
LECTURE 2

2. Mathematical formulation

Here we give an exact setting for three free boundary problems that will be
investigated in next sections. We consider solutions of equations of the type

(2.1) ∆u = f(x, u,∇u) in D,

where D is an open set in Rn and the right hand side term is supposed to be
piecewise continuous, having jumps at some values of the arguments u and ∇u. We
also suppose that there is a certain apriori unknown subset Ω = Ω(u) of D where
the corresponding equation (2.1) is ”good” and we are interested in the regularity
of the free boundary Γ(u) = ∂Ω ∩D. More specifically, we consider the following
three problems.

Problem A: No-sign obstacle problem

f = χΩ, Ω(u) = D \ {u = |∇u| = 0}.

When the solution u of is nonnegative, then Ω = {u > 0} and u becomes a
solution of the classical obstacle problem.

Problem B: Superconductivity problem

f = χΩ, Ω(u) = {|∇u| > 0}.

Alternatively, one can take here Ω = Int {|∇u| > 0}, which will lead to the
same equation, however, the notion of the free boundary will be different.
The latter definition of Ω will eliminate certain non-physical singular free
boundary points.

Problem C: Two-phase obstacle problem

f = λ+χ{u>0} − λ−χ{u<0}, Ω(u) = {u 6= 0}

where λ± are given positive constants and the free boundary Γ(u) = ∂Ω(u)∩
D consists of two parts: Γ′(u) = Γ(u) ∩ ∂{|∇u| = 0} and Γ′′(u) = Γ(u) ∩
∂{|∇u| 6= 0}. By the implicit function theorem Γ′′ is locally C1,α graph
for all 0 < α < 1. Therefore we are mostly interested in the properties of
Γ′(u).

We will assume that u ∈ L∞loc(D) and f ∈ L∞(D × R× Rn) and that the equation
(2.1) is satisfied in the sense of distributions, i.e.∫

D

u ∆η dx =
∫

D

f(x, u,∇u) η dx,

for all C∞ test functions η with compact support in D. The standard Lp-theory of
elliptic equations will immediately imply the higher regularity of u.

Theorem 2.1. Let u ∈ Lp(D), g ∈ Lp(D), 1 < p < ∞, satisfy ∆u = g in D in the
sense of distributions. Then u ∈ W 2,p

loc (D) and

‖u‖W 2,p(K) ≤ C
(
‖u‖Lp(D) + ‖g‖Lp(D)

)
1
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for any open K ⊂⊂ D with C = C(p, n,K, D). �

Thus, for solutions of (2.1) we obtain

(2.2) u ∈ W 2,p
loc (D), for all 1 < p < ∞,

Consequently, we also have

(2.3) u ∈ C1,α
loc (D), for all 0 < α < 1,

by the Sobolev embedding W 2,p ↪→ C1,α with α = 1 − n/p for p > n. An easy
counterexample shows that in general we cannot have p = ∞ in (2.2) and α = 1 in
(2.3). Instead we have the following

Theorem 2.2. Let u ∈ L∞(D), g ∈ L∞(D) satisfy ∆u = g in the sense of
distributions. Then u ∈ W 2,p

loc (D) ∩ C1,α
loc (D) for all 1 < p < ∞, 0 < α < 1 and

|∇u(x)−∇u(y)| ≤ C‖g‖L∞(D)|x− y| log
1

|x− y|
,

for any x, y ∈ K ⊂⊂ D with |x− y| ≤ 1/e and C = C(n, K,D). �

As we will see later, the logarithmic term in this theorem can be dropped if u is
a solution of Problems A-C. That would give us a starting point for the analysis of
the free boundary in those problems.

2.1. Viscosity solutions. (This subsection requires some familiarity with the no-
tion of viscosity solutions of Crandall-Ishii-Lions.) Here we give a definition of
viscosity solutions of Problems A and B and even though these problems are gov-
erned by linear operators, this approach allows to extend some of the results to the
fully nonlinear case.

Problem A. We say that an upper semicontinuous (u.s.c.) function u < ∞ is a
viscosity subsolution of Problem A, if

∆P ≥ 1

for any paraboloid P touching u from above at a point x, provided either P (x) 6= 0
or |∇P (x)| 6= 0. A lower semicontinuous (l.s.c.) function u > −∞ is a viscosity
subsolution, if

∆P ≤ 1
for any paraboloid P touching u from below at a point x with the same extra
conditions (P (x) 6= 0 or |∇P (x)| 6= 0). A viscosity solution is simultaneously a
sub- and supersolution.

Problem B. Viscosity solutions in this case are defined similarly to Problem A, with
the difference that we as only the condition |∇P (x)| 6= 0 at the touching point x.


