MA17300 Midterm Exam 1

Practice Test 1

Solve the problem.

1) Suppose that g is continuous and that
$$\int_{2}^{5} g(x) dx = 4$$
 and $\int_{2}^{9} g(x) dx = 19$. Find $\int_{9}^{5} g(x) dx$.

Evaluate the integral by using multiple substitutions.

2)
$$\int \frac{\sin \sqrt{t}}{\sqrt{t}\cos^3 \sqrt{t}} dt$$

Use the substitution formula to evaluate the integral.

3)
$$\int_{7\pi/6}^{7\pi/3} 2 \cot \frac{t}{7} dt$$

Find the area of the shaded region.

Find the volume of the solid generated by revolving the region about the y-axis.

5) The region in the first quadrant bounded on the left by the circle $x^2 + y^2 = 4$, on the right by the line x = 2, and above by the line y = 2

Find the length of the curve.

6)
$$x = \int_{y}^{1} \sqrt{t^3 - 1} dt$$
, $1 \le y \le 4$

Solve the problem.

7) A conical tank is resting on its apex. The height of the tank is 12 ft, and the radius of its top is 7 ft. The tank is full of gasoline weighing 45 lb/ft³. How much work will it take to pump the gasoline to a level 12 ft above the cone's top? Give your answer to the nearest ft • lb.

Answer Key Testname: ME1PRAC1

1) -15
2)
$$\frac{4}{\sqrt{\cos \sqrt{t}}} + C$$

3) 7 ln 3
4) $\frac{937}{12}$
5) $\frac{8}{3}\pi$
6) $\frac{62}{5}$

7) 415,633 ft • lb