
LECTURE 6

6. Optimal Regularity (Continued)

6.1. Obstacle-type Problems. In this section, following the idea of Shahgholian,
we use the Caffarelli-Jerison-Kenig estimate from the previous lecture to prove the
optimal regularity in “no-sign”, superconductivity and two-phase obstacle problem.
In fact, we place these equations into a more general framework and establish the
C1,1 regularity there.

Namely, suppose that we are given a function u ∈ W 2,p(D), p > n, which satisfies

(6.1) ∆u = g in D,

in a sense of distribution for some g ∈ L∞(D). Suppose further that there exist an
open subset G ⊂ D such that

(6.2) |∇u| = 0 in D \G

and in G the right-hand side is given by

(6.3) g(x) = f(x, u(x)), x ∈ G,

where f : G × R → R satisfies the following structural conditions: there exists
M1,M2 > 0 such that

|f(x, t)− f(y, t)| ≤ M1|x− y|, x, y ∈ G, t ∈ R(6.4)

f(x, s)− f(x, t) ≥ −M2(s− t), x ∈ G, s, t ∈ R, s ≥ t.(6.5)

Locally, these conditions are equivalent to

|∇xf(x, t)| ≤ M1, ∂tf(x, t) ≥ −M2

in the sense of distributions.
Let us now see how Problems A–C fit into this framework.

• Problem A: No-sign obstacle problem

∆u = f(x)χΩ, Ω = D \ {u = |∇u| = 0}
with f ∈ C0,1(D). Here we take G = Ω.

• Problem B: Superconductivity problem

∆u = f(x)χΩ, Ω = {|∇u| > 0}.
with f(x) ∈ C0,1(D). In this problem we also take G = Ω.

• Problem C: Two-phase obstacle problem

∆u = λ+χ{u>0} − λ−χ{u<0} with λ+ + λ− ≥ 0.

Here me take G = D.

Theorem 6.1 (C1,1-regularity). Let u ∈ L∞(D) satisfy (6.1)–(6.5). Then u ∈
C1,1

loc (D) and
‖u‖C1,1(K) ≤ CM

(
1 + ‖u‖L∞(D) + ‖g‖L∞(D)

)
,

for any open K ⊂⊂ D, where C = C(n, K,D) and M = max{1,M1,M2}.
1



2 LECTURE 6

The proof is based on the following lemma which is a direct consequence of the
structural assumptions on f and u.

Lemma 6.2. Let u ∈ C1(D) satisfy (6.1)–(6.5). Then for any unit vector e,

∆(∂eu)± ≥ −L in D,

where L = M1 + M2‖∇u‖L∞(D).

Proof. Fix a direction e and let v = ∂eu. Let also

E := {v > 0}.
Note that E ⊂ G because of the assumption (6.2). Then, formally, for x ∈ E,

∆(v+) = ∂e∆u(x) = e · ∇xf(x, u) + ∂tf(x, u)Deu

≥ −M1 −M2‖∇u‖L∞(D) =: −L.

To justify this computation, observe that ∆(v+) ≥ −L in D is equivalent to the
inequality

(6.6) −
∫

D

∇(v+)∇η dx ≥ −L

∫
D

η dx

for any nonnegative η ∈ C∞0 (D). Suppose first that supp η ⊂ {v > δ} with δ > 0.
Then writing the equation

−
∫

D

∇u∇η dx =
∫

D

fη dx

with η = η(x) and η = η(x−he), we obtain an equation for the incremental quotient

v(h)(x) :=
u(x + he)− u(x)

h
.

Namely, we obtain

(6.7) −
∫

D

∇v(h)∇η dx =
1
h

∫
D

[f(x + he, u(x + he))− f(x, u(x))]η dx

for small h > 0. Note that u(x + he) > u(x) on supp η ⊂ {v > δ} and from the
hypotheses on f we have

f(x + he, u(x + he))− f(x, u(x))

≥ [f(x + he, u(x + he))− f(x + he, u(x))] + [f(x + he, u(x))− f(x, u(x))]

≥ −M1h−M2[u(x + he)− u(x)]

for small h. Letting in (6.7) h → 0 and then δ → 0 we arrive at

−
∫

D

∇v∇η dx ≥ −
∫

D

(M1 + M2v)ηdx

≥ −L

∫
η dx

for arbitrary η ≥ 0 with supp η ⊂⊂ {v > 0}.
Thus, we proved that ∆v ≥ −L in the open set E = {v > 0} in the sense

of distributions. Then it is a simple exercise to show that (6.6) holds for any
nonnegative η ∈ C∞0 (D).

To prove the same inequality for v−, we simply reverse the direction e.
�
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The proof of the C1,1-regularity theorem that we give below is based on the ap-
plication of an estimate by Caffarelli, Jerison and Kenig that we stated in Lecture 5.

Proof of Theorem 6.1. We start by observation that u is twice differentiable a.e. in
D, since u ∈ W 2,p

loc (D) with p > n, see e.g. Theorem 1.72 in [Maly-Ziemer]. Then
fix a point x0 ∈ K ⊂⊂ D where u is twice differentiable and define

v(x) = ∂eu(x)

for a unit vector e orthogonal to ∇u(x0) (if ∇u(x0) = 0, take arbitrary unit e).
Without loss of generality we may assume x0 = 0. Our aim is to obtain a uniform
estimate for ∂xjeu(0) = ∂xj v(0), j = 1, . . . , n. By construction, v(0) = 0 and v is
differentiable at 0. Hence, we have the Taylor expansion

v(x) = ξ · x + o(|x|), ξ = ∇v(0).

Now, if ξ = 0 then ∂xj v(0) = 0 for all j = 1, . . . , n and there is nothing to estimate.
If ξ 6= 0, consider the cone

Γ = {x ∈ Rn : ξ · x ≥ |ξ||x|/2},

which has a property that

Γ ∩Br ⊂ {v > 0}, −Γ ∩Br ⊂ {v < 0}

for sufficiently small r > 0. Consider also the rescalings

vr(x) =
v(rx)

r
, x ∈ B1.

Note that vr(x) → v0(x) := ξ · x uniformly in B1 and consequently ∇v±r → ∇v±0
weakly in L2(B1). Then by Fatou’s lemma, we have

c|ξ|4 =
∫

Γ∩B1

|∇v+
0 (x)|2dx

|x|n−2

∫
Γ∩B1

|∇v−0 (x)|2dx

|x|n−2

≤ lim inf
r→0

1
r4

∫
Γ∩Br

|∇v+(x)|2dx

|x|n−2

∫
−Γ∩Br

|∇v−(x)|2dx

|x|n−2

≤ lim inf
r→0

Φ(r, v+, v−),

where Φ is as in ACF Monotonicity Formula (see Lecture 5). In the next step we
apply the CJK estimate (see Lecture 5), however we should suitably adjust (scale)
v± first. Let now δ = 1

2 dist(K, ∂D) and Kδ = {dist(·,K) < δ}. By Lemma 6.2, we
have ∆v± ≥ −Lδ in Bδ(x0) ⊂ Kδ, where Lδ = M1 + M2‖∇u‖L∞(Kδ). Then it is
easy to check that the rescalings

w±(x) =
v±(δx)
Lδδ2

, x ∈ B1
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satisfy all hypotheses in CJK estimate. Hence, we have

c|ξ|4 ≤ lim inf
r→0

Φ(r, v+, v−) = CL4
δδ

4 lim
r→0

Φ(r, w+, w−)

≤ CL4
δδ

4
(
1 + ‖w+‖2

L2(B1)
+ ‖w−‖2

L2(B1)

)2

≤ CL4
δδ

4

(
1 +

‖∇u‖2
L∞(Kδ)

L2
δδ

4

)2

≤ C

(
L2

δδ
2 +

‖∇u‖2
L∞(Kδ)

δ2

)2

≤ CL4,

where C = C(n, K,D) and

L = M(1 + ‖∇u‖L∞(Kδ)) ≤ C(‖u‖L∞(D) + ‖g‖L∞(D))

with M = max{1,M1,M2}. Recalling now that ξ = ∇∂eu(x0), we arrive at

|∇∂eu(x0)| ≤ CL.

This doesn’t give the desired estimate on |D2u| yet, since e is subject to the con-
dition e · ∇u(x0) = 0, unless ∇u(x0) = 0. If ∇u(x0) 6= 0, choose the coordinate
system so that ∇u(x0) is parallel to e1. Then, taking e = e2, . . . , en in the estimate
above, we obtain

|∂xixj
u(x0)| ≤ CL, i = 2, . . . , n, j = 1, 2, . . . , n

To obtain the estimate in the missing direction e1, we use the equation ∆u = g:

|∂x1x1u(x0)| ≤ |∆u(x0)|+ |∂x2x2u(x0)|+ . . . + |∂xnxnu(x0)|
≤ ‖g‖L∞(D) + CL.

This completes the proof of the theorem. �


