^{k+j}}{k!j!} \langle zu, \psi_0 z^{k-1} \bar{z}^j \rangle = 0$$

Thus,

$$u = \sum_{j=0}^{N} c_j \partial_{\bar{z}}^j \delta.$$

Conversely, every linear combination u of $\partial_{\bar{z}}^j \delta$ solves zu=0. Indeed,

$$\langle z\partial^j_{\overline{z}}\delta,\phi\rangle=(-1)^j\langle\delta,\partial^j_{\overline{z}}(z\phi)\rangle=\langle\delta,z\partial^j_{\overline{z}}(\phi)\rangle=0,$$

where we have used that $\partial_{\bar{z}}^{j}(z\phi) = z \,\partial_{\bar{z}}^{j}\phi$, which is a consequence of $\partial_{\bar{z}}z = 0$. \Box