MA17300 Midterm Exam 1

Practice Test 1

Solve the problem.

1) Suppose that g is continuous and that $\int_{2}^{5} g(x) d x=4$ and $\int_{2}^{9} g(x) d x=19$. Find $\int_{9}^{5} g(x) d x$.

Evaluate the integral by using multiple substitutions.
2) $\int \frac{\sin \sqrt{t}}{\sqrt{t \cos ^{3} \sqrt{t}}} d t$

Use the substitution formula to evaluate the integral.
3) $\int_{7 \pi / 6}^{7 \pi / 3} 2 \cot \frac{t}{7} d t$

Find the area of the shaded region.

Find the volume of the solid generated by revolving the region about the y-axis.
5) The region in the first quadrant bounded on the left by the circle $x^{2}+y^{2}=4$, on the right by the line $x=2$, and above by the line $\mathrm{y}=2$

Find the length of the curve.
6) $x=\int_{y}^{1} \sqrt{t^{3}-1} d t, 1 \leq y \leq 4$

Solve the problem.

7) A conical tank is resting on its apex. The height of the tank is 12 ft , and the radius of its top is 7 ft . The tank is full of gasoline weighing $45 \mathrm{lb} / \mathrm{ft}^{3}$. How much work will it take to pump the gasoline to a level 12 ft above the cone's top? Give your answer to the nearest $\mathrm{ft} \cdot \mathrm{lb}$.

Answer Key
Testname: ME1PRAC1

1) -15
2) $\frac{4}{\sqrt{\cos \sqrt{t}}}+C$
3) $7 \ln 3$
4) $\frac{937}{12}$
5) $\frac{8}{3} \pi$
6) $\frac{62}{5}$
7) $415,633 \mathrm{ft} \cdot \mathrm{lb}$
