
MA54200 HOMEWORK

ASSIGNMENT 2: SOLUTIONS

2.1. Show that
1
π

ε

x2 + ε2
→ δ in D′(R) as ε→ 0+.

Proof. Let ηε(x) := 1
π ε/(x

2 + ε2). Then we have the following properties
• ηε ≥ 0

•
∫

R
ηε(x)dx = 1

•
∫
|x|≥α

ηε(x)dx→ 0 as ε→ 0 for any given α > 0.

We claim that any family {ηε} of L1 functions satisfying the properties above
converges to δ-function in D′(R). That is, we need to show that∫

R
φ(x)ηε(x)dx→ φ(0), for any φ ∈ C∞c (R)

Indeed, for a given κ > 0, let α > 0 be such that |φ(x) − φ(0)| < κ for |x| ≤ α.
Then∣∣∣∣∫

R
φ(x)ηε(x)dx− φ(0)

∣∣∣∣ =
∣∣∣∣∫

R
[φ(x)− φ(0)]ηε(x)dx

∣∣∣∣
≤

∫
|x|≤α

|φ(x)− φ(0)|ηε(x)dx+
∫
|x|≥α

|φ(x)− φ(0)|ηε(x)dx

≤ κ+ sup |φ|
∫
|x|≥α

ηε(x)dx ≤ 2κ,

if ε is sufficiently small. Since κ was arbitrary, we obtain that ηε → δ in D′(R).
�

2.3. Show that, if u ∈ D′(R) and x∂u+ u = 0, then

u = A(1/x) +Bδ,

where A and B are complex numbers and 1/x is the principal value distribution.

Proof. Using the Leibniz rule, we can write the equation as ∂(xu) = 0, which
implies (by Theorem 2.4.1) that

xu = A

for a complex constant A. Now let us show that A(1/x) is a particular solution of
the above equation. Namely, we need to verify that

〈x(1/x), φ〉 = 〈1/x, xφ(x)〉 = 〈1, φ〉
Indeed, we have

〈x(1/x), φ〉 = lim
ε→0+

∫ −ε

−∞

xφ(x)
x

dx+
∫ ∞

ε

xφ(x)
x

dx =
∫

R
φ(x)dx = 〈1, φ〉.
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Finally, a general solution to the equation xu = A will be

u = A(1/x) +Bδ

by Theorem 2.7.1
�

2.6. Let I ⊂ R be an interval. Show that, if u ∈ D′(I) and ∂u ∈ C∞(I) then
u ∈ C∞(I).

Let
P (x, ∂) = a0(x)∂m + a1(x)∂m−1 + · · ·+ am(x)

be a differential operator with C∞ coefficients, defined on I, and suppose that
a0 6= 0 on I. Show that, if u ∈ D′(I) and Pu ∈ C∞(I), then u ∈ C∞(I).

Remark. If we don’t specify, interval means open interval.

Proof. 1) Suppose u ∈ D′(u) and ∂u = f ∈ C∞(I). Fix a point x0 ∈ I and define
F (x) =

∫ x

x0
f(t)dt for x ∈ I. Then F ∈ C∞(I) and ∂F = f . Hence ∂(u − F ) = 0,

which means u− F = C for a complex number C. Thus, u ∈ C∞(I).
2) Suppose u ∈ D′(I) and Pu = f ∈ C∞(I). We need to show that u ∈ C∞(I).

We will use induction in m (the order of P ).
i) If m = 0, we have a0u = f ∈ C∞(I) hence u = f/a0 ∈ C∞(I), as a0 6= 0 in I.
ii) Suppose we know that the statement holds for differential operators of order

up to m− 1 for some m ≥ 1. We need to prove the statement for m.
From the localization property, it will be sufficient to show that for any x0 there

exists a small interval J 3 x0 such that u
∣∣
J
∈ C∞(J).

Now, for any x0 ∈ I, there exists a C∞ solution φ of the equation Pφ = 0 in
a possibly small interval J 3 x0 such that φ(x0) = 1. We may assume also that
φ 6= 0 in J , by taking J smaller if needed. Consider then a distribution v = u/φ in
J . Plugging u = vφ and in the equation

a0(x)∂mu+ · · ·+ am−1(x)∂u+ am(x)u = f(x)

and using the Leibniz rule, we obtain that v satisfies a similar equation

b0(x)∂mv + · · ·+ bm−1(x)∂v + bm(x)v = f(x),

where b0 = a0φ 6= 0 and bm = amPφ = 0 in J . Thus, if w = ∂v, it will satisfy
(m− 1)-order equation

b0(x)∂m−1w + · · ·+ bm−1(x)w = f(x),

and by the inductive assumption we will obtain that w ∈ C∞(J). Consequently,
∂v ∈ C∞(J), v ∈ C∞(J) and u ∈ C∞(J). �

2.14. Define the function x 7→ x− on R by x− = (−x)+. Show that for λ ∈
C \ {0,−1, . . .} there is a distribution xλ−1

− which is an analytic function of λ and
equal to the locally integrable function xλ−1

− when Reλ > 0. Show that it has
simple poles at λ = 0,−1, . . . , and calculate the residues at these.

