
LECTURE 15

15. Global solutions

In this lecture we study the so-called global solutions, i.e. solutions defined in
the whole space, with an additional assumption that they grow quadratically at
infinity. More precisely, we consider elements of the class P∞(x0,M) which satisfy

• ‖D2u‖L∞(Rn) ≤ M ,
• x0 ∈ Γ(u).

The global solutions may exist by their own, but most importantly they may appear
as blowups of one or a sequence of functions with variable centers, i.e. limits of
rescalings

uj
xj ,rj

(x) =
uj(xj + rjx)− uj(xj)

r2
j

.

We will first study the global solution for the classical obstacle problem, then gen-
eralize the results for Problems A, B and at the end of this lecture we will study
the case of Problem C.

15.1. Classical Obstacle Problem.

Theorem 15.1. Let u ∈ P∞(M) be a global solution of Problem A and assume
that u ≥ 0 in Rn. Then u is a convex function in Rn, i.e.

∂eeu(x) ≥ 0, for any direction e and x ∈ Rn

In particular, the set {u = 0} is convex.

Proof. Fix any direction e. Without loss of generality suppose that e = en =
(0, · · · , 0, 1). Assume, on the contrary, that

−m := inf
Ω

∂nnu < 0,

and let xj ∈ Ω be a minimizing sequence for the value −m, i.e.

lim
j→∞

∂nnu(xj) = −m.

Let dj = dist(xj ,Γ) and consider the rescalings

uj(x) = uxj ,dj (x) =
1
d2

j

u(xj + djx).

Observe that B1 ⊂ Ω(uj) and the free boundary Γ(uj) contains at leas one point
on ∂B1. Since also ‖D2uj‖ are uniformly bounded we have the uniform estimates

|uj(x)| ≤ M

2
(R + 1)2

for all R > 0 and therefore we can extract a subsequence converging in C1,α
loc (Rn)

to a global solution u0 of Problem A. The assumption u ≥ 0, implies that u0 ≥ 0
and therefore, Ω(u0) = {u0 > 0}. Moreover, similarly to uj , observe that since
B1 ⊂ Ω(u0), and ∂B1 contains at least one free boundary point.
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Next observe, since all functions uj satisfy ∆uj = 1 in B1, the convergence to
u0 can be assumed to be at least in C2

loc(B1). Hence, the limit function u0 satisfies

∆u0 = 1, ∂nnu0 ≥ −m in B1, ∂nnu0(0) = −m.

Since ∂nnu0 is harmonic in B1, the minimum principle implies that ∂nnu0 ≡ −m in
B1. In fact we have even more, ∂nnu0 = −m in the connected component of Ω(u0)
which contains B1. Hence we obtain the representations

(15.1) ∂nu0(x) = g1(x′)−mxn, x′ = (x1, . . . , xn−1)

and

(15.2) u0(x) = g2(x′) + g1(x′)xn −
m

2
x2

n,

in B1. Now let us choose a point (x′, 0) ∈ B1 and start moving in the direction en.
Observe that as long as we stay in Ω(u0), we still have ∂nnu = −m and therefore
still have the representations (15.1)–(15.2). However, sooner or later we will reach
∂Ω(u0), otherwise if xn becomes very large (15.2) will imply u0 < 0, contrary to or
assumption. Since u0 = |∇u0| = 0 on ∂Ω(u0), from (15.1) we obtain that the first
value ξ(x′) of xn for which we arrive at ∂Ω(u0) is given by

ξ(x′) =
g1(x′)

m
.

Hence from (15.2) we deduce that

g2(x′) = −g1(x′)2

2m
.

Now, the representation (15.2) takes the form

u0(x) = −m

2
(xn − ξ(x′))2,

which is not possible since u0 ≥ 0. This concludes the proof. �

15.2. Problems A, B. Next, our goal is to generalize Theorem 15.1 for global
solutions of Problems A, B. We will consider two case: when the complement of Ω
is bounded and when it is unbounded.

15.2.1. The compact complement case. Assume now we have u ∈ P∞(x0,M) for
which Ωc is compact.

Lemma 15.2. Let u ∈ P∞(x0,M) be a global solution of Problem A, B, such that
Ωc is compact and IntΩc 6= ∅. Then x0 is a low energy point.

