LECTURE 21

DRAFT

21. THE SINGULAR SET

21.1. The characterization of the singular set. For a solution u of the obstacle-
type problem we say that xg € I'(u) is a regular free boundary point if for some
small » > 0 we can represent

Q(u) N By (z0) = {(2/,2,) €R™ : 2, > f(2')} N Br(o)

after a suitable rotation of the coordinate axes, where f is a C* function on R"~1.
The point zo € I'(u) is called singular otherwise. In this chapter we study the set
Y (u) of singular free boundary points.

Theorem 21.1. Let u be a solution of the obstacle-type problem in D. Then the
following statements are equivalent

(i) zo € B(u)

(ii) lim,—q (2o, u) =0
(iil) w(zg) = an
(iv) all blowups of u at xy, i.e. the limits of rescalings
u(xo +re
Ur, xq (1') = %

over subsequences r = r, — 0 are homogeneous quadratic polynomials @

with AQ = f(xo).

Proof. The implication (ii) = (i) is clear; the converse implication follows from
Theorem 18.6. The equivalence of (iii) and (iv) is also clear. In fact, recall that all
blowups at a point are either halfspace or polynomial solutions, see Proposition 5.21.
To show (iv) = (i), simply notice that if z is a regular free boundary point then
any blowup at xy will vanish at least on a halfspace, thus cannot be polynomial.
Finally, let us show (ii) = (iv). Let ug be a blowup of u at z over a subsequence
r =1, — 0. Since Au,, , =1 in By except a strip of width 6, (zo,u) — 0, we will
obtain that
AUO =1 a.e.in Bl,

which contradicts the assumption that ug is a halfspace solution. ([
21.2. Examples of singularities.

21.2.1. A trivial ezample. Let u(z) = Q(z) = 3(z-Az) be a homogeneous quadratic
polynomial in R™ for a symmetric n x n matrix A with Tr A = 1. Then the free
boundary

I =kerA

consists completely of singular points. Note that the dimension k of II can be
anything from 0 to n — 1. The latter case deserves more attention. For definiteness,
1
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F1GURE 1. The shaded regions correspond to the coincidence set
A in Schaeffer’s examples with ¢ (left) and ¢2 (right) respectively.
The outer curves correspond to the boundary of D.

let u(z) = Q1(z) = 223. Then the free boundary is a hyperplane II; = {21 = 0}
of codimension one which is as smooth as it can be. Nevertheless, all points on II;
are singular, since A(Q;) = II; is “thin”. In contrast, if u(z) = h(z) = 3(z7)?,
the free boundary is still I, however, this time it consists of regular points, since
A(hq) = {z1 < 0} is “thick”. This means that the singular set can be as large as

the set of regular points.

21.2.2. Schaeffer’s examples. The following two very illustrative examples of sin-
gular points in two dimensions are due to Schaeffer. We will use both real and
complex notations for their description.

Let D be a simply connected domain in C = R? and A a closed subset of D with
a piecewise C'! boundary. Let Q = D\ A and suppose that we are given a conformal
mapping ¢ : Ry 2 — {2 continuous up to the boundary. Here by R, ; we denote the
ring {a < |z| < b} for 0 < a < b. We will assume that ¢ maps 9Bs to dD and 0B,
to OA. Additionally, we will assume that D and A are symmetric with respect to
the real axis and that

6(2) = ¢(2), =€ Ria.
If now ¢ is holomorphically extensible to a mapping Ry /32 — C, we can define
f(z)=—6(1/¢7'(2), z€Q.
Note that f(z) defined as above will be continuous up to A if we put
f(z)=—-%, =ze€0A.
Next consider

v(z) = Re/f(z)dz, z €

the real part of the indefinite integral of f. Even though [ f(z)dz can be multivalued
due to 2 not being simply connected, we claim that v is well defined. Indeed, note
that

Re aAf(z)dz:/aARe(Zdz):/{Md(|z| /2) =0

and therefore Re f,y f(2)dz = 0 for any closed curve « in . Consequently v is well
defined in 2. Of course v is harmonic in € and

Ozv —i0yv = f(2), z€.
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Therefore Vu(z) = —(x,y) continuously for z = = + iy € dA. By choosing the
constant of integration, we can arrange also that v(z) = —|z|2/2 on OA. Define
now

u(z) = 12+ 3v(2), z€Q
0, z €A
Then u € C*(D)NC?(D \ 1) and it is easy to see that
Au=xq in D, u=|Vu|=0 on A,

where the first equality is in the sense of distributions.
More specifically, consider two mappings given by

d(z)=0¢i(z) =(z2+1/2)/2+ePi(2)(z—1/2)/2, i=1,2
Pi(z2) =22 +2+1/2°
Py(z) = (2 —2+1/2)2
for € > 0. They have the properties discussed above for e sufficiently small. The
corresponding boundaries of A have the parametrizations
$1(e") = cos  + ide cos® A sin 0
$2(e") = cos 0 + i32¢ cos(0/2) sin®(0/2)
and have the shapes similar to those in Fig. 1 with singularities at zp = 0 (self-
touching) and zp = 1 (cusp).
It can be shown that the solutions constructed above are also nonnegative, if

€ > 0 is sufficiently small.
We refer to the original paper of Schaeffer for the proof.

21.3. Structure of the singular set: nonnegative case.

Theorem 21.2. Let u > 0 be a solution of the obstacle problem in a domain D in
R™.

(i) For any zo € X(u) there exists a unique quadratic polynomial

1
Qwo (37) = i(x - 370) ’ AIO (SL‘ - .’170)
such that AQy, = Tr Ay, = 1 with the property that

[t = Quoll L (B, (z0)) < o (r)r?

for a modulus of continuity o depending only on n and dist(xg, D).

(ii) The matriz A, depends continuously on xg € S(u).

(iii) Let ¥p(u) = {zo € X(u) : dimker A, = k} for k =0,...,n—1. Then
Y (u) is contained in the union of countably many k-dimensional C' man-
ifolds.

We start with a uniform version of Theorem 21.1 (ii) and (iv) for normalized
solutions of the obstacle problem.

Lemma 21.3. Let u € Pi(M) and assume that 0 € E(u). Then there exists a
modulus of continuity o depending only on M and n such that for any 0 <r < 1/2

(i) br(zo,u) <o(r)
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(ii) there exists a homogeneous quadratic polynomial Q" with AQ" = 1 such

that
2

lu = Q" Lo (B,,) < o(r)r”.
Proof. The statement of (i) follows from Theorem 18.6. The statement of (ii) is
equivalent to the following one: for any € > 0 there exists r. > 0 such that for
any 0 < r < r. there exists a homogeneous quadratic polynomial Q" such that
lu — Q7| < er? in Ba,. Assuming that the latter fails for some € > 0, we obtain a
sequence 7; — 0 and u; € P;(M) such that

luj = Qi (Bs,,) = ers

for any homogeneous quadratic polynomial @ with AQ = 1. Consider then the
rescalings

T
vj(z) = 5, T € DBy,

[

Then v; € Pr(CMR?) if r; < 1/R. Hence, over a subsequence v; — vg € Pa(CM)
in CL%(R™).
For the global solution vy we have two possibilities:

(1) wp is a polynomial solution
(2) A(vo) is a convex set with a nonempty interior.

In the case (1), taking @ = vy, we obtain that for sufficiently large j,
luj = Qllzoe(Bar,) = 77 llvj = vollLoe(ms) < €1,

which is a contradiction with our assumption on u;. In the case (2), there exist a
ball Bs(yo) C A(vo) N By and from the nondegeneracy Bs/2(yo) C A(vj) N By for
large enough j. Then

(S(Tj7uj‘) = 6(1,’Uj) > )
and we arrive at a contradiction as soon as o(r;) < ¢ for o as in part (i) of this

lemma. O

Lemma 21.4. Let Q" be as in Lemma 21.3,0 < r < 1/2. Then for any unit vector
e

|(r, (Beu)™, (Dew) ™) — (1, (9:Q") T, (9:Q") )| < Co(r)"/?,
where C = C(M,n).

Proof. Consider the rescaling v(z) = u(rz) and denote e = o(r) and Q = Q" for
convenience. Then we will have

A(U)mBl C SE, HU_QHLOO(BQ) SE,
where S}, is a strip of width h. We want to estimate
I (@0)*) = 11, @0)") = [ ourdr
{0.v>0}NB; |z |2

in terms of I(r, (0.Q)%) = I(1,(9.Q)T). First, by the interior C** estimates we
will have

(21.1) Vo = VQllLe(5,) < Cllv = QllL=(5,) < Ce.
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To use C'! estimates, we need to stay away from the free boundary by distance,
1/3.
say, €'/9:

(21.2) | D0 — D2Q||Lm(31\s€1/3) < ﬁHU — QllL~(B,) < Ce2.

To proceed, assume Q(xz) = 3 (z-Az) for a symmetric matrix A. Note that D?Q = A
and that by C1! estimates for v, combined with (21.2), we have |A| < C(M,n).
Let now

V={0v>0}NB;, U={0.Q=x-Ae>0}NBy.
Then by (21.1)
U, CVCU., where Uy= {x Ae > icé/?’} N B

and therefore

(21.3) / |Vaev|2dx</ |V86v|2dx</ |V v|%dx
U, A% -

|m|n—2 |x|n—2 ‘xln—Z

Next, using (21.2), we can estimate

/ V86v|2dx_/ IVO.Q*dx
Ut |x|n72 Ut |x|n72

< C/ . 061/3/ & <o
S€1/3ﬂBl |$|n_ B1\551/3 |x‘7l—

where C' = C'(M,n). Furthermore,
/ |VO.Q|*dx |VO.Q|*dx
Uy

(21.4)

(21.5) . 8
[ v len?

< C'min{e?/? /| Ae|,1}|Ae|? < Ce¥/3.
Note that both in (21.4) and (21.5) we have used that

d h d ’
/ %S/ / %danCh, O0<h<l.
SpNB; |z —h J{|ar|<1} ||

Now, putting (21.3)—(21.5) together, we obtain
(1, (8ev)*) = I(1,(9.Q)"| < Ce/?,
We have an analogous estimate for I(1, (9.v)~) and taking the product we obtain
(L, (Dev) ™, (8ev) ™) = (L, (0:Q) ™ (0.Q) )| < Ce'/?,
which implies the statement of the lemma. O

Lemma 21.5. Let Q" be as Lemma 21.3 and Q" (z) = §(x - A"x) for a symmetric
matriz A" with Tr A" = 1. Then for 0 < r; <re < 1/2 and any unit vector e

|A™ e < |A2¢| + Co(rg)'/?

Proof. Recall that ®(r, (O.u)™, (Deu) ™) is monotone increasing in 7. Then the state-
ment follows from Lemma 21.4 and the observation that

D(r, (9.Q") ", (9.Q")7) = CulATe’. O
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Lemma 21.6. Let A™ and A™ be as in Lemma 21.5 and additionally assume that
they are nonnegative. Then

|A™ — A"2|| < Co(ra)'/?.
Proof. Let B =A™ — A™. Then TrB = 0 and let A = Apin < 0 be the smallest

eigenvalue of B and e a corresponding unit eigenvector. We have
|ATe| = |Be + A™¢|? < |A™e|? 4 Co ().
and since Be = \e, this gives
A2 £ 2)\(e- A™e) < Co(ry)'/?
The second term on the right hand side is nonpositive, since A™ is a nonnegative
matrix. This implies that
*)\min S CO’(T‘Q)l/G.
Since Tr B = 0, the positive and negative eigenvalues are balanced and therefore if
Amax > 0 is the largest eigenvalue of B
>\max S —(7’L - 1))\mirr
This implies the statement of the lemma, since ||B|| = max{—Amin, Amax}- O

We are now ready to prove the main result of this section.

Proof of Theorem 21.2.

(i) With no loss of generality we may assume that o = 0 and v € P;(M) and
let Q" = %(x - A"z) be as above. Then by Lemma 21.6, A” converges to a unique
limit A% as r — 0 and

A7 - A% < Car)/".

Consequently, Q°(z) = 4 (x - A%z) satisfies
lu— Q%) < llu—Q°%loes,) + 1Q° — Q"L (5,)
< Co(r)r? + A" — A°||r? < Co(r)Y/or2.
This proves part (i).

(ii) Let now Qq,(x) = 3(z — 20) - As,(z — xo) be the polynomials corresponding

to xop € X(u) as in (i) and let 21 € 3(u) be another singular point. Then we have

1Qzo — Qur |l (B, (20)n By (1))

<N Qao = ull oo (B, (20)) + [t = Quy | L (B, (20))

< 20(r)r?,
if |21 —20| < 67 for small § > 0 and r < 1 dist(z0,dD). Now, if we take § < o(r)'/2,
then we will have

[Azy = Az, || < Co(r).
This proves part (ii).
(iii) This part is a direct application of Whitney’s extension theorem.

Lemma 21.7 (Whitney’s Extension Theorem). Let E be a compact set in R™ and

[ E — R arbitrary. Suppose that for any x € E there exists a polynomial P, of
degree m such that

(1) P.(x) = f(x) for x € E;
(2) |D*(P, — P))(z)| = o(Jx — y|™*) for z,y € E and k =0,...m.
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Then f extends to a C™ function on R™ such that

f(y) = Pe(y) + o(|lz —y|™)
forallz € K. O

Fix a number a > 0 and consider the subset 3y, ,(u) of points zg € Xy (u) for
which the smallest nonzero eigenvalue of A, is at least a. Let also K be a compact
subset of D.

Take E = X q(u) N K, f = 0 and P, = Q- Then the conditions of the
Whitney’s extension theorem are verified by part (ii) and therefore we can extend
f to a C? function on R™. To complete the proof, now observe

EC{Vf=0}=[\{0:.f =0}

i=1

For zy € E, we can arrange the coordinate axes so that the vectors ey, ..., e,—g
are eigenvalues of D?f(z¢) = As,. Moreover by our assumption O, f(7o) > a,
i=1,...,n — k. Then the implicit function theorem implies that

n—k
() {0z, f = 0}
1=1

is a k-dimensional C! manifold in a neighborhood of xy. This completes the proof
of part (iii) and thereby that of the theorem. O

21.4. Structure of the singular set: “no-sign” case.

Theorem 21.8. Let u be a solution of the “no-sign” obstacle problem in a domain
D in R"™ with f € C%1(D).

(i) For any xo € 3(u) there exists a unique linear subspace I, of R™ such
that for any blowup Q(x) = 3(zx - Ax) of u at xo as in Theorem 21.1(ii)
have

IL, () = ker A.

(ii) Let Xp(u) = {xo € X(u) : dimIl,, = k} for k = 0,...,n — 1. Then the
mapping xo +— g, is continuous in xg € Xi(u) (as the mapping to a
Grassmanian of k-dimensional subspaces of R™).

(iii) Xx(u) is contained in the union of countably many k-dimensional C* man-
ifolds, k=0,...,n—1.

Lemma 21.9. Let u € P;(M) with f € C%Y(By). Then Lemmas 21.8 and 21.4,
with o and C' depending additionally on M and || f| 1 (B,)- O

Lemma 21.10. Let u € Py(M) with f € C%Y(By), Q" be as Lemma 21.3 and
Q"(z) = 2 (z - A™2) for a symmetric matriz A" with Tr A" = 1. Then for 0 < ry <
re < 1/2 and any unit vector e

|A™ el < (1+15)|A™e]? + Co(ry)'/?

Proof. The only essential difference is that with the proof of Lemma 21.5 we uti-
lize the Almost Monotonicity Formula [CJK] in the following form: If ¢(r) =
D(r, ()™, (Oeu)™) and 0 < ry <79 < 1/2, then

o(r1) < (1+15)d(r2) + Crf.
We leave the details to the readers. ]
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One complication that we face allowing u to change sign is that A" is not nec-
essarily nonnegative now and the proof of Lemma 21.6 does not apply. As a result
we don’t know if A" converge to a unique matrix A% Instead, we get only that
(A%)? is unique.

Lemma 21.11. There exists a unique matriz B° such that if A" — A for a subse-
quence r = r, — 0 then

A? = B°.
Consequently, TI° = ker A = ker B is also unique

Proof. Let A" and A” be the limits of A" r =7}, — 0 and r = r}/ — 0 respectively.
Then by Lemma 21.10

‘A/€|2 _ |A//6|2
for any unit vector e. On the other hand, if A4 is a symmetric matrix, Ae-Ae = e-A%e
and therefore the above equality implies that A2 = A”2. O

Proof of Theorem 21.8. Part (i) follows from Lemma 21.11. Consider now the sub-
set X (u) of singular points zp with dimIl,, = k. We want to show that II,,
depends continuously on zy € Xi(u). To this end let z; € Xy(u) and z; — .
Consider now the corresponding matrices By, and B,,. We claim that
(21.6) limsupe- By, e < e- By,e.

Jj—00 ’
for any unit vector e. Indeed, note that we can take Aig as A;j for j large enough
so that |z; — z¢| < r (by modifying o(r), if necessary). Then

¢- Bye <|A} > + Co(r)'/® = A2 e|* + Co(r)'/?
Passing to the limit as j — oo and then as » — 0 we establish (21.6). This implies

that
IT;, C limsuplIl,;.
j—o0
Since all TI,; and II,, are k-dimensional linear subspaces, we must necessarily have
I, = lim II;.
J‘)OO

This proves part (ii) of Theorem 21.8.

Let now 75, denote the orthogonal projection to the orthogonal complement of
T, so that kerm,, = II,,. Note that m,, depends continuously on zy € X (u).
This not yet enough to apply Whitney’s Extension Theorem, we need something
stronger. For k = 1,...,n — 1 and a > 0 let X ,(u) be the subset of points
zo € Bk (u) for which the smallest nonzero eignevalue of B,, is at least a®. Note
that we have

e Byye > a*|myel* for any xg € B 4 (u).
Lemma 21.12. For anya >0,k =1,...,n—1 there exists constant C' such that
|ay (2 — 20)| < Co3(|x — zo|)|z — 20| for any x, 20 € Zk,a(u).

Proof. Let zg,x € Xy o(u) with |z — 29| = r small. Using that u(x) = |[Vu(z)| =0,
we obtain

Az (z = 20)| = [VQ5, (2)| = [Vu(z) = V@5, (z)] < Co(r)r,
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On the other hand, using that a?|m,,e|> < e By,e for zg € I o(u), we estimate
a®|7pg (7 — 20)|? < (2 — 20) - By ( — 20)
<1+ T'@)\Ago(a: — 3:0)|2 + Ca(r)1/3r2
< Co?(r)r?(1 4 r8) 4+ Co(r)/3r? < Co(r)'/3r2.

Having this lemma in mind, define
P, (x) = (& — x9) - Tpo (x — x0).
It is easy to see that P, satisfies the conditions of the Whitney’s Extension Theorem

on E = Xy 4(u) N K for any K CC D. Then we complete the proof of part (iii)
similarly to the nonnegative case. O



