LECTURE 11

11. CLASSIFICATION OF FREE BOUNDARY POINTS

11.1. Homogeneous Global Solutions. By Theorem 10.3, blowups of solutions
of Problems A and B at fixed zg € I and of Problem C at xy € I” are homogeneous
(of degree two) global solutions, i.e. a global solution u satisfying

u(Az) = Nu(z), = €R™ A>0.
Another way to express the homogeneity is by the identity
(11.1) 0Pu(z) ==z - Vu(z) — 2u(z) =0 in R".
In this section we give a complete description of such solutions.
Theorem 11.1 (Classification of homogeneous global solution). Let u be a homo-
geneous global solution of Problem A, B, or C. Then wu is of one of the following

forms.
- In Problems A, B:
e Polynomial solution u(z) = i(z - Az), = € R". where A is an n X n
symmetric matriz with Tr A =1
e Halfplane solutions u(z) = (z - €)2, z € R", where e is a unit vector.

-In Problem C:

e Polynomial solutions (positive or negative) u(z) = %(x - Azx) or u(x) =
—%(m - Az), x € R™, where A is an n X n nonnegative symmetric matrix
with Tr A = 1.

e Halfplane solutions (positive or negative) u(x) = %(x ce)d or u(z) =

—%(m -e)2, x € R™, for a unit vector e.

e Two-plane solution u(x) = )‘; (z-e)%— )‘2 (z-e)2, x € R, for a unit vector

e.
Proof.

Problems A, B. Observe that u € Py (M) and
(11.2) u(0) = [Vu(0)| = 0.

Consider two possibilities. First suppose that Int Q¢(u) = (). Then, since 9Q(u) has
zero Lebesgue measure (see Corollary 8.10) the function u satisfies the equation
Au = const a.e. in R", and ||[D*ugl|=®n) < M. By Liouville’s theorem u is a
degree two polynomial and homogeneity comes from (11.2).

Next, suppose Int Q¢(u) # 0. Then we apply the ACF Monotonicity Formula
(see Lecture 5) to the positive and the negative parts of 9.u, for different directions
e. Recall that we have shown earlier that (J.u)* are subharmonic, so the ACF
Monotonicity Formula is applicable (see Lemma 6.2 applied with M; = My = 0).

The homogeneity of u readily implies that for any direction e
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is constant for all » > 0. Now, wee need to use Theorem 5.3, which treats the
case of equality in the ACF Monotonicity Formula. By this theorem we have two
possibilities: either

(i) Oew > 0in R™ or deu < 0 in R™, or

(ii) supp(deu)™ and supp(deu)~ are complementary halfspaces.

The latter possibility is excluded, as it will imply that Int Q°(u) = (), contrary to
our assumption. Thus the former possibility holds and therefore we obtain that
O.u does not change the sign in R™ for any direction e. This is possible if and only
if u is one-dimensional, i.e. there exists a direction e and a function f on R such
that u(xz) = f(x - e). The rest of the proof is an easy consequence from this.

Problem C. We start with the claim that T'(u) = (. First, as above, we apply
the ACF Monotonicity Formula to the positive and negative parts of a directional
derivative O.u. From homogeneity of u, we obtain that ¢.(r) is a constant for r > 0.
From Theorem 5.3 we obtain therefore that either

(i) Oeu > 0in R™ or deu < 0 in R™, or
(i) (Oeu)TA(Geu)t = 0 in R™ and (O.u)” A(deu)” = 0 in R™ in the sense of

measures.

Suppose now that there exists a point yo € I'"(u) and denote by 1 the direction
of gradient of u at yo. There is a neighborhood B,(yo) where d,,u > 0 and {u =
0} N B,(yo) is a CH*-surface. If e - vy # 0 then deu(yo) # 0 and for sufficiently
small § we obtain

_ A+ A

le-v|dH™ ! >0,
2 {u=0}NBs(yo)

|Adeul|(Bs(yo))
where v = Vu/|Vu| is the normal to the surface u = 0. Thus the case (ii) cannot
hold for directions e nonorthogonal to vy. Thus, (i) holds for all such directions and
by continuity for all directions. As before, this implies that u is one-dimensional.
But it is easy to show that all one-dimensional homogeneous solutions of Problem
C are either halfplane or two-plane solutions for which I = (). This contradicts to
assumption that I'/(u) is non-empty.
Once we have that I'(u) = (), renormalized positive and negative parts of u,
iui, will solve Problem A. Thus u has one of the forms described in the statement

of the theorem. O

11.2. Classification of Free Boundary Points. Since the blowups with fixed
centers are homogeneous global solution by Theorem 11.1, this leads to a classifica-
tion of free boundary points according to their blowup. But first we need to show
any two blowups at a given point are of the same type.

We start by finding Weiss’s energy of homogeneous global solutions described in
Theorem 11.1.
Problem A. If u is a homogeneous global solution and we integrate by parts in the
expression for W, using that Au =1 in 2, we arrive at

W(r,u,0) = W(l,u,0) = /

B1

:/ (—Au+2)udx —
B1

(IVul® + 2u) dm—2/ u? dH" !
0B,

8(2)uudH”*1:/ udzx.
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(z - Ax), we have

Hence, for polynomial solutions u(z) = %

1
W(r,u,O)zi/ x-Axdr = oy,
By

and for halfplane solutions u(z) = £ (z - €)%

1
W(r,u,0) = 5/3 (x-e)idr = X
1

1
an:f/ 22 dx.
2 B

So, the only values taken by W on homogeneous solutions are

where

Qn
A,y  —.
2

Problem B. As it follows from Theorem 11.1, the homogeneous solutions of Problems
A and B are identical and so are their Weiss functionals.

Problem C. Arguing similarly, we obtain that the homogeneous solutions in this
case have energies W

()\+ +A)ay, At Q,
2 ’ 2
The computation above and Weiss’s Monotonicity Formula lead us to the fol-
lowing definition.

)\ia'rn

Definition 11.2 (Balanced Energy). Let u € Pr(xo, M) be a solution of Problem
A, B, or C and assume additionally that xy € I''(u) in the case of Problem C. Then
the limit

(11.3) w(xg) := liI%W(T,u,xo),
which exists by Theorem 10.2, is called the balanced energy of u at xg.

If wo = limj o0 tg,,n, for Aj — 0 is a blowup of u at a fixed center x¢ as in
Theorem 10.3 then
w(xo) = jli)rgo (Aj,u,z0) = ]h_r% W (1, Uz x,,0) = W(1,up,0).
Thus, the balanced energy at a point coincides with the Weiss energy of any of
blowups with fixed center xo. This has two consequences: first that the balanced
energy can take only a limited number of values and second that all blowups at xg
are of the same type.

Proposition 11.3. Problems A, B. The balanced energy is an upper semicontinu-
ous function of xo € I'(u) and

w(xo) € {an, %} .

Problem C. The balanced energy is an upper semicontinuous function of xy € T"(u)
and

w(xp) € {)\ian, A+ +A-Jan /\ian} )
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Proof. The upper semicontinuity follows from the fact that

W(ryu,-) = wr(-) \ w(-), as r \, 0,
and the functions w,(-) are continuous for any r > 0. The values taken by the

balanced energy are obtained from the analysis immediately before and after Defi-
nition 11.2. ([

Proposition 11.4 (Unique type of the blowup). Let xg € I'(u) in Problems A, B,
or zg € I(u) in Problem C. Then any two blowups of solution u with fized center
xo have the same type.

We leave the proof to the reader as an exercise.

Definition 11.5 (Classiffication of Free Boundary Points).
— In Problems A, B for zg € I'(u) we will use the following terminology:
e xq is a high-energy point, if w(xg) = an,
e 0 is a low-energy point, if w(xg) = %
Equivalently, x( is high-energy if blowups with fixed center x( are polynomial and
low-energy if blowups are halfplane solutions.
— In Problem C, for 2y € I'(u), we say
o 1 is a two-phase point, if zog € O{u >0} NI{u < 0}
e x( is an one-phase point, otherwise
One can show that the solution u of Problem C does not change sign in a neighbor-
hood of an one-phase point. Similarly to Problems A, B we distinguish high-enegy
and low-energy one-phase points, depending on their balanced energy.



