
LECTURE 4

4. Optimal Regularity

As we have seen at the end of Lecture 2, locally bounded solutions of the equation
∆u = f in an open subset D ⊂ Rn with uniformly bounded f are of class W 2,p

loc for
any 1 < p < ∞. Hence, working on a compactly supported open subset of D, if
necessary, we may assume without loss of generality that

(4.1) u ∈W 2,p(D) ∩ C1,α(D), for some p > n and 0 < α < 1.

Our aim in this lecture is to show that the solution of Problems A-C are in fact of
class C1,1. The latter is the optimal regularity for these solutions, as the Laplacian
may have discontinuities in these problems.

4.1. Classical Obstacle Problem. We start with considering nonnegative so-
lutions of the obstacle problem, since the proofs are much simpler in that case.
Throughout this section we consider nonnegative distributional solutions u ∈ L∞loc(D)
of

(4.2) ∆u = f(x)χ{u>0} in D,

for f ∈ L∞(D).
We start with the following result on the growth of u away from the free boundary

∂{u > 0}.

Theorem 4.1 (Quadratic growth). Let u ∈ L∞loc(D), u ≥ 0 satisfy (4.2), Ω = {u >
0}, x0 ∈ ∂Ω, and B2R(x0) ⊂⊂ D. Then

sup
BR(x0)

u ≤ C‖f‖L∞(D)R
2,

where C = C(n).

Proof. Decompose u into the sum u1 + u2 in B2R(x0), where

∆u1 = ∆u, ∆u2 = 0 in B2R(x0)

u1 = 0, u2 = u on ∂B2R(x0).

To estimate u1, we consider the auxiliary function

φ(x) =
1
2n

(4R2 − |x− x0|2),

which is the solution of

∆φ = −1 in B2R(x0), φ = 0 on ∂B2R(x0).

Then we have
−M φ(x) ≤ u1(x) ≤Mφ(x), x ∈ B2R(x0),

where M = ‖f‖L∞(D). This follows from the comparison principle, since

−M ≤ ∆u1 ≤M in B2R(x0),
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and that both u1 and φ vanish on ∂B2R(x0). In particular, this implies that

|u1(x)| ≤ C(n)MR2, x ∈ B2R(x0).

To estimate u2, observe that u2 ≥ 0 in B2R(x0), since u2 ≥ u ≥ 0 on ∂B2R(x0).
Also note that u1(x0) + u2(x0) = u(x0) = 0 and the estimate of u1 gives

u2(x0) ≤ C(n)MR2.

Applying now the Harnack inequality, we obtain

u2(x) ≤ C(n)u2(x0) ≤ C(n)M R2, x ∈ BR(x0).

Combining the estimates for u1 and u2, we obtain the desired estimate for u. �

Corollary 4.2. Let u be as in Theorem 4.1 and Λ = D \ Ω. Then

u(x) ≤ C(n)‖f‖L∞(D) dist(x,Λ)2,

as long as 2 dist(x,Λ) < dist(x, ∂D). �

In order to obtain C1,1 estimates for the solutions of (4.2) that we need to
assume a little bit more on the function f in (4.2). Namely, we require f to have a
C1,1-regular potential, i.e.

(4.3) f = ∆ψ in D, with ψ ∈ C1,1(D).

We use the following second order derivative estimates associated with such f : if v
is a solution of

(4.4) ∆v = f in B2R(x0) ⊂ D

then

(4.5) ‖D2v‖L∞(BR(x0)) ≤ C(n)
(‖v‖L∞(B2R(x0))

R2
+ ‖D2ψ‖L∞(B2R(x0))

)
.

We leave this as an easy exercise to the reader.

Theorem 4.3 (C1,1-regularity). Let u ≥ 0, f satisfy (4.2)–(4.3). Then u ∈
C1,1

loc (D) and
‖u‖C1,1(K) ≤ C(‖u‖L∞(D) + ‖D2ψ‖L∞(D)),

for any open K ⊂⊂ D, where C = C(n,K,D).

Proof. For K ⊂⊂ D and x0 ∈ K, let δ = 1
2 dist(K, ∂D) and d = 1

2 dist(x0,Λ).
Then we have two possibilities.

1) d < δ/4. In this case, let y0 ∈ ∂B2d(x0)∩∂Ω. Then B6d(y0) ⊂ B8d(x0) ⊂⊂ D.
Applying Theorem 4.1, we have

‖u‖L∞(B3d(y0)) ≤ C(n)‖f‖L∞(D) d
2.

Now note that B2d(x0) ⊂ B3d(y0) and ∆u = f in B2d(x0). By the interior estimate
(4.5)

‖D2u‖L∞(Bd(x0)) ≤ C(n)(‖f‖L∞(D) + ‖D2ψ‖L∞(D)).

In fact, the term ‖f‖L∞(D) is redundant as ‖f‖L∞(D) ≤ C(n)‖D2ψ‖L∞(D).

2) d ≥ δ/4. In this case, the interior derivative estimate for u in Bd(x0) gives

‖D2u‖L∞(Bd(x0)) ≤ C(n)
(‖u‖L∞(D)

δ2
+ ‖D2ψ‖L∞(D)

)
.
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Combining cases 1) and 2) above, together with the interpolation inequality, we
obtain

‖u‖C1,1(K) ≤ C(n)
(‖u‖L∞(D)

δ̃2
+ ‖D2ψ‖L∞(D)

)
,

where δ̃ = min(δ, 1). �


