
LECTURE 3

3. Existence

3.1. Regularization.

3.1.1. Classical Obstacle Problem. We have shown in Lecture 1 that the classical
obstacle problem can be reduced to the obstacle problem with zero obstacle, i.e.
the problem of minimizing

J(u) =
∫

D

(|∇u|2 + 2fu)dx

over the convex subset Kg,0 = {u ∈ W 1,2(D) : u− g ∈ W 1,2
0 (D), u ≥ 0 a.e. in D}.

Here we assume g ∈ W 1,2(D) ∩ L∞(D), g ≥ 0 on ∂D in the sense g− ∈ W 1,2
0 (D)

and f ∈ L∞(D).
Because of the strict convexity of J on Kg,0, it is clear that the functional has

one minimizer. We show in this section that this minimizer is in W 2,p
loc (D)∩C1,α

loc (D)
for any p < ∞ and 0 < α < 1 and will consequently solve

∆u = fχ{u>0} in D.

The first step is getting rid of the obstacle at the expense of losing the regularity
of the functional J .

Proposition 3.1. A function u ∈ W 1,2(D) is a minimizer of J over Kg,0 iff u is
a minimizer of the functional

J̃(u) =
∫

D

(|∇u|2 + 2fu+)dx

over Kg = {u ∈ W 1,2(D) : u− g ∈ W 1,2
0 (D)}.

Proof. 1) Let u ∈ Kg,0 be a minimizer of J over Kg,0. Take any v ∈ Kg. Then
v+ ∈ Kg,0. One has

Div
+ = Divχ{v>0}

and therefore

J̃(v) =
∫

D

|∇v|2 + 2fv+ ≥
∫

D

|∇v|2χ{v>0} + 2fv+ = J(v+) ≥ J(u) = J̃(u).

This implies that u is a minimizer of J̃ over Kg.
2) Conversely, let u ∈ Kg be a minimizer of J̃ over Kg. Then u+ ∈ Kg,0 ⊂ Kg.

Moreover, evidently
J(u+) ≤ J(u)

with equality iff ∫
D

|∇u|2χ{u≤0}dx = 0.

The latter implies Diu
− = 0 a.e. in D, hence u− must be a locally constant in

D. Since also u− ∈ W 1,2
0 (D), u− = 0 in D. This implies u ≥ 0 a.e. in D and
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consequently u ∈ Kg,0. Finally, J̃ coincides with J on Kg,0 and therefore u is a
minimizer of J over Kg,0. �

Thus, we reduced the problem to studying the minimizers of J̃ with given bound-
ary values g on ∂D. To write the corresponding Euler-Lagrange equations, we
consider a family of regularized problems

∆u = fχε(u) in D

u = g on ∂D,

where χε(s) is a smooth approximation of the Heaviside function χ{s>0} such that

χ′ε ≥ 0, χε(s) = 0 for s ≤ −ε, χε(s) = 1 for s ≥ ε.

A solution uε to this problem can be obtained by minimizing the functional

Jε(u) =
∫

D

(|∇u|2 + 2f(x)Φε(u))dx

over Kg, where

Φε(s) =
∫ s

−∞
χε(t)dt.

Now, recall that we assume that g is uniformly bounded in D. This will imply by
the maximum principle of Alexandrov (see [Gilbarg-Trudinger, Theorem 9.1]

‖uε‖L∞(D) ≤ ‖g‖L∞(D) + C(n, D)‖f‖L∞(D).

Consequently, applying the interior Lp-estimates, we will have that

‖uε‖W 2,p(K) ≤ C(p, K,D, f, g)

for any open K ⊂⊂ D and 1 < p < ∞. Thus, the family {uε} of minimizers of Jε

is uniformly bounded in W 2,p(K) and therefore we can find a subsequence εk → 0
and a function u, such that over ε = εk → 0

uε → u weakly in W 2,p
loc (D)

for any 1 < p < ∞. Clearly, u ∈ W 2,p
loc (D) for any 1 < p < ∞.

Now, It is an easy exercise to show that {uε} is uniformly bounded in W 1,2(D).
Thus, we may assume uε → u weakly in W 1,2(D). Moreover, since uε−g ∈ W 1,2

0 (D)
and W 1,2

0 (D) is a closed subset of a Hilbert space W 1,2(D), we obtain that u ∈ Kg.
Applying Fatou’s lemma and the dominated convergence theorem we see that

J(u) ≤ lim inf
ε=εk→0

Jε(uε) ≤ lim inf
ε=εk→0

Jε(v) = J(v)

for any v ∈ Kg. Thus, u is the solution of the obstacle problem. Finally, we verify
that u satisfies

∆u = fχ{u>0} a.e. in D.

To this end, note that we can assume that over ε = εk → 0

uε → u in C1,α
loc (D),

by the Sobolev embedding theorem. Then the locally uniform convergence implies
that ∆u = 0 in {u < 0} and ∆u = f in {u > 0}. Using also that u ∈ W 2,p

loc (D), we
also have ∆u = 0 a.e. on {u = 0}. Thus, we obtain that ∆u = f(x)χ{u>0} a.e. in
D.
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3.1.2. Two-Phase Obstacle Problem. Given any two constants λ+ and λ− we show
here that we can find a locally bounded solution to the two-phase obstacle problem

∆u = λ+χ{u>0} − λ−χ{u<0} in D

u = g on ∂D

in a bounded domain D and g ∈ W 1,2(D)∩L∞(D), by applying the regularization
technique from the previous subsection.

Namely, we want to find a minimizer of the energy functional

J(v) =
∫

D

(|∇v|2 + 2λ+u+ + 2λ−u−)dx

on the set Kg. To this end consider the approximating problems

∆u = λ+χε(u)− λ−χε(−u) in D

u = g on ∂D,

and the solutions uε obtained by minimizing the functional

J(u) =
∫

D

(|∇u|2 + 2λ+Φε(u) + 2λ−Φε(−u))dx,

where the approximations χε and Φε are as in the previous subsection. Then,
following the arguments as before one can establish that for a subsequence ε = εk

the minimizers uε converge weakly in W 2,p
loc (D) for any 1 < p < ∞ to a solution of

the desired problem. We leave to the reader to fill in the details.
We conclude with the remark that if λ± ≥ 0 or more generally λ++λ− ≥ 0, then

the solution of the problem is unique, as the corresponding functional is convex.
However, in the non-convex case, i.e. when λ+ + λ− < 0 there is a class of non-
variational solutions, that may exhibit certain peculiar properties (e.g. they may
not be C1,1 regular.)

3.2. Viscosity solutions: Perron-Wiener’s Method. We have chosen here to
give a proof of the existence for the case of superconductivity problem, which can
be applied to the obstacle problem directly. We follow Caffarelli and Salazar.

So let us recall the equation that appears in the problem of superconductivity

(3.1) ∆u = f(x, u)χ{|∇u|>0}, in B1,

with f > 0, and f(x, s) ∈ Cα
x ∩ C0

s .

3.2.1. Sub- and Supersolution. A subsolution to equation (3.1) is an upper semi-
continuous (u.s.c.) function u, bounded from above, such that the inequality

∆P (x) ≥ f(x, P (x))

holds for any paraboloid

P (x) = c0 + b · x +
n∑

i=1

ajx
2
j , b = (b1, · · · , bn)

touching u from above at x, with |∇P (x)| 6= 0. A supersolution of (3.1) is a lower
semicontinuous (l.s.c.) function u, bounded below, such that

∆P (x) ≤ f(x, P (x))

for any paraboloid P with |∇P (x)| 6= 0, and touching the graph of u at x, from
below . A solution is both a sub- and a supersolution.
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We denote by u∗, and u∗ the upper semicontinuous, and the lower semicontinuous
envelopes, respectively, of a given function u, i.e.,

u∗(x) = lim sup
z→x

u(z), u∗(x) = lim inf
z→x

u(z) .

3.2.2. Properties of sub- and supersolutions.

Lemma 3.2. Let {uι} be a nonempty family of subsolutions of (3.1) and set

u = sup
ι

uι .

Then, u∗ is a subsolution, provided u∗ < ∞.

Proof. Fix x0, and let P be any paraboloid, with |∇P (x0)| 6= 0, and touching u∗

from above at x0. Let further ε > 0 be a fixed constant, and define

Q(x) = P (x) +
ε

2n
|x− x0|2 .

By continuity, there is δ > 0 such that for all x ∈ Bδ(x0), we have
a) |∇P (x)| 6= 0, |∇Q(x)| 6= 0;
b) ∆P (x) ≤ ∆P (x0) + ε;
c) f(x, r) ≥ f(x0, u∗(x0))− ε, for all r such that |r − u∗(x0)| ≤ ε δ2

n .

Choose η < δ/2 such that

|P (x)− P (x0)| < εδ2

16n
, ∀x ∈ Bη(x0) .

There exists an index ι and a point x′ ∈ Bη(x0), (this point doesn’t necessarily
coincide with x0, since we might well have u∗(x0) > u(x0)) such that

uι(x′) > u∗(x0)− εδ2

16n
,

and hence

Q(x′)− uι(x′) < Q(x′)− u∗(x0) +
εδ2

16n

= P (x′)− P (x0) +
ε

2n
|x′ − x0|2 +

εδ2

16n
<

εδ2

4n
.

Since also P (x) ≥ u∗(x) ≥ uι(x) in Bδ(x0), we arrive at
ε

2n
|x− x0|2 ≤ Q(x)− uι(x) Bδ(x0) .

From the last two inequalities it follows that the infimum of Q − uι is attained at
a point x1 ∈ Bδ/

√
2 (interior of the ball). It is crucial to note that this point is in

the interior of the ball Bδ/
√

2, and not on the boundary.
At this point, Q − Q(x1) + uι(x1) is a touching paraboloid for uι, from above.

Since uι is a sub-solution, we have

∆Q(x1) ≥ f(x1, uι(x1)).

Moreover,

|u∗(x0)− uι(x1)| ≤ |Q(x0)−Q(x1)|+ Q(x1)− uι(x1)

≤ εδ2

16n
+

ε

2n
|x1 − x0|2 +

εδ2

4n
≤ 13

16
εδ2

n
.
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Putting all these inequalities together, we obtain

∆P (x0) + 3ε ≥ ∆P (x1) + 2ε ≥ ∆Q(x1) + ε ≥ f(x1, uι(x1)) + ε ≥ f(x0, u∗(x0)).

Since ε was arbitrary we arrive at the subsolution property ∆P (x0) ≥ f(x0, u∗(x0)).
�

Lemma 3.3. Let v ≤ v be given continuous sub- and supersolutions, respectively.
Then there exist a function u, v ≤ u ≤ v, such that u∗ is a supersolution and u∗ is
a subsolution.

Proof. Let

u = sup{w : w ≤ v : w ∈ C0, ∆w(x) ≥ f(x,w(x))}.

By Lemma (3.2), u∗ is a subsolution. We also have u = u∗ (supremum of continuous
functions are lower semicontinuous). To prove that u is a supersolution let P be a
paraboloid touching u from below at a point x0, such that |∇P (x0)| 6= 0.

If u(x0) = v(x0), then by supersolution property of v, we have ∆P (x0)
≤ f(x0, u(x0)), and we will be done.

Let us investigate the case

u(x0) < v(x0), a := ∆P (x0)− f(x0, u(x0)) > 0.

By continuity we may choose δ1 > 0, and ν > 0 such that for all x ∈ Bδ1(x
0) and

|r − u∗(x0)| < ν, we have

f(x, r) ≤ f(x0, u(x0)) +
a

3
, ∆P (x) ≥ ∆P (x0)− a/3.

Let 0 < δ2 ≤ δ1 be such that for all x ∈ Bδ2(x
0)

−ν

2
≤ P (x)− P (x0)− a

6n
|x− x0|2 ≤ ν

2
.

Then, for |β| < ν/2, the paraboloid

Q(x) = P (x)− a

6n
|x− x0|2 + β

is a subsolution to (3.1) in Bδ2 ,

∆Q(x) = ∆P (x)− a

3
≥ ∆P (x0)− 2a

3
≥ f(x0, u(x0)) +

a

3
≥ f(x,Q(x)) .

The last inequality holds because

|Q(x)− u(x0)| ≤
∣∣∣P (x)− P (x0)− a

6n
|x− x0|2

∣∣∣ + |β| ≤ ν .

To reach a contradiction, we shall construct a continuous subsolution less than or
equal to v and strictly greater than u at x0.

First we choose γ > 0 and 0 < δ < δ2 such that

v − P ≥ γ on Bδ(x0) .

By the axiom of choice and the compactness of ∂Bδ, there is a continuous sub-
solution v ≤ v, such that

v − P ≥ − aδ2

12n
on ∂Bδ .
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Taking β < min{ν/2, γ, aδ2

12n}, β > 0, we see that the function

w(x) =

{
max (v(x), Q(x)) , x ∈ Bδ,

v(x) , x /∈ Bδ,

is a continuous subsolution less than or equal to v, and w(x0) > u(x0). This is a
contradiction to the maximality of u. �

3.2.3. Existence. A most natural question is whether the function u above is actu-
ally continuous. We answer this question under suitable additional hypotheses.

Theorem 3.4. Let v and v be as in Lemma 3.3. Assume that there is c ≥ 0 such
that for all x ∈ B1, all r ∈ R, and all h ≥ 0,

f(x, r + h) ≥ f(x, r) + ch .

Then, there is a viscosity solution u such that v ≤ u ≤ v.

Remark 3.5. By Lemma 3.3, taking u equal to the supremum of all continuous
subsolutions less than or equal to v, only the continuity of u remains to be proved.

Before going into the proof of this proposition, we need some notation and prop-
erties of Jensen’s approximate solutions.

Suppose there is a point x0 ∈ Ω such that

u∗(x0) > u(x0);

otherwise, u is continuous and there is nothing to prove.
Following Jensen’s idea, define

uε(x) = sup
y∈Ωα

{
u∗(y) + ε− 1

ε
|y − x|2

}
, x ∈ Ωα := {v ≥ v + α}

where α is a positive constant, whose precise value will be fixed later.
Jensen’s approximation of a continuous solution enjoys many nice properties; a

list of them can be found in the book by Caffarelli and Cabré [Caff-Cab], p. 43,
Theorem 5.1. Suitable versions of those properties, adapted to our case, are listed
below. We omit the proofs since those given in [Caff-Cab] work with minor changes.

a) uε is a decreasing family of continuous functions.
b) Let f be a continuous function such that f ≥ u∗. For each β > 0 there is

an ε0 > 0 such that

uε ≤ f + β on Ω2α , ∀ε < ε0 .

c) For each x ∈ Ωα, there corresponds a point x′ ∈ Ωα such that

uε(x) = u∗(x′) + ε− 1
ε
|x− x′|2 .

d) The point x′ in c) satisfies

|x− x′|2 ≤ ε sup
Ωα

|v − v| .

We state a key lemma for the proof of continuity of the above constructed func-
tion.

Lemma 3.6. Under the hypothesis of Theorem 3.4, for each δ > 0, there exists an
ε1 > 0 such that for all ε < ε1, the function uε(x) − δ is a viscosity subsolution of
(3.1) in Ω2α.
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Proof. Let P be a paraboloid touching uε − δ from above at a point x0 ∈ Ω2α.
Assume |∇P (x0)| 6= 0 and define

Q(x) = P (x + x0 − x′) + δ +
1
ε
|x0 − x′|2 − ε ,

where x′ is the corresponding point for x0 in c) above. Then, one readily verifies
that

u∗(x) ≤ uε(x + x0 − x′) +
1
ε
|x0 − x′|2 − ε ≤ Q(x) ,

u∗(x′) = Q(x′) , ∇Q(x′) = ∇P (x0) 6= 0 , ∆P (x0) = ∆Q(x′).
Hence

∆Q(x′) ≥ f
(
x′, u∗(x′)

)
= f

(
x′, uε(x0) +

1
ε
|x0 − x′|2 − ε

)
≥ f

(
x′, uε(x0)− δ

)
+ c

(
δ +

1
ε
|x0 − x′|2 − ε

)
,

provided δ + 1
ε |x

0 − x′|2 − ε ≥ 0.
By d), since Ωα × I (where I = {r ∈ R; infΩα

v − δ ≤ r ≤ supΩα
v + 1}) is

compact and f is continuous, we can find ε1 > 0 such that for all ε ≤ ε1, |x0 − x′|
is small enough and we have

f
(
x′, uε(x0)− δ

)
≥ f

(
x0, uε(x0)− δ

)
− c

δ

2
.

Consequently, for ε1 ≤ δ/2, we arrive at

∆P (x0) ≥ f
(
x0, uε(x0)− δ

)
.

�

Proof of Theorem 3.4. Let δ = u∗(x0)− u(x0) and fix ε0 > 0 such that

uε ≤ v + δ/3 on Ω2δ/3 , ∀ε < ε0;

see property b) above. In addition, by Lemma 3.6, let ε1 > 0 be such that the
function uε − δ is a continuous viscosity subsolution of (1) in Ω2δ/3.

Then, for ε ≤ ε0 ∧ ε1, we have
i) uε(x0)− δ ≥ u(x0) + ε,
ii) uε − δ ≤ v in Ω2δ/3,
iii) uε − δ ≤ v − 2δ/3 = v on ∂Ω2δ/3.

This in particular implies that the function

w(x) =

{
max ((uε(x)− δ), v(x)) , x ∈ Ω2δ/3,

v(x) , x /∈ Ω2δ/3,

is a continuous subsolution less than or equal to v and w(x0) > u(x0). This leads
to a contradiction. �


