
LECTURE 5

5. ACF-type Monotonicity Formulas

5.1. Harmonic Functions. For a continuous u ∈ W 1,2(B1) define the following
quantity:

J(r, u) =
1
r2

∫
Br

|∇u|2dx

|x|n−2
, 0 < r < 1.

It is relatively straightforward to show that J(r, u) is monotone in r if u is a har-
monic function. Namely, if we represent u as a locally uniformly convergent series

u(x) =
∞∑

k=0

fk(x),

where fk(x) are k-th order homogeneous harmonic polynomials, and use the or-
thogonality of homogeneous harmonic polynomials of different order, we will have

J(r, u) =
1
r2

∫ r

0

∫
∂B1

|∇u(ρθ)|2ρ dθdρ =

=
1
r2

∫ r

0

∫
∂B1

ρ

∞∑
k=1

|∇fk(ρθ)|2dθdρ

=
1
r2

∫ r

0

∫
∂B1

∞∑
k=1

ρ2k−1[k2fk(θ)2 + |∇θfk(θ)|2]dθdρ

=
∞∑

k=1

akr2(k−1),

with

ak =
1
2k

∫
∂B1

[k2fk(θ)2 + |∇fk(θ)|2]dθ ≥ 0.

This implies that J(r, u) is monotone increasing in r.
We next illustrate how this monotonicity formula can be used to obtain interior

gradient estimates for harmonic functions.

a) Letting r → 0+, we obtain

J(0+, u) ≤ J(1/2, u).

On the other hand, since u is C1 (actually real analytic) at the origin, it is easy to
see that J(0+, u) = cn|∇u(0)|2, for cn > 0, which implies that

cn|∇u(0)|2 ≤ J(1/2, u).

b) It turns out that J(1/2, u) is controllable by the L2-norm of u over B1 if we
assume additionally that u(0) = 0. Indeed, consider the function |x|2−n in B1/2
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and extend it to a function V on B1 in a smooth nonnegative way, so that V ≡ 0
near ∂B1. Then, using the equality |∇u|2 = ∆(u2/2), we have

J(1/2, u) = 22

∫
B1/2

|∇u|2

|x|n−2
dx

≤ 22

∫
B1

∆
(

u2

2

)
V dx

= 22

∫
B1\B1/2

(
u2

2

)
∆V dx

which implies
J(1/2, u) ≤ Cn‖u‖2

L2(B1)
.

Combining the estimates in a) and b) above we arrive at

|∇u(0)| ≤ Cn‖u‖L2(B1)

Obviously, this is not the best way to establish the inequality above. This method
is rather a prelude to the application of the monotonicity formula of Alt-Caffarelli-
Friedman for a pair of nonnegative subharmonic functions with “disjoint” support.

5.2. ACF Monotonicity Formula.

Theorem 5.1 (Alt-Caffarelli-Friedman (ACF) Monotonicity Formula). Let u± ∈
W 1,2(B1) be a pair of nonnegative continuous subharmonic functions in B1 such
that u+(0) = u−(0) = 0 and u+ · u− = 0 in B1. Then the functional

Φ(r) = Φ(r, u+, u−) := J(r, u+)J(r, u−) =
1
r4

∫
Br

|∇u+|2dx

|x|n−2

∫
Br

|∇u−|2dx

|x|n−2

is finite and nondecreasing in r for 0 < r < 1.

The standard picture to understand this theorem is to have in B1 a (relatively
nice) surface S, passing through the origin and separating B1 into two domains D+

and D−. The functions u+ and u− are harmonic in D+ and D− respectively and
vanish on S.

Then we have the following series of remarks.

a) Each of the terms J(r, u±) can be understood as a weighted average of |∇u±|2.
For instance, if u± = α±x±1 , then

J(r, u±) ≡ cnα2
±, Φ(r, u+, u−) ≡ c2

nα2
+α2

−

b) More generally, if S is assumed smooth and ∂νu± exist on S then

J(0+, u±) = cn(∂νu±)2.

In particular, the monotonicity formula implies

c2
n(∂νu+)2(∂νu−)2 ≤ Φ(1/2, u+, u−).

c) Let Γ be a cone with vertex at the origin, i.e. given a subset Σ0 ⊂ ∂B1,

Γ = {r θ : r > 0, θ ∈ Σ0}.
Then consider a homogeneous harmonic function in Γ of the form

h(r θ) = rαf(θ),
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vanishing on ∂Γ. We have

∆h = ∂rrh +
n− 1

r
∂rh +

1
r2

∆θh

= rα−2[(α(α− 1) + (n− 1)α)f(θ) + ∆θf(θ)].

Thus, we have that h is harmonic in Γ iff f is an eigenfunction for the spherical
Laplacian ∆θ in Σ0:

−∆θf(θ) = λf(θ) in Σ0,

where
λ = α(n− 2 + α).

Thus, if we take two disjoint open set Σ± on the unit sphere, find there first
eigenvalues λ± and the corresponding eigenfunctions f±, then the homogeneous
harmonic functions

u± = rα±f±(θ), in Γ± = {r θ : θ ∈ Σ±}
where α± > 0 are found from the identity

λ± = α±(n− 2 + α±).

Then, it is easy to calculate that

Φ(r, u+, u−) = Cr2(α++α−−2)

for a C > 0 and therefore the monotonicity formula will follow in this case once we
know

α+ + α− ≥ 2.

This inequality has been established first by Friedland and Hayman. What is
interesting is it actually implies the monotonicity formula for all u±, not necessarily
homogeneous, as we show at the end of this lecture. We refer to the book of
[Caffarelli and Salsa, Geometric Approach to Free Boundary Problems], Chapter
12 for a detailed proof of the Friedland-Hayman inequality.

5.3. Generalizations. If u is a nonnegative subharmonic function, then J(r, u)
can be controlled in terms of L2-norm of u, precisely as we have done for harmonic
functions in §5.1. The only difference is that we have to use the inequality |∇u|2 ≤
∆(u2/2) instead of the equality there. Thus, one has

J(1/2, u) ≤ Cn‖u‖2
L2(B1)

.

Hence, one also has the following variant of the monotonicity formula, which takes
the form of an estimate.

Theorem 5.2. Let u± be as in Theorem 5.1. Then

Φ(r, u+, u−) ≤ Cn‖u+‖2
L2(B1)

‖u−‖2
L2(B1)

for 0 < r ≤ 1/2.

In some applications, this weaker form of the monotonicity formula turns out to
be sufficient. However, in other applications, one needs to use Theorem 5.1 at its
full strength, moreover, one needs to have information on the case of Φ(r) being a
constant in some interval.

Theorem 5.3. Let u± be as in Theorem 5.1 and suppose that Φ(r1) = Φ(r2) for
some 0 < r1 < r2 < 1. Then one of the following holds:
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(i) either u+ = 0 in Br2 or u− = 0 in Br2 ,
(ii) for every r1 < r < r2, suppu± ∩ ∂Br is a half-spherical cap and u+∆u+ =

u−∆u− = 0 in the sense of measures.

This follows directly from analyzing the proof of the ACF Monotonicity Formula,
in particular, from analyzing the case of inequality in Friedland-Hayman inequal-
ity: α+ + α− = 2 if and only if Σ± are complementary half-spherical caps. For
more details we refer to the paper by Caffarelli-Karp-Shahgholian [CKS] where this
theorem first appeared.

Next, we state a generalization of the ACF Monotonicity Formula, due to Caf-
farelli, Jerison and Kenig.

Theorem 5.4 (Caffarelli-Jerison-Kenig (CJK) Estimate). Let u± ∈ W 1,2(B1) be
a pair of nonnegative continuous functions satisfying ∆u± ≥ −1 in B1 the sense of
distributions and such that u+ · u− = 0 in B1. Then

Φ(r, u+, u−) ≤ Cn(1 + J(1, u+) + J(1, u−))2, 0 < r < 1.

This estimate still has some features of the ACF Monotonicity Formula, so some-
times it is referred to as CJK Almost Monotonicity Formula. The proof can be
found in the original paper [CJK].

If u is a nonnegative continuous functions such that ∆u ≥ −1 in B1, then using
2|∇u|2 ≤ ∆(u2) + 2u, one can show that

J(1/2, u) ≤ Cn

(
1 + ‖u‖2

L2(B1)

)
.

This leads to the following form of the CJK estimate, akin to Theorem 5.2.

Theorem 5.5. Let u± be as in Theorem 5.4. Then

Φ(r, u+.u−) ≤ Cn

(
1 + ‖u+‖2

L2(B1)
+ ‖u−‖2

L2(B1)

)2

for 0 < r ≤ 1/2.

We will also need to use the following form of the CJK estimate, which has more
feature of a monotonicity formula. However, one needs to assume more on the
growth of function u± near the origin.

Theorem 5.6. Let u± be as in Theorem 5.4 and assume additionally that u±(x) ≤
C0|x|ε in B1 for some ε > 0. Then there exists C1 = C(C0, n, ε) such that

Φ(r1) ≤ (1 + rε
2)Φ(r2) + C1r

2ε
2

for 0 < r1 ≤ r2 < 1. In particular, the limit Φ(0+) exists.

Reduction to Friedland-Hayman inequality

Here we follow [Caffarelli, The Obstacle Problem].
We start with a remark that the functional J scales linearly, in the sense that if

uλ(x) =
1
λ

u(λx),

then
J(r/λ, uλ) = J(r, u).

In particular, this implies that we can assume u± to be defined in BR for a certain
R > 1. Then it will suffice to show that Φ′(r) ≥ 0 only for r = 1.
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It will be convenient to introduce

I(r, u) =
∫

Br

|∇u|2

|x|n−2
dx

Thus, J(r, u) = 1
r2 I(r, u) and Φ(r, u+, u−) = 1

r4 I(r, u+)I(r, u−). We also denote
I± = I(·, u±). We have

Φ′(1) = I ′+I− + I+I ′− − 4I+I−.

Thus, we want to show
I ′+
I+

+
I ′−
I−

≥ 4.

We now want to rewrite this as an inequality on the unit sphere. To this end, for
u = u±, let Σ = {u > 0} ∩ ∂B1. Then we have

I(1, u) =
∫

B1

|∇u|2

|x|n−2
dx ≤

∫
B1

∆
(

u2

2

)
|x|n−2

dx =
∫

Σ

(
u ∂ru +

n− 2
2

u2

)
dθ,

using
∫

u∆v − v∆u =
∫

uvν − vuν . On the other hand,

I ′(1, u) =
∫

Σ

|∇u|2dθ.

Thus,

I ′(1, u)
I(1, u)

≥

∫
Σ

[(∂ru)2 + |∇θu|2]dθ∫
Σ

[u ∂ru +
n− 2

2
u2]dθ

Note at this point that ∫
Σ

|∇θu|2∫
Σ

u2
≥ λ,

where λ = λ(Σ) is the first eigenfunction of the spherical Laplacian ∆θ in Σ, so
we want to split u ∂ur in an optimal fashion, to spread its control between

∫
(∂ru)2

and
∫
|∇θu|2, i.e., ∫

Σ

u ∂ru ≤
1
2

[
A

∫
Σ

u2 +
1
A

∫
Σ

(∂ru)2
]

.

This will leave us with

2

∫
Σ

(∂ru)2 + |∇θu|2

1
A

∫
Σ

(∂ru)2 + (A + n− 2)
∫

Σ

u2
.

To perfectly balance both terms, we want
1
A

=
A + n− 2

λ
, or A[A + n− 2] = λ

This choice will give us
I ′(1, u)
I(1, u)

≥ 2A.
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But now observe that A is precisely the homogeneity of the homogeneous harmonic
function, constructed from the first eigenfunction of the spherical Laplacian in Σ.
So, if Σ± = {u± > 0} ∩ ∂B1, then these are disjoint open sets on ∂B1 and if A±
are the corresponding homogeneities, then we have

I ′+
I+

+
I ′−
I−

− 4 ≥ 2(A+ + A− − 2)

and therefore the required inequality will follow from the Friedland-Hayman in-
equality

A+ + A− − 2 ≥ 0.