Proof. Suppose, towards a contradiction, that x0 is a high energy point. Consider
then a so-called “shrink-down” of u with a fixed center at x0, i.e. sequence of
rescalings

uk(x) = ux0,Rk
(x) =

u(x0 + Rkx)− u(x0)
R2

k

for Rk → ∞ which converges to a global solution u∞. Similarly to blowups with
fixed centers (Theorem 10.3), it is not hard show that u∞ is a homogeneous global
solution, as a simple corollary of Weiss’s monotonicity formula (see Lecture 10).
The same monotonicity formula implies

αn = ω(x0) ≤ W (r, u, x0) ≤ lim
Rk→∞

W (Rk, u, x0)

= lim
Rk→∞

W (1, uk) = W (1, u∞).
(15.3)
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On the other hand, we know that for homogeneous global solutions W can take only
two values: αn/2 and αn, hence W (1, u∞) = αn. global solution and W (1, u∞) ≤
αn. This, combined with Hence, from (15.3) implies that W (r, u, x0) = αn for any
r > 0. Thus, by Theorem 10.2 u must be homogeneous with respect to the point x0

and the classification of homogeneous solutions implies that u must be a polynomial
solution. This contradicts the assumption Int Ωc 6= ∅. �

Lemma 15.3. Let u be as in Lemma 15.2 . Then Ωc will consist of finite union of
connected components Ωc

i , i = 1, . . . , N with C1 boundaries and nonempty interiors
such that u is constant in Ωc

i .

Proof. Note that every point on ∂Ω is of low energy. Applying now Theorems 12.4
and 13.1 we obtain the desired structure for Ωc. �

Lemma 15.4. Let u be as in Lemma 15.2 and suppose that

(15.4) sup
Ωc

u = 0

Then, for a suitable choice of the origin in Ωc, the function

r 7→ u(rx)
r2

is nondecreasing, for any fixed x.

Proof. We will give the proof for n ≥ 3. Denote by V the Newtonian potential of
Ωc, i.e.

V (x) =
∫
Ωc

cn

|x− y|n−2
dy.

Then V is bounded and superharmonic in Rn and harmonic in Ω. By the maximum
principle, there is at least one point ζ0 ∈ Ωc such that

V (ζ0) ≥ V (x) for all x ∈ Rn.

Set the origin at ζ0.
Since

∆(u− V ) = 1

in the sense of distributions and all second order partial derivatives of u − V are
bounded harmonic functions, the Hessian of u − V is a constant matrix, by Liou-
ville’s theorem. Hence u− V is a polynomial of degree two. Set

P (x) = u(x)− V (x)− u(0) + V (0).

Note that |∇V (0)| = |∇u(0)| = 0. Hence P (0) = |∇P (0)| = 0, this implies that P
is homogeneous. Now consider the function

h(x) = x · ∇u(x)− 2u(x) .

h is continuous in Rn and for all x 6= 0 fixed,

d

dr

(
u(rx)

r2

)
=

1
r3

h(rx).

We will show that h is non-negative in Rn. In fact

h(x) = −2u(x) ≥ 0 , ∀x ∈ Ωc .
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On the other hand, by the homogeneity of P ,

h(x) = x · ∇V (x)− 2V (x) + 2V (0)− 2u(0)

then
lim

|x|→∞
h(x) = 2V (0)− 2u(0) ≥ 0 .

Since h harmonic in Ω, by the minimum principle, h is positive in Ω. �

Now we can prove the main result of this section.

Theorem 15.5. Let u ∈ P∞(M) be such that Ωc is compact and IntΩc 6= ∅.
Suppose also that (15.4) holds. Then u ≥ 0 in Rn and u is a convex function. In
particular {u = 0} is a convex set.

Proof. Choose the origin as in Lemma 15.4.
Consider first the case of Problem A. We claim that there exists small ρ > 0

such that u ≥ 0 in Bρ. Indeed, if 0 ∈ IntΩc, this is immediate. If 0 ∈ Γ, then
it is a low energy point by Lemma 15.2 and therefore the statement follows from
Lemma 12.3. Now, invoking Lemma 15.4, we conclude

0 ≤ u(ρx) ≤ ρ2

R2
u(Rx), x ∈ B1, R > ρ,

i.e. u ≥ 0 everywhere in Rn. Then we invoke Theorem 15.1.
In the case of Problem B, we observe that the set {u ≤ 0} is star-like and

therefore connected. Let now use the structure of Ωc. If Ωc
i , i = 1, . . . , N are the

components as in Lemma 15.3 and u = ci there, then ci ≤ 0 by the assumption
(15.4). On the other hand since, u is subharmonic, we must have either u = 0
in the interior of {u ≤ 0} or u < 0. The latter is impossible, since it will imply
that ci < 0 for all i = 1, . . . , N (recall that Ωc

i have nonempty interiors), which
contradicts (15.4). Therefore we must have

{u ≤ 0} = {u = 0}.
and we arrive at the situation of Problem A. �

15.2.2. Global solutions with unbounded Ωc.

Theorem 15.6. Let u ∈ P∞(M) such that Ωc is unbounded and has nonempty
interior. Then, there is a ∈ R such that u ≥ a and Ωc = {u = a}.