Put, also,

|x|λ−1 = xλ−1
+ + xλ−1

− , (x)λ−1 signx = xλ−1
+ − xλ−1

− .

Determine the regions of C on which these distribution are defined and analytic in
λ and compute the residues at the poles.
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Solution. We may use the properties of xλ−1
+ as follows. Note that for Reλ > 0 we

have that ∫
R
xλ−1
− φ(x)dx =

∫
R
xλ−1

+ φ(−x)dx

Thus, for λ ∈ C \ {0,−1, . . .} we may define

〈xλ−1
− , φ(x)〉 := 〈xλ−1

− , φ(−x)〉.

(Clearly, this defines a distribution.) For any test function φ we therefore have that

fφ(λ) = 〈xλ−1
− , φ(x)〉

is an analytic function in C \ {0,−1, . . .}, with simple poles at 0,−1, . . . , from the
properties of xλ−1

+ . Hence, the mapping λ 7→ xλ−1
− is a distribution valued analytic

function with simple poles. Now, to compute the residues, recall that

res
λ=−k

〈xλ−1
+ , φ(x)〉 =

∂kφ(0)
k!

Hence

res
λ=−k

〈xλ−1
− , φ(x)〉 = res

λ=−k
〈xλ−1

+ , φ(−x)〉 =
(−1)k∂kφ(0)

k!
.

Therefore,

res
λ=−k

xλ−1
− =

∂kδ

k!
Recalling also that

res
λ=−k

xλ−1
+ =

(−1)k∂kδ

k!
we obtain that |x|λ−1 is analytic in C \ {0,−2,−4, . . .} with simple poles and

res
λ=−2m

|x|λ−1 =
2∂2mδ

(2m)!
.

Similarly, (x)λ−1 signx is analytic in C \ {−1,−3, . . .} with simple poles and

res
λ=−(2m−1)

(x)λ−1 signx = − 2∂2m−1δ

(2m− 1)!
.

�

3.3. Determine all u ∈ D′(R2) such that

(x1 + ix2)u = 0.

Solution. Let u be as in the statement of the problem. Then we claim that

suppu = {0}.

Indeed, for any φ such that 0 6∈ suppφ we have

〈u, φ〉 = 〈u, (x1 + ix2)φ/(x1 + ix2)〉 = 〈(x1 + ix2)u, φ/(x1 + ix2)〉 = 0.

Hence, by Theorem 3.2.1 , u =
∑

0≤k+j≤N ckj∂
k
1∂

j
2δ. For further analysis, it will

be more convenient to use complex notations. Introduce

z = x1 + ix2, ∂z =
1
2
(∂1 − i∂2), ∂z̄ =

1
2
(∂1 + i∂2)
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Then u can be written as

u =
∑

0≤k+j≤N

akj∂
k
z ∂

j
z̄δ.

Now we claim that akj = 0 for k ≥ 1. To this end, observe that we have the
following identities

∂zz = 1, ∂z̄z = 0, ∂z̄ z̄ = 1, ∂z z̄ = 0,

which imply that

∂k
z ∂

j
z̄(zmz̄n)

∣∣
z=0

=

{
k!j!, k = m, j = n

0, otherwise

Thus, if ψ0 is a cut-off function, identically 1 in a neighborhood of the origin, and
k ≥ 1 then

akj =
(−1)k+j

k!j!
〈u, ψ0z

kz̄j〉 =
(−1)k+j

k!j!
〈zu, ψ0z

k−1z̄j〉 = 0

Thus,

u =
N∑

j=0

cj∂
j
z̄δ.

Conversely, every linear combination u of ∂j
z̄δ solves zu = 0. Indeed,

〈z∂j
z̄δ, φ〉 = (−1)j〈δ, ∂j

z̄(zφ)〉 = 〈δ, z∂j
z̄(φ)〉 = 0,

where we have used that ∂j
z̄(zφ) = z ∂j

z̄φ, which is a consequence of ∂z̄z = 0. �


