
LECTURE 21

DRAFT

21. The singular set

21.1. The characterization of the singular set. For a solution u of the obstacle-
type problem we say that x0 ∈ Γ(u) is a regular free boundary point if for some
small r > 0 we can represent

Ω(u) ∩Br(x0) = {(x′, xn) ∈ Rn : xn > f(x′)} ∩Br(x0)

after a suitable rotation of the coordinate axes, where f is a C1 function on Rn−1.
The point x0 ∈ Γ(u) is called singular otherwise. In this chapter we study the set
Σ(u) of singular free boundary points.

Theorem 21.1. Let u be a solution of the obstacle-type problem in D. Then the
following statements are equivalent

(i) x0 ∈ Σ(u)
(ii) limr→0 δr(x0, u) = 0
(iii) ω(x0) = αn

(iv) all blowups of u at x0, i.e. the limits of rescalings

ur,x0(x) =
u(x0 + rx)

r2

over subsequences r = rk → 0 are homogeneous quadratic polynomials Q
with ∆Q = f(x0).

Proof. The implication (ii) ⇒ (i) is clear; the converse implication follows from
Theorem 18.6. The equivalence of (iii) and (iv) is also clear. In fact, recall that all
blowups at a point are either halfspace or polynomial solutions, see Proposition 5.21.
To show (iv) ⇒ (i), simply notice that if x0 is a regular free boundary point then
any blowup at x0 will vanish at least on a halfspace, thus cannot be polynomial.
Finally, let us show (ii) ⇒ (iv). Let u0 be a blowup of u at x0 over a subsequence
r = rk → 0. Since ∆ux0,r = 1 in B1 except a strip of width δr(x0, u) → 0, we will
obtain that

∆u0 = 1 a.e. in B1,

which contradicts the assumption that u0 is a halfspace solution. �

21.2. Examples of singularities.

21.2.1. A trivial example. Let u(x) = Q(x) = 1
2 (x·Ax) be a homogeneous quadratic

polynomial in Rn for a symmetric n × n matrix A with Tr A = 1. Then the free
boundary

Π = kerA

consists completely of singular points. Note that the dimension k of Π can be
anything from 0 to n−1. The latter case deserves more attention. For definiteness,

1



2 LECTURE 21

Figure 1. The shaded regions correspond to the coincidence set
Λ in Schaeffer’s examples with φ1 (left) and φ2 (right) respectively.
The outer curves correspond to the boundary of D.

let u(x) = Q1(x) = 1
2x2

1. Then the free boundary is a hyperplane Π1 = {x1 = 0}
of codimension one which is as smooth as it can be. Nevertheless, all points on Π1

are singular, since Λ(Q1) = Π1 is “thin”. In contrast, if u(x) = h1(x) = 1
2 (x+

1 )2,
the free boundary is still Π1, however, this time it consists of regular points, since
Λ(h1) = {x1 ≤ 0} is “thick”. This means that the singular set can be as large as
the set of regular points.

21.2.2. Schaeffer’s examples. The following two very illustrative examples of sin-
gular points in two dimensions are due to Schaeffer. We will use both real and
complex notations for their description.

Let D be a simply connected domain in C = R2 and Λ a closed subset of D with
a piecewise C1 boundary. Let Ω = D\Λ and suppose that we are given a conformal
mapping φ : R1,2 → Ω continuous up to the boundary. Here by Ra,b we denote the
ring {a < |z| < b} for 0 < a < b. We will assume that φ maps ∂B2 to ∂D and ∂B1

to ∂Λ. Additionally, we will assume that D and Λ are symmetric with respect to
the real axis and that

φ(z) = φ(z), z ∈ R1,2.

If now φ is holomorphically extensible to a mapping R1/2,2 → C, we can define

f(z) = −φ(1/φ−1(z)), z ∈ Ω.

Note that f(z) defined as above will be continuous up to ∂Λ if we put

f(z) = −z, z ∈ ∂Λ.

Next consider

v(z) = Re
∫

f(z)dz, z ∈ Ω

the real part of the indefinite integral of f . Even though
∫

f(z)dz can be multivalued
due to Ω not being simply connected, we claim that v is well defined. Indeed, note
that

Re
∫

∂Λ

f(z)dz =
∫

∂Λ

Re(zdz) =
∫

∂Λ

d(|z|2/2) = 0

and therefore Re
∫

γ
f(z)dz = 0 for any closed curve γ in Ω. Consequently v is well

defined in Ω. Of course v is harmonic in Ω and

∂xv − i∂yv = f(z), z ∈ Ω.
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Therefore ∇v(z) = −(x, y) continuously for z = x + iy ∈ ∂Λ. By choosing the
constant of integration, we can arrange also that v(z) = −|z|2/2 on ∂Λ. Define
now

u(z) =

{
1
4 |z|

2 + 1
2v(z), z ∈ Ω

0, z ∈ Λ.

Then u ∈ C1(D) ∩ C2(D \ γ1) and it is easy to see that

∆u = χΩ in D, u = |∇u| = 0 on Λ,

where the first equality is in the sense of distributions.
More specifically, consider two mappings given by

φ(z) = φi(z) = (z + 1/z)/2 + εPi(z)(z − 1/z)/2, i = 1, 2

P1(z) = z2 + 2 + 1/z2

P2(z) = (z − 2 + 1/z)2

for ε > 0. They have the properties discussed above for ε sufficiently small. The
corresponding boundaries of Λ have the parametrizations

φ1(eiθ) = cos θ + i4ε cos2 θ sin θ

φ2(eiθ) = cos θ + i32ε cos(θ/2) sin5(θ/2)

and have the shapes similar to those in Fig. 1 with singularities at z0 = 0 (self-
touching) and z0 = 1 (cusp).

It can be shown that the solutions constructed above are also nonnegative, if
ε > 0 is sufficiently small.

We refer to the original paper of Schaeffer for the proof.

21.3. Structure of the singular set: nonnegative case.

Theorem 21.2. Let u ≥ 0 be a solution of the obstacle problem in a domain D in
Rn.

(i) For any x0 ∈ Σ(u) there exists a unique quadratic polynomial

Qx0(x) =
1
2
(x− x0) ·Ax0(x− x0)

such that ∆Qx0 = Tr Ax0 = 1 with the property that

‖u−Qx0‖L∞(Br(x0)) ≤ σ(r)r2

for a modulus of continuity σ depending only on n and dist(x0, ∂D).
(ii) The matrix Ax0 depends continuously on x0 ∈ Σ(u).
(iii) Let Σk(u) = {x0 ∈ Σ(u) : dim kerAx0 = k} for k = 0, . . . , n − 1. Then

Σk(u) is contained in the union of countably many k-dimensional C1 man-
ifolds.

We start with a uniform version of Theorem 21.1 (ii) and (iv) for normalized
solutions of the obstacle problem.

Lemma 21.3. Let u ∈ P1(M) and assume that 0 ∈ Σ(u). Then there exists a
modulus of continuity σ depending only on M and n such that for any 0 < r < 1/2

(i) δr(x0, u) ≤ σ(r)
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(ii) there exists a homogeneous quadratic polynomial Qr with ∆Qr = 1 such
that

‖u−Qr‖L∞(B2r) ≤ σ(r)r2.

Proof. The statement of (i) follows from Theorem 18.6. The statement of (ii) is
equivalent to the following one: for any ε > 0 there exists rε > 0 such that for
any 0 < r ≤ rε there exists a homogeneous quadratic polynomial Qr such that
|u − Qr| ≤ εr2 in B2r. Assuming that the latter fails for some ε > 0, we obtain a
sequence rj → 0 and uj ∈ P1(M) such that

‖uj −Q‖L∞(B2rj
) ≥ εr2

j

for any homogeneous quadratic polynomial Q with ∆Q = 1. Consider then the
rescalings

vj(x) =
uj(rjx)

r2
j

, x ∈ B1/rj

Then vj ∈ PR(CMR2) if rj < 1/R. Hence, over a subsequence vj → v0 ∈ P∞(CM)
in C1,α

loc (Rn).
For the global solution v0 we have two possibilities:
(1) v0 is a polynomial solution
(2) Λ(v0) is a convex set with a nonempty interior.

In the case (1), taking Q = v0, we obtain that for sufficiently large j,

‖uj −Q‖L∞(B2rj
) = r2

j‖vj − v0‖L∞(B2) < εr2
j ,

which is a contradiction with our assumption on uj . In the case (2), there exist a
ball Bδ(y0) ⊂ Λ(v0) ∩ B1 and from the nondegeneracy Bδ/2(y0) ⊂ Λ(vj) ∩ B1 for
large enough j. Then

δ(rj , uj) = δ(1, vj) ≥ δ

and we arrive at a contradiction as soon as σ(rj) < δ for σ as in part (i) of this
lemma. �

Lemma 21.4. Let Qr be as in Lemma 21.3, 0 < r < 1/2. Then for any unit vector
e

|Φ(r, (∂eu)+, (∂eu)−)− Φ(r, (∂eQ
r)+, (∂eQ

r)−)| ≤ Cσ(r)1/3,

where C = C(M,n).

Proof. Consider the rescaling v(x) = 1
r2 u(rx) and denote ε = σ(r) and Q = Qr for

convenience. Then we will have

Λ(v) ∩B1 ⊂ Sε, ‖v −Q‖L∞(B2) ≤ ε,

where Sh is a strip of width h. We want to estimate

I(r, (∂eu)+) = I(1, (∂ev)+) =
∫
{∂ev>0}∩B1

|∇∂ev|2dx

|x|n−2

in terms of I(r, (∂eQ)+) = I(1, (∂eQ)+). First, by the interior C1,α estimates we
will have

(21.1) ‖∇v −∇Q‖L∞(B1) ≤ C‖v −Q‖L∞(B2) ≤ Cε.
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To use C1,1 estimates, we need to stay away from the free boundary by distance,
say, ε1/3:

(21.2) ‖D2v −D2Q‖L∞(B1\Sε1/3) ≤
C

ε2/3
‖v −Q‖L∞(B2) ≤ Cε1/3.

To proceed, assume Q(x) = 1
2 (x·Ax) for a symmetric matrix A. Note that D2Q = A

and that by C1,1 estimates for v, combined with (21.2), we have |A| ≤ C(M,n).
Let now

V = {∂ev > 0} ∩B1, U = {∂eQ = x ·Ae > 0} ∩B1.

Then by (21.1)

U+ ⊂ V ⊂ U−, where U± =
{

x ·Ae > ±Cε2/3
}
∩B1

and therefore

(21.3)
∫

U+

|∇∂ev|2dx

|x|n−2
≤

∫
V

|∇∂ev|2dx

|x|n−2
≤

∫
U−

|∇∂ev|2dx

|x|n−2
.

Next, using (21.2), we can estimate∣∣∣∣∣
∫

U±

|∇∂ev|2dx

|x|n−2
−

∫
U±

|∇∂eQ|2dx

|x|n−2

∣∣∣∣∣(21.4)

≤ C

∫
S

ε1/3∩B1

dx

|x|n−2
+ Cε1/3

∫
B1\Sε1/3

dx

|x|n−2
≤ Cε1/3

where C = C(M,n). Furthermore,∣∣∣∣∣
∫

U±

|∇∂eQ|2dx

|x|n−2
−

∫
U

|∇∂eQ|2dx

|x|n−2

∣∣∣∣∣(21.5)

≤ C min{ε2/3/|Ae|, 1}|Ae|2 ≤ Cε2/3.

Note that both in (21.4) and (21.5) we have used that∫
Sh∩B1

dx

|x|n−2
≤

∫ h

−h

∫
{|x′|≤1}

dx′

|x′|n−2
dxn ≤ Ch, 0 < h < 1.

Now, putting (21.3)–(21.5) together, we obtain

|I(1, (∂ev)+)− I(1, (∂eQ)+| ≤ Cε1/3.

We have an analogous estimate for I(1, (∂ev)−) and taking the product we obtain

|Φ(1, (∂ev)+, (∂ev)−)− Φ(1, (∂eQ)+, (∂eQ)−)| ≤ Cε1/3,

which implies the statement of the lemma. �

Lemma 21.5. Let Qr be as Lemma 21.3 and Qr(x) = 1
2 (x ·Arx) for a symmetric

matrix Ar with TrAr = 1. Then for 0 < r1 ≤ r2 < 1/2 and any unit vector e

|Ar1e|2 ≤ |Ar2e|2 + Cσ(r2)1/3

Proof. Recall that Φ(r, (∂eu)+, (∂eu)−) is monotone increasing in r. Then the state-
ment follows from Lemma 21.4 and the observation that

Φ(r, (∂eQ
r)+, (∂eQ

r)−) = Cn|Are|2. �
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Lemma 21.6. Let Ar1 and Ar2 be as in Lemma 21.5 and additionally assume that
they are nonnegative. Then

‖Ar1 −Ar2‖ ≤ Cσ(r2)1/3.

Proof. Let B = Ar1 − Ar2 . Then TrB = 0 and let λ = λmin ≤ 0 be the smallest
eigenvalue of B and e a corresponding unit eigenvector. We have

|Ar1e| = |Be + Ar2e|2 ≤ |Ar2e|2 + Cσ(r2)1/3.

and since Be = λe, this gives

λ2 + 2λ(e ·Ar2e) ≤ Cσ(r2)1/3

The second term on the right hand side is nonpositive, since Ar2 is a nonnegative
matrix. This implies that

−λmin ≤ Cσ(r2)1/6.

Since TrB = 0, the positive and negative eigenvalues are balanced and therefore if
λmax ≥ 0 is the largest eigenvalue of B

λmax ≤ −(n− 1)λmin.

This implies the statement of the lemma, since ‖B‖ = max{−λmin, λmax}. �

We are now ready to prove the main result of this section.

Proof of Theorem 21.2.
(i) With no loss of generality we may assume that x0 = 0 and u ∈ P1(M) and

let Qr = 1
2 (x · Arx) be as above. Then by Lemma 21.6, Ar converges to a unique

limit A0 as r → 0 and
‖Ar −A0‖ ≤ Cσ(r)1/6.

Consequently, Q0(x) = 1
2 (x ·A0x) satisfies

‖u−Q0‖L∞(Br) ≤ ‖u−Q0‖L∞(Br) + ‖Q0 −Qr‖L∞(Br)

≤ Cσ(r)r2 + ‖Ar −A0‖r2 ≤ Cσ(r)1/6r2.

This proves part (i).

(ii) Let now Qx0(x) = 1
2 (x− x0) ·Ax0(x− x0) be the polynomials corresponding

to x0 ∈ Σ(u) as in (i) and let x1 ∈ Σ(u) be another singular point. Then we have

‖Qx0 −Qx1‖L∞(Br(x0)∩Br(x1))

≤ ‖Qx0 − u‖L∞(Br(x0)) + ‖u−Qx1‖L∞(Br(x1))

≤ 2σ(r)r2,

if |x1−x0| ≤ δr for small δ > 0 and r < 1
4 dist(x0, ∂D). Now, if we take δ < σ(r)1/2,

then we will have
‖Ax0 −Ax1‖ ≤ Cσ(r).

This proves part (ii).

(iii) This part is a direct application of Whitney’s extension theorem.

Lemma 21.7 (Whitney’s Extension Theorem). Let E be a compact set in Rn and
f : E → R arbitrary. Suppose that for any x ∈ E there exists a polynomial Px of
degree m such that

(1) Px(x) = f(x) for x ∈ E;
(2) |Dk(Px − Py)(x)| = o(|x− y|m−k) for x, y ∈ E and k = 0, . . . m.
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Then f extends to a Cm function on Rn such that

f(y) = Px(y) + o(|x− y|m)

for all x ∈ K. �

Fix a number a > 0 and consider the subset Σk,a(u) of points x0 ∈ Σk(u) for
which the smallest nonzero eigenvalue of Ax0 is at least a. Let also K be a compact
subset of D.

Take E = Σk,a(u) ∩ K, f = 0 and Px0 = Qx0 . Then the conditions of the
Whitney’s extension theorem are verified by part (ii) and therefore we can extend
f to a C2 function on Rn. To complete the proof, now observe

E ⊂ {∇f = 0} =
n⋂

i=1

{∂xif = 0}.

For x0 ∈ E, we can arrange the coordinate axes so that the vectors e1, . . . , en−k

are eigenvalues of D2f(x0) = Ax0 . Moreover by our assumption ∂xixi
f(x0) ≥ a,

i = 1, . . . , n− k. Then the implicit function theorem implies that
n−k⋂
i=1

{∂xi
f = 0}

is a k-dimensional C1 manifold in a neighborhood of x0. This completes the proof
of part (iii) and thereby that of the theorem. �

21.4. Structure of the singular set: “no-sign” case.

Theorem 21.8. Let u be a solution of the “no-sign” obstacle problem in a domain
D in Rn with f ∈ C0,1(D).

(i) For any x0 ∈ Σ(u) there exists a unique linear subspace Πx0 of Rn such
that for any blowup Q(x) = 1

2 (x · Ax) of u at x0 as in Theorem 21.1(ii)
have

Πx0(x) = kerA.

(ii) Let Σk(u) = {x0 ∈ Σ(u) : dimΠx0 = k} for k = 0, . . . , n − 1. Then the
mapping x0 7→ Πx0 is continuous in x0 ∈ Σk(u) (as the mapping to a
Grassmanian of k-dimensional subspaces of Rn).

(iii) Σk(u) is contained in the union of countably many k-dimensional C1 man-
ifolds, k = 0, . . . , n− 1.

