
LECTURE 1

1. Catalog of Problems

1.1. The classical obstacle problem.

1.1.1. The Dirichlet principle. The well-known variational principle of Dirichlet
says that the solution of the boundary value problem

∆u = 0 in D, u = g on ∂D

can be found as the minimizer of the (Dirichlet) functional

J0(u) =
∫
D

|∇u|2dx

among all u such that u = g on ∂D. More precisely (and slightly more generally),
if D is a bounded open set in Rn, g ∈W 1,2(D) and f ∈ L∞(D), then the minimizer
of

(1) J(u) =
∫
D

(|∇u|2 + 2fu)dx

on the set
Kg = {u ∈W 1,2(D) : u− g ∈W 1,2

0 (D)},
solves the equation

−∆u+ f = 0 in D, u = g on ∂D

in the sense of distributions, i.e.∫
D

(∇u∇η + fη)dx = 0

for all test functions η ∈ C∞0 (D) (and more generally for all η ∈ W 1,2
0 (D)). One

can think of the graph of u as the membrane attached to the thin wire (the graph
of g over ∂D).

1.1.2. The obstacle problem. Now, suppose that we are given additionally a function
ψ ∈ C2(D), which we will call the obstacle, such that g ≥ ψ on ∂D in the sense
that (g − ψ)− ∈ W 1,2

0 (D). Consider then the minimizers of (1) as before, but on
the constrained set

Kg,ψ = {u ∈W 1,2(D) : u− g ∈W 1,2
0 (D), u ≥ ψ a.e. in D}.

Since J is continuous and strictly convex on a convex subset Kg,ψ of the Hilbert
space W 1,2(D), it has a unique minimizer on Kg,ψ.

If as before we think of the graph of u as the membrane attached to a fixed wire,
it must stay above the graph of ψ. The new feature in this problem is that the
membrane actually can touch the obstacle, i.e. the set

Λ = {u = ψ},
1
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known as the coincidence set, may be nonempty. We also denote

Ω = D \ Λ.

The boundary
Γ = ∂Λ ∩D = ∂Ω ∩D

is called the free boundary, as it is not known apriori. The study of the free boundary
in this and related problems is the main objective in this course.

To obtain the conditions satisfied by the minimizer, we note that using the
so-called method of penalization (or regularization, we discuss this later) one can
show that the minimizer is not only in W 1,2(D), but actually is in W 2,p

loc (D) for any
p < ∞ and consequently (by the Sobolev embedding theorem) are in C1,α

loc (D) for
any 0 < α < 1.

Then, it is straightforward to show that

−∆u+ f = 0 in Ω = {u > ψ}, ∆u = ∆ψ a.e. on Λ = {u = ψ}.

Besides,
−∆u+ f ≥ 0 in D

in the sense of distributions, i.e.∫
D

(∇u∇η + fη)dx ≥ 0

for any nonnegative η ∈ W 1,2
0 (D), which follows by passing to the limit ε→ 0+ in

the inequality
J(u+ εη)− J(u)

ε
≥ 0.

Combining the properties above, we obtain that the solution of the obstacle problem
is a function u ∈W 2,p(D) for any p <∞, which satisfies

−∆u+ f ≥ 0, u ≥ ψ, (−∆u+ f)(u− ψ) = 0 a.e. in D(2)

u− g ∈W 1,2
0 (D)(3)

These are known as the complementary conditions and uniquely characterize the
minimizers of J over Kg,ψ.

Reduction to the case of zero obstacle. Since the governing operator (∆) is linear
it is possible to reduce the problem to the case when the obstacle is 0. Indeed, if u
is the solution of the obstacle problem as above, consider the difference v = u− ψ.
It is straightforward to see that v is the minimizer of the functional

J1(v) =
∫
D

(|∇v|2 + 2f1v)dx

on the set Kg1,0, where

f1 = f −∆ψ, g1 = g − ψ.

Moreover, v will satisfy
∆v = f1χ{v>0} in D

in the sense of distributions.
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1.2. Problem from Potential Theory. Let Ω be a bounded open set in Rn
and f a certain bounded measurable function on Ω. Consider then the Newtonian
potential of the distribution of mass fχΩ, i.e.

