LECTURE 13

13. First Results on the Regularity of the Free Boundary (continued)

13.1. **Problem B: the local structure of the patches.** The main result of this section is the following theorem.

Theorem 13.1. Let $u \in P_1(x_0, M)$ and suppose that x_0 is a low-energy point. Then, there is a $\rho = \rho(u) > 0$ such that

$$\Omega^c \cap B_\rho(x_0) \subset \{u = u(x_0)\}.$$

Recall that the energy classification of free boundary points is given in Lecture 11.

The proof of the theorem is based on the ideas of directional monotonicity, similar to Problem A that we discussed in Lecture 12.

Lemma 13.2. Let $u \in P_1(x_0, M)$ and suppose that

$$C\partial_e u - |\nabla u|^2 \ge -\epsilon_0 \quad in \ B_1$$

where $0 \leq \epsilon_0 < 1/4n^2$. Then

$$|C\partial_e u - |\nabla u|^2 \ge 0$$
 in $B_{1/2}$

Proof. We argue similarly as in the proof of Lemma 12.2 and use that

$$\Delta(|\nabla u|^2) = 2|D^2u|^2 + 2\nabla u\nabla(\Delta u) \ge \frac{2}{n}$$

in $\Omega(u)$ instead of $\Delta u = 1$. We leave the details to the reader.

Lemma 13.3. Let $u \in P_1(x_0, M)$ with x_0 a low energy point and suppose that $u_0(x) = \frac{1}{2}(x_1^+)^2$, $x \in \mathbb{R}^n$, be a blowup of u at fixed center x_0 . Then, for any δ there is $r_{\delta} > 0$ such that

$$\delta^{-1}\partial_e u - |\nabla u|^2 \ge 0 \quad in \ B_{r_\delta}(x_0)$$

for any direction

$$e \in K_{\delta} := \{ e \in \partial B_1 : e \cdot e_1 > \delta \}$$

In particular, $\partial_e u \ge 0$ in $B_{r_{\delta}}(x_0)$ for any $e \in K_{\delta}$.

Proof. We have that

$$\partial_e u_0 = x_1^+ (e \cdot e_1)$$
 and $|\nabla u_0|^2 = (x_1^+)^2$

Hence, for $e \in K_{\delta}$

$$\delta^{-1}\partial_e u_0 - |\nabla u_0|^2 \ge 0 \quad \text{in } B_1.$$

Fix now a sequence $r_k \to 0$ such that

$$u_0 = \lim_{k \to \infty} u_{r_k}.$$

By uniform convergence, for all $\epsilon > 0$, there is k_0 such that for all $k \ge k_0$, and $e \in K_{\delta}$ we have

$$\delta^{-1} \partial_e u_{r_k} - |\nabla u_{r_k}|^2 \ge -\epsilon_0 \quad \text{in } B_1,$$

for $\epsilon_0 < 1/4n^2$. Thus, by the previous lemma

$$\delta^{-1}\partial_e u_{r_k} - |\nabla u_{r_k}|^2 \ge 0 \quad \text{ in } B_{1/2}$$

and the proof is complete by taking $r_{\delta} = \frac{r_k}{2}$, the lemma is proved.

Lemma 13.4. Under the assumptions and notations of Lemma 13.3 we have

$$x_0 - K_\delta \cap B_{r_\delta} \subset \{u \le u(x_0)\}.$$

Proof. We omit the obvious proof.

Lemma 13.5. Under the assumptions and notations of Lemma 13.3, there is $r'_{\delta} > 0$ such that

$$x_0 - K_{2\delta} \cap B_{r'_{\delta}} \subset \Omega^c$$

Proof. Suppose there is a sequence $\{x_k\} \subset -K_{2\delta} \cap B_1 \cap \Omega$ such that $\rho_k = |x_k| \to 0$. Fix a constant $\tau > 0$, such that

$$B_{\tau|x|}(x) \subset -K_{\delta}, \quad \text{for any } x \in -K_{2\delta}$$

By the nondegeneracy lemma of u in Ω , there exist $y_k \in B_{\tau \rho_k}(x_k)$ such that

(13.1)
$$u_{\rho_k}(\rho_k^{-1}y_k) - u_{\rho_k}(\rho_k^{-1}x_k) \ge c_0\tau$$

for some constant $c_0 > 0$, independent of k.

Now, since we assume that x_0 is a low energy point, any blow up of u at x_0 is a half space solution. In particular

$$\liminf_{r \to 0} u_r(x) \ge 0, \quad \text{for all } x \in \mathbb{R}^n.$$

On the other hand, by Lemma 13.4,

$$\limsup u_r(x) \le 0 \quad \text{for all } x \in -K_{\delta}.$$

Hence, for all $x \in -K_{\delta}$,

$$\lim_{x \to 0} u_r(x) = 0.$$

Since $\{\rho_k^{-1}y_k\}$ and $\{\rho_k^{-1}x_k\}$ are two bounded sequences contained in $-K_\delta \cap B_2$, $\lim_{k \to \infty} u_{\rho_k}(\rho_k^{-1}y_k) - u_{\rho_k}(\rho_k^{-1}x_k) = 0,$

which is a contradiction to (13.1).

Proof of Theorem 13.1. Fix some $0 < \delta < 1/2$ and let $\rho = \frac{2}{3} \min\{r_{\delta}, r'_{\delta}\}$, with r_{δ} as in Lemma 13.3 and r'_{δ} as in Lemma 13.5.

We claim that any point $x \in \Omega^c \cap B_\rho$ can be joined to $-K_{2\delta} \cap B_\rho$ with a segment parallel to e_1 and contained in Ω^c . In fact, if the claim is not true, then we can find two points, $x_1 \in \Omega \cap B_\rho$ and $x_2 \in \Omega^c \cap B_\rho$ such that

$$x_2 - x_1 = |x_2 - x_1|e_1.$$

Now, take a small ball $B_{\epsilon}(x_1) \subset \Omega$ and denote by C the cone generated by x_2 and $B_{\epsilon}(x_1)$. Move $B_{\epsilon}(x_1)$ from x_1 to x_2 along the axis of C, reducing its radius to fit in C, until we touch for the first time Ω^c . Let ζ_0 be a point of contact. There is $\rho' > 0$ and $\delta' > 0$ such that

(13.2)
$$\zeta_0 - K_{\delta'} \cap B_{\rho'} \subset B_{\rho}(x_0) \cap \Omega.$$

Since, by Lemma 13.3, $\partial_e u \ge 0$ in $B_{\rho}(x_0)$, for all $e \in K_{\delta}$, then

$$\zeta_0 - K_\delta \cap B_{\rho'} \subset \{ u \le u(\zeta_0) \}$$

LECTURE 13

and

$\zeta_0 + K_\delta \cap B_{\rho'} \subset \{ u \ge u(\zeta_0) \} \,.$

Let \hat{u}_0 be a blow up of u at ζ_0 . Then \hat{u}_0 can not be a polynomial solution since $\hat{u}_0 \leq 0$ in $-K_{\delta}$ and $\hat{u}_0 \geq 0$ in K_{δ} and homogeneous polynomials of degree two are even. Then, \hat{u}_0 should be a half space solution. In that case, the same argument as the one in Lemma 13.5 shows that there is $\rho'' > 0$ and $\delta'' > 0$ such that

$$\zeta_0 - K_{\delta''} \cap B_{\rho''} \subset \Omega^c.$$

This contradiction with (13.2) proves the theorem.