
LECTURE 11

11. Classification of Free Boundary points

11.1. Homogeneous Global Solutions. By Theorem 10.3, blowups of solutions
of Problems A and B at fixed x0 ∈ Γ and of Problem C at x0 ∈ Γ′ are homogeneous
(of degree two) global solutions, i.e. a global solution u satisfying

u(λx) = λ2u(x), x ∈ Rn, λ > 0.

Another way to express the homogeneity is by the identity

(11.1) ∂(2)u(x) := x · ∇u(x)− 2u(x) = 0 in Rn.

In this section we give a complete description of such solutions.

Theorem 11.1 (Classification of homogeneous global solution). Let u be a homo-
geneous global solution of Problem A, B, or C. Then u is of one of the following
forms.

- In Problems A, B:
• Polynomial solution u(x) = 1

2 (x · Ax), x ∈ Rn. where A is an n × n
symmetric matrix with TrA = 1

• Halfplane solutions u(x) = 1
2 (x · e)2+, x ∈ Rn, where e is a unit vector.

-In Problem C:
• Polynomial solutions (positive or negative) u(x) = λ+

2 (x · Ax) or u(x) =
−λ−

2 (x · Ax), x ∈ Rn, where A is an n× n nonnegative symmetric matrix
with TrA = 1.

• Halfplane solutions (positive or negative) u(x) = λ+
2 (x · e)2+ or u(x) =

−λ−
2 (x · e)2−, x ∈ Rn, for a unit vector e.

• Two-plane solution u(x) = λ+
2 (x ·e)2+−

λ−
2 (x ·e)2−, x ∈ Rn, for a unit vector

e.

Proof.
Problems A, B. Observe that u ∈ P∞(M) and

(11.2) u(0) = |∇u(0)| = 0.

Consider two possibilities. First suppose that IntΩc(u) = ∅. Then, since ∂Ω(u) has
zero Lebesgue measure (see Corollary 8.10) the function u satisfies the equation
∆u = const a.e. in Rn, and ‖D2u0‖L∞(Rn) ≤ M . By Liouville’s theorem u is a
degree two polynomial and homogeneity comes from (11.2).

Next, suppose Int Ωc(u) 6= ∅. Then we apply the ACF Monotonicity Formula
(see Lecture 5) to the positive and the negative parts of ∂eu, for different directions
e. Recall that we have shown earlier that (∂eu)± are subharmonic, so the ACF
Monotonicity Formula is applicable (see Lemma 6.2 applied with M1 = M2 = 0).

The homogeneity of u readily implies that for any direction e

φe(r) := Φ(r, (∂eu)+, (∂eu)−) =
1
r4

∫
Br

|∇(∂eu)+|2

|x|n−2

∫
Br

|∇(∂eu)−|2

|x|n−2
,
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is constant for all r > 0. Now, wee need to use Theorem 5.3, which treats the
case of equality in the ACF Monotonicity Formula. By this theorem we have two
possibilities: either

(i) ∂eu ≥ 0 in Rn or ∂eu ≤ 0 in Rn, or
(ii) supp(∂eu)+ and supp(∂eu)− are complementary halfspaces.

The latter possibility is excluded, as it will imply that IntΩc(u) = ∅, contrary to
our assumption. Thus the former possibility holds and therefore we obtain that
∂eu does not change the sign in Rn for any direction e. This is possible if and only
if u is one-dimensional, i.e. there exists a direction e and a function f on R such
that u(x) = f(x · e). The rest of the proof is an easy consequence from this.

Problem C. We start with the claim that Γ′′(u) = ∅. First, as above, we apply
the ACF Monotonicity Formula to the positive and negative parts of a directional
derivative ∂eu. From homogeneity of u, we obtain that φe(r) is a constant for r > 0.
From Theorem 5.3 we obtain therefore that either

(i) ∂eu ≥ 0 in Rn or ∂eu ≤ 0 in Rn, or
(ii) (∂eu)+∆(∂eu)+ = 0 in Rn and (∂eu)−∆(∂eu)− = 0 in Rn in the sense of

measures.

Suppose now that there exists a point y0 ∈ Γ′′(u) and denote by ν0 the direction
of gradient of u at y0. There is a neighborhood Bρ(y0) where ∂ν0u > 0 and {u =
0} ∩ Bρ(y0) is a C1,α-surface. If e · ν0 6= 0 then ∂eu(y0) 6= 0 and for sufficiently
small δ we obtain

|∆∂eu|(Bδ(y0)) =
|λ+ + λ−|

2

∫
{u=0}∩Bδ(y0)

|e · ν| dHn−1 > 0,

where ν = ∇u/|∇u| is the normal to the surface u = 0. Thus the case (ii) cannot
hold for directions e nonorthogonal to ν0. Thus, (i) holds for all such directions and
by continuity for all directions. As before, this implies that u is one-dimensional.
But it is easy to show that all one-dimensional homogeneous solutions of Problem
C are either halfplane or two-plane solutions for which Γ′′ = ∅. This contradicts to
assumption that Γ′′(u) is non-empty.

Once we have that Γ′′(u) = ∅, renormalized positive and negative parts of u,
1

λ±
u±, will solve Problem A. Thus u has one of the forms described in the statement

of the theorem. �

11.2. Classification of Free Boundary Points. Since the blowups with fixed
centers are homogeneous global solution by Theorem 11.1, this leads to a classifica-
tion of free boundary points according to their blowup. But first we need to show
any two blowups at a given point are of the same type.

We start by finding Weiss’s energy of homogeneous global solutions described in
Theorem 11.1.
Problem A. If u is a homogeneous global solution and we integrate by parts in the
expression for W , using that ∆u = 1 in Ω, we arrive at

W (r, u, 0) ≡ W (1, u, 0) =
∫

B1

(
|∇u|2 + 2u

)
dx− 2

∫
∂B1

u2 dHn−1

=
∫

B1

(−∆u + 2)u dx−
∫

∂B1

∂(2)u u dHn−1 =
∫

B1

u dx.
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Hence, for polynomial solutions u(x) = 1
2 (x ·Ax), we have

W (r, u, 0) =
1
2

∫
B1

x ·Axdx = αn

and for halfplane solutions u(x) = 1
2 (x · e)2+

W (r, u, 0) =
1
2

∫
B1

(x · e)2+dx =
αn

2
,

where

αn =
1
2

∫
B1

x2
1 dx.

So, the only values taken by W on homogeneous solutions are

αn,
αn

2
.

Problem B. As it follows from Theorem 11.1, the homogeneous solutions of Problems
A and B are identical and so are their Weiss functionals.

Problem C. Arguing similarly, we obtain that the homogeneous solutions in this
case have energies W

λ±αn,
(λ+ + λ−)αn

2
,

λ±αn

2
.

The computation above and Weiss’s Monotonicity Formula lead us to the fol-
lowing definition.

Definition 11.2 (Balanced Energy). Let u ∈ PR(x0,M) be a solution of Problem
A, B, or C and assume additionally that x0 ∈ Γ′(u) in the case of Problem C. Then
the limit

(11.3) ω(x0) := lim
r→0

W (r, u, x0),

which exists by Theorem 10.2, is called the balanced energy of u at x0.

If u0 = limj→∞ ux0,λj
for λj → 0 is a blowup of u at a fixed center x0 as in

Theorem 10.3 then

ω(x0) = lim
j→∞

W (λj , u, x0) = lim
j→0

W (1, ux0,λj , 0) = W (1, u0, 0).

Thus, the balanced energy at a point coincides with the Weiss energy of any of
blowups with fixed center x0. This has two consequences: first that the balanced
energy can take only a limited number of values and second that all blowups at x0

are of the same type.

Proposition 11.3. Problems A, B. The balanced energy is an upper semicontinu-
ous function of x0 ∈ Γ(u) and

ω(x0) ∈
{

αn,
αn

2

}
.

Problem C. The balanced energy is an upper semicontinuous function of x0 ∈ Γ′(u)
and

ω(x0) ∈
{

λ±αn,
(λ+ + λ−)αn

2
,
λ±αn

2

}
.
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Proof. The upper semicontinuity follows from the fact that

W (r, u, ·) =: ωr(·) ↘ ω(·), as r ↘ 0,

and the functions ωr(·) are continuous for any r > 0. The values taken by the
balanced energy are obtained from the analysis immediately before and after Defi-
nition 11.2. �

Proposition 11.4 (Unique type of the blowup). Let x0 ∈ Γ(u) in Problems A, B,
or x0 ∈ Γ′(u) in Problem C. Then any two blowups of solution u with fixed center
x0 have the same type.

We leave the proof to the reader as an exercise.

Definition 11.5 (Classiffication of Free Boundary Points).
– In Problems A, B for x0 ∈ Γ(u) we will use the following terminology:
• x0 is a high-energy point, if ω(x0) = αn

• x0 is a low-energy point, if ω(x0) = αn

2

Equivalently, x0 is high-energy if blowups with fixed center x0 are polynomial and
low-energy if blowups are halfplane solutions.

– In Problem C, for x0 ∈ Γ′(u), we say
• x0 is a two-phase point, if x0 ∈ ∂{u > 0} ∩ ∂{u < 0}
• x0 is an one-phase point, otherwise

One can show that the solution u of Problem C does not change sign in a neighbor-
hood of an one-phase point. Similarly to Problems A, B we distinguish high-enegy
and low-energy one-phase points, depending on their balanced energy.