U(x) = Φn ∗ (fχΩ)(x) =
∫

Ω

Φn(x− y)f(y)dy

where Φn is the fundamental solution of the Laplacian in Rn, i.e. ∆Φn = δ in the
sense of distributions. It can be shown that the potential U is in W 2,p

loc (Rn) for any
and satisfies

∆U = fχΩ in Rn

in the sense of distributions (or a.e., which is the same in this case). In particular,
U is harmonic in Rn \ Ω.

Let x0 ∈ ∂Ω and suppose for some small r > 0 there is a harmonic function h
in the ball Br(x0) such that h = U on Br \ Ω. We say in this case that h is a
harmonic continuation of U into Ω at x0. If such continuation exists, the difference
u = U − h satisfies

(4) ∆u = fχΩ in Br(x0), u = |∇u| = 0 on Br(x0) \ Ω.

Using the Cauchy-Kowalevskaya theorem, it is straightforward to show that the
harmonic continuation exists if ∂Ω and f are real-analytic in a neighborhood of
x0. The converse to this property would be, given that the solution to (4) exist for
some r > 0, what can be said about the regularity of ∂Ω.

1.3. Pompeiu Problem. A nonempty bounded open set Ω ⊂ Rn is said to have
the Pompeiu property if the only continuous function such that∫

σ(Ω)

f(x)dx = 0

for all rigid motions σ : Rn → Rn is the identically zero function. A ball of any
radius fails this property: take f(x) = sin(ax1) for a > 0 satisfying Jn/2(aR) = 0,
where Jν is the Bessel function of order ν. Furthermore, any finite disjoint union
of balls of the same radius again fail the Pompeiu property, with the same function
f .

A long standing conjectured in integral geometry says that if Ω fails the Pompeiu
property and has a sufficiently regular (Lipschitz) boundary ∂Ω homeomorphic to
the unit sphere, then Ω must be a ball. It is known (Williams) that for such Ω
there exists a solution to the problem

∆u+ λu = χΩ in Rn, u = |∇u| = 0 in Rn \ Ω

for some λ > 0. An open conjecture of Schiffer says that any Ω admitting solutions
of the overdetermined problem above must be a ball.

1.4. A problem from superconductivity. In analyzing the evolution of vortices
arising in the mean-field model of penetration of the magnetic field into super-
conducting bodies, one ends up with a degenerate parabolic-elliptic system. A
simplified stationary model of this problem (in a local setting), where the scalar
stream function admits a functional dependence on the scalar magnetic potential,
reduces to finding u such that

(5) ∆u = uχ{|∇u|>0}, u ≥ 0, in Br(x0),
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the equation is in the sense of distribution, and appropriate boundary data are
fulfilled.

One can actually consider a more general problem of the form

(6) ∆u = f(x, u)χ{|∇u|>0}, in Br(x0),

with f > 0, and f(·, t) ∈ Cα.
Obviously this problem is slightly more general than the above problem in po-

tential theory, as the solution function can have different constant values on the set
|∇u| = 0.

To give an example of a solution to such a problem, one considers a dumbbell
shape region D ⊂ R2,

D := B1(x1) ∪B1(x2) ∪ {x : |x2| < ε, |x1| < 2}
with x1 = (2, 0), x2 = (−2, 0), and ε very small positive number. The solution to

∆v = f in D, v = 0 on ∂D.

forms a shape of hanging graphs over D, and of course symmetric in x1-axis.
Now solve the obstacle problem ∆u = fχ{u>ψ}) in D with zero boundary values

and the obstacle ψ which is smooth and equals min v + δi on each ball B1/2(xi).
Here δ1 > δ2 > 0 are small constants. This gives us an example of a solution to (5).

1.5. Two-phase obstacle problem. Given a bounded open set D in Rn, g ∈
W 1,2(D) and bounded measurable functions λ+ and λ− in D consider the problem
of minimization of the functional

(7) J(u) =
∫
D

(|∇u|2 + 2λ+u
+ + 2λ−u−)dx

over the set
Kg = {u ∈W 1,2(D) : u− g ∈W 1,2

0 (D)}.
Here

u+ = max{u, 0}, u− = max{−u, 0}
The case λ− = 0 and g ≥ 0 the problem is equivalent to the obstacle problem with
zero obstacle, see above.

Possible applications of this functional may come in several problems when the
external force is a function of u itself, in this case the external force is

λ+H(u)− λ−H(−u).
As a specific example, imagine a membrane in Rn+1 under the influence of an
electric or a magnetic field of the form

F = −λ+χ{xn+1>0}en+1 + λ−χ{xn+1<0}en+1,

where en+1 is (n + 1)-th vector in the standard basis in Rn+1. If we assume the
membrane to be modeled by a graph in the xn+1-direction and to be clamped in
at the boundary, then the equilibrium state would correspond to the minimizer of
our functional.

Another physical interpretation of this problem is the consideration of a thin
membrane (film) which is fixed on the boundary of a given domain, and some part
of the boundary data of this film is below the surface of a thick liquid (heavier than
the film itself). Now the weight of the film produces a force downwards (call it λ+)
on that part of the film which is above the liquid surface. On the other side the
part in the liquid is pushed upwards by a force λ−, since the liquid is heavier than
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the film. Obviously the equilibrium state of the film is given by a minimization of
the above mentioned functional.

One of the difficulties one confronts in this problem is that the interface {u = 0}
consists in general of two parts – one where the gradient of u is nonzero and one
where the gradient of u vanishes. Close to points of the latter part we expect the
gradient of u to have linear growth. However, because of the decomposition into
two different types of growth, it is not possible to derive a growth estimate by
classical techniques.

1.6. A problem in Optimal Control theory. Yet another application of the two
membrane problem, coming from optimal control theory, can be given as follows.
Let D we an open set with regular boundary (Lipschitz) in Rn and consider the
following problem:

∆u = f in D
∂u

∂ν
= h on ∂D.

Here ν is outward normal to ∂D, h ∈ L∞(∂Ω) is a given function, f ∈ L∞(D) is a
control function such that

f ∈ Uad :=
{

sup
D
|f | ≤ 1,

∫
D

f =
∫
∂D

h

}
.

The solution is understood in the weak sense, i.e.∫
D

(∇u∇η + fη)dx =
∫
∂D

hη

for any η ∈W 1,2(D).
It is required to minimize the functional

I(u) :=
∫
D

|∇u|2 + |u| −
∫
∂D

hu

for all solutions with f ∈ Uad.
It is easy to calculate that

I(u) =
∫
D

|u|(1− f signu) ≥ 0,

and I(u) = 0 iff f = f(u) = signu.

1.7. Composite membrane. Build a body of prescribed shape out of given ma-
terials (of varying densities) in such a way that the body has a prescribed mass and
so that the basic frequency of the resulting membrane (with fixed boundary) is as
small as possible. Let us consider a more general problem: Given a domain D ⊂ Rn
(bounded, connected, with Lipschitz boundary) and numbers α > 0, A ∈ [0, |D|]
(with |.| denoting volume). For any measurable subset Ω ⊂ D let λD(α,Ω) denote
the lowest eigenvalue λ of the problem

(8) −∆v + αχΩv = λv in D, v = 0 on ∂D

(Chanillo, Grieser, Imai, Kurata, Ohnishi). Define

ΛD(α,A) = inf
Ω⊂D, |Ω|=A

λD(α,Ω)

Any minimizer D in the latter equation will be called an optimal configuration for
the data. If Ω is an optimal configuration and v satisfies (8) then (v,Ω) will be
called an optimal pair (or solution). It is known that Ω = {v ≤ t} for some t such
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that |A| = {v ≤ t}. Now upon rewriting u = v − t we can rephrase the above
equation as

∆u = (αχ{u≤0} − λ)(u+ t),
and with yet another rewriting

∆u =
(
(α− λ)χ{u≤0} − λχ{u>0}

)
(u+ t).

The particular case α < λ is of special interest, as the problem does not fall under
general theory.

This problem, by rewriting, can still be seen as a special case of minimizing the
functional

J(u) =
∫
D

(
|∇u|2 + λ+u

+ + λ−v
− )

dx,

with λ± smooth functions, and possibly varying signs.


