LECTURE 2

2. MATHEMATICAL FORMULATION

Here we give an exact setting for three free boundary problems that will be
investigated in next sections. We consider solutions of equations of the type

(2.1) Au = f(z,u,Vu) in D,

where D is an open set in R™ and the right hand side term is supposed to be
piecewise continuous, having jumps at some values of the arguments u and Vu. We
also suppose that there is a certain apriori unknown subset Q = Q(u) of D where
the corresponding equation (2.1) is "good” and we are interested in the regularity
of the free boundary I'(u) = 02 N D. More specifically, we consider the following
three problems.

Problem A: No-sign obstacle problem
f=xa,  Qu)=D\{u=|Vu| =0}

When the solution u of is nonnegative, then Q = {u > 0} and u becomes a
solution of the classical obstacle problem.
Problem B: Superconductivity problem

f=xa,  Qu)={|Vu| > 0}.

Alternatively, one can take here 2 = Int {|Vu| > 0}, which will lead to the
same equation, however, the notion of the free boundary will be different.
The latter definition of 2 will eliminate certain non-physical singular free
boundary points.

Problem C: Two-phase obstacle problem

[ =M X{us>0y — A= Xqu<0y,  Qu) ={u# 0}
where AL are given positive constants and the free boundary I'(u) = 0Q(u)N
D consists of two parts: I'V(u) = I'(u) N 9{|Vu| = 0} and I'(u) = T'(u) N
9{|Vu| # 0}. By the implicit function theorem I is locally C1* graph
for all 0 < v < 1. Therefore we are mostly interested in the properties of
T (u).
We will assume that u € L2 (D) and f € L>®(D x R x R™) and that the equation

loc
(2.1) is satisfied in the sense of distributions, i.e.

/uAndx:/ flz,u, Vu) ndz,
D D

for all C'*° test functions n with compact support in D. The standard LP-theory of
elliptic equations will immediately imply the higher regularity of wu.

Theorem 2.1. Let u € LP(D), g € LP(D), 1 < p < 00, satisfy Au = g in D in the
sense of distributions. Then u € Wlif(D) and

lullw2r )y < C (llullLepy + l9llr (D))
1
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for any open K CC D with C = C(p,n, K, D). ]
Thus, for solutions of (2.1) we obtain

(2.2) u e W2P(D), forall 1<p< oo,

Consequently, we also have

(2.3) ueCp¥(D), forall 0<a<l,

by the Sobolev embedding W2? «— C% with a = 1 —n/p for p > n. An easy
counterexample shows that in general we cannot have p = co in (2.2) and @« =1 in
(2.3). Instead we have the following

Theorem 2.2. Let w € L>®(D), g € L>®(D) satisfy Au = g in the sense of
distributions. Then u € W2P(D)NCLY(D) forall1 <p < oo, 0 <a <1 and

loc
1
[Vu(z) = Vu(y)| < Cllgllr=(p)lz — y|log Ha
for any x,y € K CC D with |z —y| < 1/e and C = C(n, K, D). O

As we will see later, the logarithmic term in this theorem can be dropped if u is
a solution of Problems A-C. That would give us a starting point for the analysis of
the free boundary in those problems.

2.1. Viscosity solutions. (This subsection requires some familiarity with the no-
tion of wiscosity solutions of Crandall-Ishii-Lions.) Here we give a definition of
viscosity solutions of Problems A and B and even though these problems are gov-
erned by linear operators, this approach allows to extend some of the results to the
fully nonlinear case.

Problem A. We say that an upper semicontinuous (u.s.c.) function v < oo is a
viscosity subsolution of Problem A, if

AP >1

for any paraboloid P touching u from above at a point z, provided either P(x) # 0
or [VP(z)] # 0. A lower semicontinuous (l.s.c.) function v > —oo is a wviscosity
subsolution, if

AP <1
for any paraboloid P touching u from below at a point z with the same extra
conditions (P(z) # 0 or |VP(x)| # 0). A wiscosity solution is simultaneously a
sub- and supersolution.

Problem B. Viscosity solutions in this case are defined similarly to Problem A, with
the difference that we as only the condition |VP(z)| # 0 at the touching point x.



