LECTURE 6

6. OPTIMAL REGULARITY (CONTINUED)

6.1. Obstacle-type Problems. In this section, following the idea of Shahgholian,
we use the Caffarelli-Jerison-Kenig estimate from the previous lecture to prove the
optimal regularity in “no-sign”, superconductivity and two-phase obstacle problem.
In fact, we place these equations into a more general framework and establish the
CY! regularity there.

Namely, suppose that we are given a function u € W2?(D), p > n, which satisfies

(6.1) Au=g in D,

in a sense of distribution for some g € L>°(D). Suppose further that there exist an
open subset G C D such that

(6.2) [Vu|=0 in D\G
and in G the right-hand side is given by
(6.3) 9(x) = f(z,u(z)), we€G,

where f : G x R — R satisfies the following structural conditions: there exists
My, M5 > 0 such that

(64) |f(l’,t)*f(y,t)|§M1|ny‘, x,yGG, teR
(6.5) flz,s) — flz,t) > —Ma(s —t), z€G, s,teR, s>t.
Locally, these conditions are equivalent to
\V£f(x,t)| < Mla 8tf(x7t) > =M,
in the sense of distributions.
Let us now see how Problems A—C fit into this framework.
e Problem A: No-sign obstacle problem
Au=f(@)xa, ©=D\{u=|Vul=0}
with f € C%1(D). Here we take G = .
e Problem B: Superconductivity problem
Au=f(@)xa, ©=1{Vul>0}.
with f(x) € C%Y(D). In this problem we also take G = Q.
e Problem C: T'wo-phase obstacle problem
Au = )\+X{u>0} — )\_X{u<0} with Ay +A_ >0.
Here me take G = D.

Theorem 6.1 (C!-regularity). Let u € L°°(D) satisfy (6.1)~(6.5). Then u €
Clloﬁ(D) and
[ullerr ey < OM (1 + |lull Loy + gl (D))
for any open K CC D, where C = C(n, K, D) and M = max{l, M1, Ms}.
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2 LECTURE 6
The proof is based on the following lemma which is a direct consequence of the
structural assumptions on f and w.
Lemma 6.2. Let u € CY(D) satisfy (6.1)~(6.5). Then for any unit vector e,
A(Qou)t > ~L in D,
where L = My + Ma||Vul| o (p)-
Proof. Fix a direction e and let v = O.u. Let also
E :={v> 0}
Note that E C G because of the assumption (6.2). Then, formally, for z € E,
A(w) = 0.Au(z) = e - Vo f(x,u) + 0 f (x,u)Deu
= =My — Ma||[Vul pe(p) =: —L.

To justify this computation, observe that A(v™) > —L in D is equivalent to the
inequality

(6.6) —/DV(v"')Vndx > —L/Dndx

for any nonnegative n € C§°(D). Suppose first that suppn C {v > 6} with § > 0.

Then writing the equation
/ VuVndz —/ fndx

with n = n(x) and n = n(z—he), we obtain an equation for the incremental quotient
u(z + he) —u(x)
U(h) (ZL') = h .

Namely, we obtain
(6.7) —/ Vo) Vnde = l/ [f(x + he,u(x + he)) — f(z,u(z))]ndx
D hJp

for small h > 0. Note that u(x + he) > u(z) on suppn C {v > ¢} and from the
hypotheses on f we have

f(w+ he,u(e + he)) — f(z, u())
[f (& + he,u(x + he)) — f(x + he,u(x))] + [f(x + he,u(z)) — f (2, u(z))]
—Mih — MaJu(z + he) — u(z)]
for small h. Letting in (6.7) h — 0 and then § — 0 we arrive at

—/ VoVndx > —/ (M7 + Mav)ndx
D D

Z—L/ndx

for arbitrary n > 0 with suppn CcC {v > 0}.

Thus, we proved that Av > —L in the open set E = {v > 0} in the sense
of distributions. Then it is a simple exercise to show that (6.6) holds for any
nonnegative n € C§°(D).

To prove the same inequality for v™, we simply reverse the direction e.

>
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LECTURE 6 3

The proof of the C'*!-regularity theorem that we give below is based on the ap-
plication of an estimate by Caffarelli, Jerison and Kenig that we stated in Lecture 5.

Proof of Theorem 6.1. We start by observation that u is twice differentiable a.e. in
D, since u € WQ’p(D) with p > n, see e.g. Theorem 1.72 in [Maly-Ziemer|. Then

loc

fix a point g € K CC D where u is twice differentiable and define

v(x) = Jeu(x)
for a unit vector e orthogonal to Vu(zg) (if Vu(zg) = 0, take arbitrary unit e).
Without loss of generality we may assume xg = 0. Our aim is to obtain a uniform

estimate for d;;.u(0) = 0;,v(0), j = 1,...,n. By construction, v(0) = 0 and v is
differentiable at 0. Hence, we have the Taylor expansion

o(@) = €z +oflal), €= Vo(0).

Now, if £ = 0 then 0,,v(0) = 0 for all j = 1,...,n and there is nothing to estimate.
If £ # 0, consider the cone

F={zeR":{ x> [¢|x|/2},
which has a property that
'nB.c{v>0}, -I'nB,cC{v<0}

for sufficiently small » > 0. Consider also the rescalings

ve(x) = , T € By.

Note that v,(z) — vo(z) := £ - 2 uniformly in B; and consequently Vo — VoI
weakly in L2(B;). Then by Fatou’s lemma, we have

4 |Vva'(x)|2dx |V (z)|?dx
C|§| - n—2 n—2
I'nB; || rnB; |z|

(0 (2 — (]2
< liminfi/ Vot (z)] dx/ Vo~ (x)|*dx
rnB, —-TNB,

r—0 r4 |z|n—2 |z|"—2

< liminf ®(r,v",v7),
r—0

where @ is as in ACF Monotonicity Formula (see Lecture 5). In the next step we
apply the CJK estimate (see Lecture 5), however we should suitably adjust (scale)
vE first. Let now ¢ = 3 dist(K, D) and Ks = {dist(-, K) < §}. By Lemma 6.2, we
have Av* > —Ls in Bs(zo) C Ks, where Ly = M; + Ms||Vul|peo (k5)- Then it is
easy to check that the rescalings

vt (o)

W, xGBl

wy(z) =
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satisfy all hypotheses in CJK estimate. Hence, we have
cle|* < limigf(I)(r, vtuT) = CL3s* liI% O(r,wt, w™)
2
< OLi (1 s a sy + lo-13a0s,))
2
IVl e

<ot (14—

[Vl

9 2
<C <L§52 n ;’“’“) < CIL*,

where C' = C(n, K, D) and
L =M@+ [[Vullp= (k) < Cl[ullL=(p) + |9l L= (D))
with M = max{1, My, M2}. Recalling now that £ = Vd.u(zo), we arrive at
|VOeu(xp)| < CL.

This doesn’t give the desired estimate on |D?u| yet, since e is subject to the con-
dition e - Vu(xg) = 0, unless Vu(zg) = 0. If Vu(zg) # 0, choose the coordinate
system so that Vu(zg) is parallel to e;. Then, taking e = eo, ..., e, in the estimate
above, we obtain

|0z,0,u(x0)] <CL, i=2,...,n, j=12,...,n
To obtain the estimate in the missing direction e;, we use the equation Au = g:
O, 0(20)| < [A(20)| + D t(@0)| + - + |0y, (o)
< lgllz=p) + CL.
This completes the proof of the theorem. O



