
LECTURE 7

7. Optimal Regularity (Continued)

7.1. A counterexample. In this section we follow Andersson and Weiss to de-
scribe an example of a non-C1,1 two-dimensional solution of the equation

∆u = −χ{u>0},

known as the unstable obstacle problem. This shows in particular the importance
of the condition (6.5) in Theorem 6.1.

Let B1 be a unit ball in R2 and 0 < α < 1 and n a positive integer. Consider
then a subset Cα

∗n(B1) of Cα(B1) of functions u(x1, x2) that satisfy

u(x1,−x2) = u(x1, x2), u ◦ U2π/n = u,

where Uθ is a rotation by angle θ in the counterclockwise direction. In other words,
functions in Cα

∗n(B1) are obtained from their restriction on the sector with 0 ≤
θ ≤ π/n (using the polar coordinates) by even reflection with respect to the rays
θ = kπ/n, k = 0, . . . , 2n− 1.

Similarly, we define the subspace Cα
∗n(∂B1).

Proposition 7.1. For any g ∈ Cα
∗n(∂B1) there exists a constant κ such that the

boundary value problem

∆u = −χ{u>0} in B1

u = g − κ on ∂B1

has a solution u ∈ Cα
∗n(B1) ∩ C1,β

loc (B1) ∩W 2,p
loc (B1), which also satisfies u(0) = 0.

Proof. For ε > 0 let fε ∈ C∞(R) be a mollification of χ{s>0} such that

χ{s>0} ≤ fε ≤ χ{s>−ε}

Consider now the operator Tε : Cγ
∗n(B1) → Cγ

∗n(B1) with γ < α given by solving
the Poisson problem

∆Tε(u) = −fε(u− u(0)) in B1

Tε(u) = g on ∂B1.

By the theory of strong solutions and the symmetry we have Tε(u) ∈ Cα
∗n(B1). In

particular, Tε is a compact operator on Cγ
∗n(B1) into itself. Moreover,

‖Tεu‖Cα(B1)
≤ C(n, g)

for any u ∈ Cγ
∗n(B1). Then by the Schauder fixed point theorem there exists a

fixed point uε of the operator Tε,

Tε(uε) = uε,

or in other words, a solution of the semilinear problem

∆uε = −fε(uε − uε(0)) in B1

uε = g on ∂B1.
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Figure 1. Non-C1,1 solution of ∆u = −χ{u>0} with a cross-
shaped singularity

The family {uε} is uniformly bounded in Cα-norm on B1 and in W 2,p-norm on
any B1−δ, δ > 0. Therefore for a subsequence ε = εk → 0 uε − uε(0) converges
uniformly to a function u0 ∈ Cα(B1) ∩W 2,p

loc (B1). Moreover, since

χ{u0>δ} ≤ f ε(uε − uε(0)) ≤ χ{u0>−δ}
for δ > 0 and sufficiently small ε > 0, in the limit we obtain that

−χ{u0≥0} ≤ ∆u0 ≤ −χ{u0>0}

weakly in B1. On the other hand, ∆u0 = 0 a.e. on {u0 = 0}, since u0 ∈ W 2,p
loc (B1).

Hence,
∆u0 = −χ{u0>0}

weakly in B1. Moreover, it is immediate that u0 = g − κ on ∂B1 for a constant
κ = limk→∞ uεk

(0). Finally, |∇u0(0)| = 0 follows from the symmetry and the C1,β
loc ∩

W 2,p
loc regularity of u0 follows from the elliptic Lp estimates (see Theorem 2.1). ¤

Proposition 7.2. Let u be the solution of ∆u = −χ{u>0} in B1 with

u(x1, x2) = M(x2
1 − x2

2)− κ, (x1, x2) ∈ ∂B1

obtained by Proposition 7.1. Then u 6∈ C1,1
loc (B1) if M is sufficiently large. More-

over,
u(rx)

‖u‖L2(∂Br)
→ x2

1 − x2
2

‖x2
1 − x2

2‖L2(∂B1)
as r → 0

The latter convergence implies that the origin is a cross-shaped singularity, see
Fig. 1.

At the moment, we postpone the proof of this proposition, as we will need to
know more about so-called Weiss monotonicity formulas.