In particular, by Theorem 15.1 Ωc is convex.

Proof. Suppose that some shrink-down u∞ of u at 0 is a half space solution. Then,
arguing as in the proof of Lemma 15.2 we will have that u − u(0) is a half space
solution. Hence the theorem follows in this case.

Now, if no shrink-down is a half-space solution, we may assume u∞ is a polyno-
mial. The assumption Int Ωc 6= ∅ prevents u from being a polynomial.

Since Ωc is unbounded, there exists a sequence xj ∈ ∂Ω tending to ∞. In this
case we may scale by Rj = |xj | so as to obtain, in the limit, a global solution
with a free boundary point e on the unit sphere. By homogeneity then the ray
{re: r > 0}, must lie in the free boundary. Since u∞ is a homogeneous quadratic
polynomial, this is possible only if ∂eu∞ ≡ 0. Consider now the Alt-Caffarelli-
Friedman monotonicity functional

φe(r, u) := Φ(r, (∂eu)+, (∂eu)−).
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Since (∂eu)± are subharmonic by Lemma 6.2, from ACF monotonicity formula we
have that

0 ≤ φe(r, u) ≤ φe(∞, u) = φe(1, u∞) = 0.

Hence, either (∂eu)+ or (∂eu)− must vanish identically and we may assume without
loss of generality that ∂eu ≥ 0 (otherwise we replace e by −e).

Next, without loss of generality assume e = en and (after changing the origin)
that

Br(0) ⊂ Ωc(u).
Then u ≡ u(0) in Br(0). Moreover, by monotonicity in the direction en we have
that u ≤ u(0) in the half-infinite cylinder B′

r(0)× (−∞, 0), where B′
r(0) stands for

a ball in Rn−1. Since u is subharmonic, the maximum principle implies now that

u(x′, xn) = u(0) for x′ ∈ B′
r(0), xn ≤ 0.

Define now a (n− 1)-dimensional solution

û(x′) = lim
xn→−∞

u(x′, xn)

First, we notice that the limit exists by the monotonicity in the direction en. Next,
the limit is finite, since B′

r(0)× (−∞, 0] ⊂ Ωc which gives the estimate

|u(x)− u(0)| ≤ M

2
|x′|2.

Thus, û is a (n− 1)-dimensional solution with a quadratic growth at infinity. Also
note that

B′
r(0) ⊂ Ωc(û).

First, suppose that û is either a half space solution, or falls into the hypotheses of
Theorem 15.5. Then û is convex and non-negative. Since u(x′, xn)−u(0) ≥ û(x′) ≥
0 we conclude the proof by applying Theorem 15.1 to u(x)− u(0).

Next, if the lower dimensional solution û is neither of the above it must fall into
the third category analyzed above. Hence we repeat our argument and translate û
again in a new direction and reduce the dimension further. Finally, by induction, we
need to classify the one dimensional solutions. However, the only one-dimensional
solutions are x2

1/2, (x+
1 )2/2, or two separated solutions of the latter, which are all

nonnegative. �

15.3. Problem C.

Theorem 15.7. Let u ∈ P∞(M) be a solution of Problem C such that the origin
is a branching point, i.e. 0 ∈ ∂{u > 0} ∩ ∂{u < 0} and |∇u(0)| = 0. Then u is a
two-plane solution

u(x) =
λ+

2
(x · e)2+ −

λ−
2

(x · e)2−
for a certain direction e.

Proof. The proof follows from the classification of homogeneous global solutions in
Theorem 11.1 and the following shrink-down argument.

Consider a limit

u∞(x) = lim
Rj→∞

u(Rjx)
R2

j

over a certain sequence Rj →∞. Then Weiss’s monotonicity formula implies that
u∞ is a homogeneous global solution. Since we still have that 0 is a branching
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free-boundary point for u∞, Theorem 11.1 implies that u∞ is a two-plane solution
for a certain direction e.

In particular, for any direction ν, ∂νu∞ does not change sign in Rn and therefore

φν(r, u∞) = Φ(r, (∂νu∞)+, (∂νu∞)−) = 0.

On the other hand, by the ACF monotonicity formula we have

0 ≤ φν(r, u) ≤ φν(∞, u) = φν(1, u∞) = 0,

implying ∂νu does not change sign. Since this holds for all directions ν we conclude
u is one dimensional and hence can be computed as earlier. �


