
LECTURE 14

14. First Results on the Regularity of the Free Boundary
(continued)

14.1. Problem C: the free boundary near the branching points. In this
lecture we study the structure of the free boundary near two-phase free boundary
points in Problem C. Because of the Implicit Function Theorem, we may restrict
ourselves to the case of two-phase points where gradient vanishes. Namely we
assume that we are given a C1,1-solution of

∆u = λ+χ{u>0} − λ−χ{u<0} in D

with λ± > 0 and a free-boundary point x0 ∈ ∂{u > 0} ∩ ∂{u < 0} ∩ D such that
|∇u(x0)| = 0. We will call such point branching points.

Theorem 14.1. Let u ∈ P1(x0,M) be a solution of Problem C such that x0 is a
branching point , i.e. x0 ∈ ∂{u > 0} ∩ ∂{u < 0} and |∇u(x0)| = 0. Then there
exist r = r(x0, u) > 0 such that ∂{u > 0} ∩ Br(x0) and ∂{u < 0} ∩ Br(x0) are
graphs of C1 functions that touch at x0.

The proof is based on the general idea of directional monotonicity that we ex-
ploited earlier.

Lemma 14.2. Let u ∈ P1(x0,M) and suppose that

C∂eu− |u| ≥ −ε0 in B1

where 0 ≤ ε0 < (1/8n) min{λ+, λ−}. Then

C∂eu− |u| ≥ 0 in B1/2.

The proof is similar to those of Lemmas 12.2 and 13.2, but is more subtle.

Proof. Let v = C∂eu − |u| and suppose that the set {v < 0} is nonempty. Now,
note that ∇u 6= 0 on γ = {v < 0} ∩ {u = 0} and therefore this set is locally a C1,α

surface. Further, note that

∆|u| ≥ λ+χ{u>0} + λ−χ{u<0} in B1

in the sense of distributions and

∆(∂eu) = (λ+ + λ−)(e · ν)Hn−1bγ in {v < 0},

where ν = ∇u/|∇u| is the unit normal on γ. Since on γ we have u = 0 and
v = C∂eu−|u| < 0, we also have that ∂eu < 0 and therefore e ·ν < 0. In particular,
this implies that

∆(∂eu) ≤ 0 in {v < 0}
and consequently

∆v ≤ −λmin in {v < 0},
where λmin := min{λ+, λ−}.
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Suppose now {v < 0} ∩ B1/2 contains a point x0. Consider then the auxiliary
function

w(x) = v(x) +
λmin

2n
|x− x0|2.

Then ∆w ≤ 0 in {v < 0} and w(x0) = v(x0) < 0. Hence, by the minimum principle

inf
∂(B1/2(x0)∩{v<0})

w ≤ w(x0) < 0.

Since w(x) = λmin/2n|x− x0|2 ≥ 0 on ∂{v > 0} ∩B1/2(x0), we must have

inf
(∂B1/2(x0))∩{v<0}

w < 0.

Finally, since w(x) = v(x) + λmin/8n on (∂B1/2(x0)) ∩ {v < 0}, we obtain that

inf
∂B1/2(x0)

v < −λmin

8n
,

contrary to our assumption. �

Lemma 14.3. Let u ∈ P1(x0,M) with x0 a branching point and suppose that
u0(x) = λ+

2 (x+
1 )2− λ−

2 (x−1 )2 be a blowup of u with fixed center at x0. Then for any
δ > 0 there exists rδ > 0 such that

δ−12rδ∂eu− |u| ≥ 0 in Brδ
(x0)

for any unit vector e ∈ Kδ := {x : x1 ≥ δ|x|}. In particular, ∂eu ≥ 0 in Brδ
(x0).

Proof. We start by observing that for u0 we have

∂eu0 = (e · e1)(λ+x+
1 + λ−x−1 ),

hence
δ−1∂eu0 − |u0| ≥ 0 in B1.

Consider now a sequence rj → 0 such that ux0,rj
→ u0 in C1,α

loc (Rn). Then

δ−1∂eux0,rj
− |ux0,rj

| ≥ −ε0 > −λmin

8n
in B1

for large j. But then by the previous lemma

δ−1∂eux0,rj
− |ux0,rj

| ≥ 0 in B1/2.

Then, letting rδ = rj/2 and scaling back we obtain

δ−12rδ∂eu− |u| ≥ 0 in Brδ
(x0).

�

We are now ready to prove the theorem that we stated in the beginning.

Proof of Theorem 14.1. 1) Without loss of generality we will assume x0 = 0. Fix a
small δ > 0 and let rδ > 0 be as in Lemma 14.3, so that ∂eu ≥ 0 for any e ∈ Kδ.
This immediately implies that ∂{u > 0} ∩ Brδ/2 and ∂{u < 0} ∩ Brδ/2 are graphs
x1 = f±(x2, . . . , xn) of Lipschitz functions f±.

2) Now, to show the differentiability of f±, observe that by letting δ → 0 we
easily obtain that Df±(0) = 0. Similarly, we obtain that f± are differentiable at any
other branching point in Brδ/2. The rest of the free boundary points x̂ ∈ Γ∩Brδ/2

are either: (i) two-phase with |∇u(x̂)| > 0 or (ii) one-phase points. While the case
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(i) is clear, in the case (ii) we claim that x̂ is a low-energy point. Indeed, if ε > 0
is such that u ≥ 0 in Bε(x̂) then

x̂−Kδ ∩Bε ⊂ {u = 0}
and

x̂ + Int(Kδ) ∩Bε ⊂ {u > 0}.
Thus, for a blowup û at x̂ we must have

−Kδ ⊂ {û = 0},
which is possible only if û is a halfplane solution. Then we apply Theorem 12.4 to
establish the differentiability of f+ at x̂.

Similarly, we treat the case when u ≤ 0 near x̂.

3) Finally, let us show that f± are C1 functions. We first show that

lim
x′→0

|∇f±(x′)| = 0,

where x′ = (x2, . . . , xn). This follows from the fact that we can apply Lemma 14.3
with δ → 0. Indeed, the directional monotonicity ∂eu ≥ 0 in Brδ

for e ∈ Kδ readily
implies that

|∇f±(x′)| ≤ δ/
√

1− δ2, for |x′| ≤ rδ.

Thus, the C1 regularity at the origin follows.
Next, C1 regularity at other branching points in Brδ

follows similarly. C1 reg-
ularity of f± at the remaining free boundary points has been actually established
when we proved the differentiability at those points. This completes the proof of
the theorem.
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