
LECTURE 17

17. Lipschitz Regularity of the Free Boundary

In the next few lectures we will prove the Lipschitz regularity of the free boundary
for a class of solutions. The main difference from the results discussed earlier is that
the estimates are going to depend on the class of solutions rather than individual
solutions.

17.1. Problem A. We have shown in the previous lecture that local solutions
u ∈ PR(M) for large R can be approximated with convex global solutions u0 if
Ωc(u) ∩B1 is thick. Moreover, the approximating u0 will contain a ball in Ωc(u0).
Since the latter set is convex this will immediately imply the Lipschitz regularity
of Γ(u0). Below is a more accurate version of this statement.

Lemma 17.1. Let u ∈ P∞(M) be a convex global solution such that Ωc(u) ∩ B1

contains a ball B = Bρ(−sen) for some 0 < ρ < s ≤ 1. Set K(δ, s, h) = {|x′| <
δ,−s ≤ xn ≤ h} for any δ, h > 0. Then

(i) For any unit vector e ∈ C4/ρ := {x = (x′, xn) : xn ≥ (4/ρ)|x′|} we have

∂eu ≥ 0 in K(ρ/2, s, 1);

(ii) The free boundary Γ ∩ (K(ρ/8, s, 1/2) is a Lipschitz graph

xn = f(x′),

where f is concave in x′ and

|∇x′f | ≤
C

ρ
.

for a dimensional constant C.
(iii) There exists a constant C0 = C0(ρ,M, n) > 0 such that

C0∂eu− u ≥ 0 in K(ρ/8, s, 1/2)

for any e ∈ C4/ρ.

Proof. Let e ∈ C4/ρ. Then observe the following geometric property: every ray
originating at a point in K(ρ/2, s, 1) in the direction −e intersects the ball B =
Bρ(−sen). Since ∂eu = 0 on B and ∂eeu ≥ 0 in Rn (from convexity), we readily
obtain (i).

Further, it is easy to see that

(17.1) (x0 + C◦4/ρ) ∩K(ρ/2, s, 1) ⊂ {u > 0}

Then, using (i) we find the representation xn = f(x′, t) in K(ρ/8, s, 1/2), with the
Lipschitz estimate |∇x′f | ≤ C/ρ.

Finally, to show (iii), assume the contrary. Then there exists a sequence of
functions uk satisfying the assumptions of the theorem and points xk ∈ Ω(uk) ∩
K(ρ/8, s, 1/2) such that

(17.2) k∂euk(xk)− uk(xk) ≤ 0, e = e(k).
1
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Let now
x̃k = (x′k, fk(xk)) ∈ Γ(uk), hk = (xk)n − fk(x′k)

and consider the rescalings

vk(x) =
u(x̃k + hkx)

h2
k

.

Then (17.2) can be rewritten as

∂evk(en) ≤ hk

k
vk(en).

Since vk are locally uniformly bounded in Rn, we may assume that vk → v ∈
P∞(M) in C1

loc(Rn). If we also assume e(k) → e, we will have

∂ev(en) = 0

Now note that by (17.1)

C◦4/ρ ∩K(ρ/8, 0, 2) ⊂ Ω(vk)

and therefore en ∈ Ω(v). Since also ∂ev ≥ 0 there, from the minimum principle
applied to the harmonic function ∂ev in Ω(v) we obtain that ∂ev = 0. This would
imply that u vanishes in a neighborhood of the origin, a contradiction. �

Now, we prove the Lipschitz regularity of the free boundary for solutions in large
balls.

Theorem 17.2. For every σ > 0 there exists Rσ = Rσ(M,n) such that if u ∈
PR(M) and δ1(u) ≥ σ then Γ ∩ Bcnσ is Lipschitz regular with Lipschitz constant
L = L(σ, n, M).

Proof. Fix a small ε > 0, to be specified later, and apply Lemma 16.4. So, if
R > Rε,σ we can find a global solution u0 which satisfies conditions (i)–(iii) in
Lemma 16.4. In particular, Ωc(u0)∩B1 must contain a ball B of radius ρ = σ/2n.
Without loss of generality we may assume B = Bρ(−sen) for some 0 ≤ s ≤ 1. Then
applying Lemma 17.1 we will have that

C0∂eu0 − u0 ≥ 0 in K(ρ/8, s, 1/2)

for any e ∈ C4/ρ.
Now, if ε = ε(σ,M, n), the approximation ‖u− u0‖C1(B1) ≤ ε implies that

C0∂eu− u ≥ −(C0 + 1)ε > −(ρ/8)2/8n in K(ρ/8, s, 1/2)

and recalling Lemma 12.2 we will obtain that

C0∂eu− u ≥ 0 in K(ρ/16, s, 1/4).

(To be more accurate, one needs to apply Lemma 12.2 in every ball Bρ/8(ten) for
t ∈ [−s, 1/4]). The latter inequality can be rewritten as

∂e(e−C0(x·e)u) ≥ 0 in K(ρ/16, s, 1/4).

Taking e = en and noting that u = 0 on B′
ρ/16 × {−s} we obtain after integration

that
u ≥ 0 in K(ρ/16, s, 1/4).

Combining with the previous inequality this gives

∂eu ≥ 0 in K(ρ/16, s, 1/4)
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for any e ∈ C4/ρ.
The rest of the proof is now left to the reader as an exercise. �

Next, we give a reformulation of Theorem 17.2.

Theorem 17.3. There exists a modulus of continuity σ(r) = σM,n(r) such that if
u ∈ P1(M) and δr(u) ≥ σ(r) for some value r = r0 ∈ (0, 1) then Γ ∩ Bcnr0σ(r0) is
a Lipschitz graph with a Lipschitz constant L ≤ L(n, M, r0).

Proof. This is basically a rescaled version of Theorem 17.2.
Note that in the latter theorem one can take function σ 7→ Rσ to be monotone

and continuous in σ and such that limσ→0+ Rσ = ∞. Then let r 7→ σ(r) be the
inverse of the mapping σ 7→ 1/Rσ so that we have

Rσ(r) = 1/r.

Now, if δr0(u) ≥ σ(r0) then the rescaling

ur0(x) =
u(r0x)

r2
0

∈ P1/r0(M)

satisfies
δ1(ur0) ≥ σ(r0).

And because of the identity Rσ(r0) = 1/r0 we can apply Theorem 17.2. Then
scaling back to u we obtained the corresponding statement for the free boundary
of u. �

17.2. Problem B. We are going to show here that Theorems 17.2 and 17.3 hold
also for solutions of Problem B.

Lemma 17.4. Let u be as in Lemma 17.1. Then we also have

C0∂eu− |∇u|2 ≥ 0 in K(ρ/8, s, 1/2)

for any e ∈ C4/ρ, where C0 = C0(ρ,M, n).

Proof. The proof is completely analogous to that of (iii) in Lemma 17.1. �

Theorem 17.5. Theorem 17.2 holds also for solutions of Problem B.

Proof. Arguing similarly to the case of Problem A, but using Lemma 13.2 instead
of Lemma 12.2 and Lemma 17.4 instead of Lemma 17.1 (iii), we can show that

C0∂eu− |∇u|2 ≥ 0 in K(ρ/16, s, 1/4)

for any e ∈ C4/ρ, which immediately implies that

∂eu ≥ 0 in K(ρ/16, s, 1/4).

We next claim that u is constant on Ωc(u)∩K(ρ/16, s, 14). The argument is similar
to the one in the proof of Theorem 13.1. It will suffice to show that for that every
point x = (x′, xn) ∈ Ωc the segment joining (x′,−s) and x is completely contained
in Ωc. If the latter statement is false, we can find in K(ρ/16, s, 1/4) two points
x = (x′, xn) ∈ Ωc and x̃ = (x′, x̃n) ∈ Ω such that x̃n < xn. Without loss of
generality we may assume x ∈ Γ. Now, let us take a small ball Bε(x̃) and start
moving this ball from x̃ to x along the xn axis, reducing its radius proportionally to
the distance from x. Stop moving if the ball touches the free boundary Γ at some
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point. Call this point ζ0. If the moving ball does not touch Γ, then let ζ0 = x. In
either case there will exist a cone C with axis en such that

ζ0 − C ∩Bε ⊂ Ω(u)

Considering now a blowup û0 of u at ζ0, we realize that it must necessarily be a
halfplane solution û0(x) = 1

2 (x · e0)2+ with e0 satisfying e · e0 ≥ 0 for all e ∈ C4/ρ.
On the other hand, one must also have

−C ⊂ Ω(û0),

which implies that e0 · en < 0, a contradiction. Hence, we obtain that u is constant
in Ωc(u) ∩ K(ρ/16, s, 1/4) and therefore deducting a constant we reduce problem
to the case of Problem A. �

Theorem 17.6. Theorem 17.3 holds also for solutions of Problem B. �

17.3. Problem C.

Theorem 17.7. There exist constants σ0 > 0 and r0 > 0 depending only on λ±,
M , n and a given L > 0 such that if u ∈ P1(M) is a solution of Problem C and

(17.3) |∇u(0)| ≤ σ0, {±u > 0} ∩Bσ0 6= ∅,
then ∂{±u > 0} ∩Br0 are Lipschitz graphs with Lipschitz constant L.

Proof. Fix small ε > 0, to be specified later, and let σε and Rε > 1 be as in
Lemma 16.6. Put σ0 = σε/Rε. Now, if u satisfies (17.3), the rescaling

u1/Rε
(x) = R2

εu(x/Rε)

satisfies conditions of the approximation Lemma 16.6. Hence, there exists a two-
plane solution u0 such that

‖u1/Rε
− u0‖C1(B1) ≤ ε.

Now, without loss of generality we may assume that u0(x) = λ+
2 (x ·e)2+−

λ−
2 (x ·e)2−.

Then we have
CL∂eu0 − |u0| ≥ 0 in B1

for any e ∈ CL. From the approximation we have

CL∂eu1/Rε
− |u1/Rε

| ≥ −(CL + 1)ε > −λmin/8n in B1,

provided ε = ε(λ±,M,m, L) > 0 is small enough. Then Lemma 14.2 implies

CL∂eu1/Rε
− |u1/Rε

| ≥ 0 in B1/2,

and consequently
∂eu1/Rε

≥ 0 in B1/2.

for any e ∈ CL. From here, arguing as in Lecture 14, we conclude that Γ±(u1/R−ε)∩
B1/2 are Lipschitz graphs with constant L and scaling back we obtain the Lipschitz
regularity of Γ±(u) ∩B1/2Re

. Thus we can take r0 = 1/2Rε. �


