LECTURE 17

17. LIPSCHITZ REGULARITY OF THE FREE BOUNDARY

In the next few lectures we will prove the Lipschitz regularity of the free boundary for a class of solutions. The main difference from the results discussed earlier is that the estimates are going to depend on the class of solutions rather than individual solutions.

17.1. **Problem A.** We have shown in the previous lecture that local solutions $u \in P_R(M)$ for large R can be approximated with convex global solutions u_0 if $\Omega^c(u) \cap B_1$ is thick. Moreover, the approximating u_0 will contain a ball in $\Omega^c(u_0)$. Since the latter set is convex this will immediately imply the Lipschitz regularity of $\Gamma(u_0)$. Below is a more accurate version of this statement.

Lemma 17.1. Let $u \in P_{\infty}(M)$ be a convex global solution such that $\Omega^{c}(u) \cap B_{1}$ contains a ball $B = B_{\rho}(-se_{n})$ for some $0 < \rho < s \leq 1$. Set $K(\delta, s, h) = \{|x'| < \delta, -s \leq x_{n} \leq h\}$ for any $\delta, h > 0$. Then

(i) For any unit vector $e \in C_{4/\rho} := \{x = (x', x_n) : x_n \ge (4/\rho)|x'|\}$ we have

$$\partial_e u \ge 0 \quad in \ K(\rho/2, s, 1);$$

(ii) The free boundary $\Gamma \cap (K(\rho/8, s, 1/2)$ is a Lipschitz graph

$$x_n = f(x'),$$

where f is concave in x' and

$$|\nabla_{x'}f| \le \frac{C}{\rho}.$$

for a dimensional constant C.

(iii) There exists a constant $C_0 = C_0(\rho, M, n) > 0$ such that

$$C_0 \partial_e u - u \ge 0 \quad in \ K(\rho/8, s, 1/2)$$

for any $e \in \mathcal{C}_{4/\rho}$.

Proof. Let $e \in C_{4/\rho}$. Then observe the following geometric property: every ray originating at a point in $K(\rho/2, s, 1)$ in the direction -e intersects the ball $B = B_{\rho}(-se_n)$. Since $\partial_e u = 0$ on B and $\partial_{ee} u \ge 0$ in \mathbb{R}^n (from convexity), we readily obtain (i).

Further, it is easy to see that

(17.1)
$$(x_0 + \mathcal{C}^{\circ}_{4/\rho}) \cap K(\rho/2, s, 1) \subset \{u > 0\}$$

Then, using (i) we find the representation $x_n = f(x', t)$ in $K(\rho/8, s, 1/2)$, with the Lipschitz estimate $|\nabla_{x'} f| \leq C/\rho$.

Finally, to show (iii), assume the contrary. Then there exists a sequence of functions u_k satisfying the assumptions of the theorem and points $x_k \in \Omega(u_k) \cap K(\rho/8, s, 1/2)$ such that

(17.2)
$$k\partial_e u_k(x_k) - u_k(x_k) \le 0, \quad e = e(k).$$

Let now

$$\tilde{x}_k = (x'_k, f_k(x_k)) \in \Gamma(u_k), \quad h_k = (x_k)_n - f_k(x'_k)$$

and consider the rescalings

$$v_k(x) = \frac{u(\tilde{x}_k + h_k x)}{h_k^2}.$$

Then (17.2) can be rewritten as

$$\partial_e v_k(e_n) \le \frac{h_k}{k} v_k(e_n).$$

Since v_k are locally uniformly bounded in \mathbb{R}^n , we may assume that $v_k \to v \in P_{\infty}(M)$ in $C^1_{\text{loc}}(\mathbb{R}^n)$. If we also assume $e(k) \to e$, we will have

$$\partial_e v(e_n) = 0$$

Now note that by (17.1)

$$\mathcal{C}_{4/\rho}^{\circ} \cap K(\rho/8, 0, 2) \subset \Omega(v_k)$$

and therefore $e_n \in \Omega(v)$. Since also $\partial_e v \ge 0$ there, from the minimum principle applied to the harmonic function $\partial_e v$ in $\Omega(v)$ we obtain that $\partial_e v = 0$. This would imply that u vanishes in a neighborhood of the origin, a contradiction. \Box

Now, we prove the Lipschitz regularity of the free boundary for solutions in large balls.

Theorem 17.2. For every $\sigma > 0$ there exists $R_{\sigma} = R_{\sigma}(M, n)$ such that if $u \in P_R(M)$ and $\delta_1(u) \ge \sigma$ then $\Gamma \cap B_{c_n\sigma}$ is Lipschitz regular with Lipschitz constant $L = L(\sigma, n, M)$.

Proof. Fix a small $\epsilon > 0$, to be specified later, and apply Lemma 16.4. So, if $R > R_{\epsilon,\sigma}$ we can find a global solution u_0 which satisfies conditions (i)–(iii) in Lemma 16.4. In particular, $\Omega^c(u_0) \cap B_1$ must contain a ball B of radius $\rho = \sigma/2n$. Without loss of generality we may assume $B = B_{\rho}(-se_n)$ for some $0 \le s \le 1$. Then applying Lemma 17.1 we will have that

$$C_0 \partial_e u_0 - u_0 \ge 0$$
 in $K(\rho/8, s, 1/2)$

for any $e \in \mathcal{C}_{4/\rho}$.

Now, if $\epsilon = \epsilon(\sigma, M, n)$, the approximation $||u - u_0||_{C^1(B_1)} \leq \epsilon$ implies that

$$C_0 \partial_e u - u \ge -(C_0 + 1)\epsilon > -(\rho/8)^2/8n$$
 in $K(\rho/8, s, 1/2)$

and recalling Lemma 12.2 we will obtain that

$$C_0 \partial_e u - u \ge 0$$
 in $K(\rho/16, s, 1/4)$.

(To be more accurate, one needs to apply Lemma 12.2 in every ball $B_{\rho/8}(te_n)$ for $t \in [-s, 1/4]$). The latter inequality can be rewritten as

$$\partial_e(e^{-C_0(x \cdot e)}u) \ge 0$$
 in $K(\rho/16, s, 1/4)$.

Taking $e = e_n$ and noting that u = 0 on $B'_{\rho/16} \times \{-s\}$ we obtain after integration that

$$u \ge 0$$
 in $K(\rho/16, s, 1/4)$.

Combining with the previous inequality this gives

$$\partial_e u \ge 0$$
 in $K(\rho/16, s, 1/4)$

for any $e \in \mathcal{C}_{4/\rho}$.

The rest of the proof is now left to the reader as an exercise.

Next, we give a reformulation of Theorem 17.2.

Theorem 17.3. There exists a modulus of continuity $\sigma(r) = \sigma_{M,n}(r)$ such that if $u \in P_1(M)$ and $\delta_r(u) \ge \sigma(r)$ for some value $r = r_0 \in (0,1)$ then $\Gamma \cap B_{c_n r_0 \sigma(r_0)}$ is a Lipschitz graph with a Lipschitz constant $L \le L(n, M, r_0)$.

Proof. This is basically a rescaled version of Theorem 17.2.

Note that in the latter theorem one can take function $\sigma \mapsto R_{\sigma}$ to be monotone and continuous in σ and such that $\lim_{\sigma \to 0+} R_{\sigma} = \infty$. Then let $r \mapsto \sigma(r)$ be the inverse of the mapping $\sigma \mapsto 1/R_{\sigma}$ so that we have

$$R_{\sigma(r)} = 1/r.$$

Now, if $\delta_{r_0}(u) \geq \sigma(r_0)$ then the rescaling

$$u_{r_0}(x) = \frac{u(r_0x)}{r_0^2} \in P_{1/r_0}(M)$$

satisfies

$$\delta_1(u_{r_0}) \ge \sigma(r_0).$$

And because of the identity $R_{\sigma(r_0)} = 1/r_0$ we can apply Theorem 17.2. Then scaling back to u we obtained the corresponding statement for the free boundary of u.

17.2. **Problem B.** We are going to show here that Theorems 17.2 and 17.3 hold also for solutions of Problem B.

Lemma 17.4. Let u be as in Lemma 17.1. Then we also have

$$C_0 \partial_e u - |\nabla u|^2 \ge 0$$
 in $K(\rho/8, s, 1/2)$

for any $e \in \mathcal{C}_{4/\rho}$, where $C_0 = C_0(\rho, M, n)$.

Proof. The proof is completely analogous to that of (iii) in Lemma 17.1. \Box

Theorem 17.5. Theorem 17.2 holds also for solutions of Problem B.

Proof. Arguing similarly to the case of Problem A, but using Lemma 13.2 instead of Lemma 12.2 and Lemma 17.4 instead of Lemma 17.1 (iii), we can show that

$$C_0 \partial_e u - |\nabla u|^2 \ge 0$$
 in $K(\rho/16, s, 1/4)$

for any $e \in \mathcal{C}_{4/\rho}$, which immediately implies that

$$\partial_e u \ge 0$$
 in $K(\rho/16, s, 1/4)$.

We next claim that u is constant on $\Omega^c(u) \cap K(\rho/16, s, 14)$. The argument is similar to the one in the proof of Theorem 13.1. It will suffice to show that for that every point $x = (x', x_n) \in \Omega^c$ the segment joining (x', -s) and x is completely contained in Ω^c . If the latter statement is false, we can find in $K(\rho/16, s, 1/4)$ two points $x = (x', x_n) \in \Omega^c$ and $\tilde{x} = (x', \tilde{x}_n) \in \Omega$ such that $\tilde{x}_n < x_n$. Without loss of generality we may assume $x \in \Gamma$. Now, let us take a small ball $B_{\epsilon}(\tilde{x})$ and start moving this ball from \tilde{x} to x along the x_n axis, reducing its radius proportionally to the distance from x. Stop moving if the ball touches the free boundary Γ at some

LECTURE 17

point. Call this point ζ_0 . If the moving ball does not touch Γ , then let $\zeta_0 = x$. In either case there will exist a cone C with axis e_n such that

$$\zeta_0 - \mathcal{C} \cap B_\epsilon \subset \Omega(u)$$

Considering now a blowup \hat{u}_0 of u at ζ_0 , we realize that it must necessarily be a halfplane solution $\hat{u}_0(x) = \frac{1}{2}(x \cdot e_0)^2_+$ with e_0 satisfying $e \cdot e_0 \ge 0$ for all $e \in C_{4/\rho}$. On the other hand, one must also have

 $-\mathcal{C} \subset \Omega(\hat{u}_0),$

which implies that $e_0 \cdot e_n < 0$, a contradiction. Hence, we obtain that u is constant in $\Omega^c(u) \cap K(\rho/16, s, 1/4)$ and therefore deducting a constant we reduce problem to the case of Problem A.

Theorem 17.6. Theorem 17.3 holds also for solutions of Problem B.

17.3. **Problem C.**

Theorem 17.7. There exist constants $\sigma_0 > 0$ and $r_0 > 0$ depending only on λ_{\pm} , M, n and a given L > 0 such that if $u \in P_1(M)$ is a solution of Problem C and

(17.3)
$$|\nabla u(0)| \le \sigma_0, \quad \{\pm u > 0\} \cap B_{\sigma_0} \neq \emptyset,$$

then $\partial \{\pm u > 0\} \cap B_{r_0}$ are Lipschitz graphs with Lipschitz constant L.

Proof. Fix small $\epsilon > 0$, to be specified later, and let σ_{ϵ} and $R_{\epsilon} > 1$ be as in Lemma 16.6. Put $\sigma_0 = \sigma_{\epsilon}/R_{\epsilon}$. Now, if u satisfies (17.3), the rescaling

$$u_{1/R_{\epsilon}}(x) = R_{\epsilon}^2 u(x/R_{\epsilon})$$

satisfies conditions of the approximation Lemma 16.6. Hence, there exists a twoplane solution u_0 such that

$$||u_{1/R_{\epsilon}} - u_0||_{C^1(B_1)} \le \epsilon.$$

Now, without loss of generality we may assume that $u_0(x) = \frac{\lambda_+}{2}(x \cdot e)_+^2 - \frac{\lambda_-}{2}(x \cdot e)_-^2$. Then we have

$$C_L \partial_e u_0 - |u_0| \ge 0 \quad \text{in } B$$

for any $e \in \mathcal{C}_L$. From the approximation we have

$$C_L \partial_e u_{1/R_{\epsilon}} - |u_{1/R_{\epsilon}}| \ge -(C_L + 1)\epsilon > -\lambda_{\min}/8n$$
 in B_1 ,

provided $\epsilon = \epsilon(\lambda_{\pm}, M, m, L) > 0$ is small enough. Then Lemma 14.2 implies

$$C_L \partial_e u_{1/R_{\epsilon}} - |u_{1/R_{\epsilon}}| \ge 0 \quad \text{in } B_{1/2},$$

and consequently

$$\partial_e u_{1/R_{\epsilon}} \ge 0$$
 in $B_{1/2}$.

for any $e \in \mathcal{C}_L$. From here, arguing as in Lecture 14, we conclude that $\Gamma_{\pm}(u_{1/R-\epsilon}) \cap B_{1/2}$ are Lipschitz graphs with constant L and scaling back we obtain the Lipschitz regularity of $\Gamma_{\pm}(u) \cap B_{1/2R_{\epsilon}}$. Thus we can take $r_0 = 1/2R_{\epsilon}$. \Box

4