Lemma 21.9. Let u ∈ P1(M) with f ∈ C0,1(B1). Then Lemmas 21.3 and 21.4,
with σ and C depending additionally on M and ‖f‖L∞(B1). �

Lemma 21.10. Let u ∈ P1(M) with f ∈ C0,1(B1), Qr be as Lemma 21.3 and
Qr(x) = 1

2 (x ·Arx) for a symmetric matrix Ar with TrAr = 1. Then for 0 < r1 ≤
r2 < 1/2 and any unit vector e

|Ar1e|2 ≤ (1 + rβ
2 )|Ar2e|2 + Cσ(r2)1/3

Proof. The only essential difference is that with the proof of Lemma 21.5 we uti-
lize the Almost Monotonicity Formula [CJK] in the following form: If φ(r) =
Φ(r, (∂eu)+, (∂eu)−) and 0 ≤ r1 ≤ r2 ≤ 1/2, then

φ(r1) ≤ (1 + rβ
2 )φ(r2) + Crβ

2 .

We leave the details to the readers. �
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One complication that we face allowing u to change sign is that Ar is not nec-
essarily nonnegative now and the proof of Lemma 21.6 does not apply. As a result
we don’t know if Ar converge to a unique matrix A0. Instead, we get only that
(A0)2 is unique.

Lemma 21.11. There exists a unique matrix B0 such that if Ar → A for a subse-
quence r = rk → 0 then

A2 = B0.

Consequently, Π0 = kerA = kerB0 is also unique

Proof. Let A′ and A′′ be the limits of Ar r = r′k → 0 and r = r′′k → 0 respectively.
Then by Lemma 21.10

|A′e|2 = |A′′e|2

for any unit vector e. On the other hand, if A is a symmetric matrix, Ae·Ae = e·A2e
and therefore the above equality implies that A′2 = A′′2. �

Proof of Theorem 21.8. Part (i) follows from Lemma 21.11. Consider now the sub-
set Σk(u) of singular points x0 with dim Πx0 = k. We want to show that Πx0

depends continuously on x0 ∈ Σk(u). To this end let xj ∈ Σk(u) and xj → x0.
Consider now the corresponding matrices Bxj

and Bx0 . We claim that

(21.6) lim sup
j→∞

e ·Bxj e ≤ e ·Bx0e.

for any unit vector e. Indeed, note that we can take A2r
x0

as Ar
xj

for j large enough
so that |xj − x0| < r (by modifying σ(r), if necessary). Then

e ·Bxj
e ≤ |Ar

xj
e|2 + Cσ(r)1/3 = |A2r

x0
e|2 + Cσ(r)1/3

Passing to the limit as j →∞ and then as r → 0 we establish (21.6). This implies
that

Πx0 ⊂ lim sup
j→∞

Πxj
.

Since all Πxj and Πx0 are k-dimensional linear subspaces, we must necessarily have

Πx0 = lim
j→∞

Πxj
.

This proves part (ii) of Theorem 21.8.
Let now πx0 denote the orthogonal projection to the orthogonal complement of

Πx0 so that kerπx0 = Πx0 . Note that πx0 depends continuously on x0 ∈ Σk(u).
This not yet enough to apply Whitney’s Extension Theorem, we need something
stronger. For k = 1, . . . , n − 1 and a > 0 let Σk,a(u) be the subset of points
x0 ∈ Σk(u) for which the smallest nonzero eignevalue of Bx0 is at least a2. Note
that we have

e ·Bx0e ≥ a2|πx0e|2 for any x0 ∈ Σk,a(u).

Lemma 21.12. For any a > 0, k = 1, . . . , n− 1 there exists constant C such that

|πx0(x− x0)| ≤ Cσ1/3(|x− x0|)|x− x0| for any x, x0 ∈ Σk,a(u).

Proof. Let x0, x ∈ Σk,a(u) with |x− x0| = r small. Using that u(x) = |∇u(x)| = 0,
we obtain

|Ar
x0

(x− x0)| = |∇Qr
x0

(x)| = |∇u(x)−∇Qr
x0

(x)| ≤ Cσ(r)r.
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On the other hand, using that a2|πx0e|2 ≤ e ·Bx0e for x0 ∈ Σk,a(u), we estimate

a2|πx0(x− x0)|2 ≤ (x− x0) ·Bx0(x− x0)

≤ (1 + rβ)|Ar
x0

(x− x0)|2 + Cσ(r)1/3r2

≤ Cσ2(r)r2(1 + rβ) + Cσ(r)1/3r2 ≤ Cσ(r)1/3r2.

�

Having this lemma in mind, define

Px0(x) = (x− x0) · πx0(x− x0).

It is easy to see that Px0 satisfies the conditions of the Whitney’s Extension Theorem
on E = Σk,a(u) ∩ K for any K ⊂⊂ D. Then we complete the proof of part (iii)
similarly to the nonnegative case. �


