LECTURE 7

7. Optimal Regularity (Continued)

7.1. A counterexample. In this section we follow Andersson and Weiss to describe an example of a non- $C^{1,1}$ two-dimensional solution of the equation

$$\Delta u = -\chi_{\{u>0\}},$$

known as the unstable obstacle problem. This shows in particular the importance of the condition (6.5) in Theorem 6.1.

Let B_1 be a unit ball in \mathbb{R}^2 and $0 < \alpha < 1$ and n a positive integer. Consider then a subset $C^{\alpha}_{*n}(\overline{B}_1)$ of $C^{\alpha}(\overline{B}_1)$ of functions $u(x_1, x_2)$ that satisfy

$$u(x_1, -x_2) = u(x_1, x_2), \qquad u \circ U_{2\pi/n} = u$$

where U_{θ} is a rotation by angle θ in the counterclockwise direction. In other words, functions in $C^{\alpha}_{*n}(\overline{B}_1)$ are obtained from their restriction on the sector with $0 \leq \theta \leq \pi/n$ (using the polar coordinates) by even reflection with respect to the rays $\theta = k\pi/n, k = 0, \ldots, 2n - 1$.

Similarly, we define the subspace $C^{\alpha}_{*n}(\partial B_1)$.

Proposition 7.1. For any $g \in C^{\alpha}_{*n}(\partial B_1)$ there exists a constant κ such that the boundary value problem

$$\begin{aligned} \Delta u &= -\chi_{\{u>0\}} \quad in \quad B_1 \\ u &= g - \kappa \qquad on \quad \partial B_1 \end{aligned}$$

has a solution $u \in C^{\alpha}_{*n}(B_1) \cap C^{1,\beta}_{\text{loc}}(\overline{B}_1) \cap W^{2,p}_{\text{loc}}(B_1)$, which also satisfies u(0) = 0. *Proof.* For $\epsilon > 0$ let $f_{\epsilon} \in C^{\infty}(\mathbb{R})$ be a mollification of $\chi_{\{s>0\}}$ such that

$$\chi_{\{s>0\}} \le f_{\epsilon} \le \chi_{\{s>-\epsilon\}}$$

Consider now the operator $T_{\epsilon}: C^{\gamma}_{*n}(\overline{B}_1) \to C^{\gamma}_{*n}(\overline{B}_1)$ with $\gamma < \alpha$ given by solving the Poisson problem

$$\Delta T_{\epsilon}(u) = -f_{\epsilon}(u - u(0)) \quad \text{in} \quad B_1$$

$$T_{\epsilon}(u) = g \qquad \qquad \text{on} \quad \partial B_1$$

By the theory of strong solutions and the symmetry we have $T_{\epsilon}(u) \in C^{\alpha}_{*n}(\overline{B}_1)$. In particular, T_{ϵ} is a compact operator on $C^{\gamma}_{*n}(\overline{B}_1)$ into itself. Moreover,

$$||T_{\epsilon}u||_{C^{\alpha}(\overline{B}_{1})} \leq C(n,g)$$

for any $u \in C^{\gamma}_{*n}(\overline{B}_1)$. Then by the Schauder fixed point theorem there exists a fixed point u_{ϵ} of the operator T_{ϵ} ,

$$T_{\epsilon}(u_{\epsilon}) = u_{\epsilon},$$

or in other words, a solution of the semilinear problem

$$\begin{split} \Delta u_{\epsilon} &= -f_{\epsilon}(u_{\epsilon} - u_{\epsilon}(0)) \quad \text{in} \quad B_1 \\ u_{\epsilon} &= g \qquad \qquad \text{on} \quad \partial B_1. \end{split}$$

FIGURE 1. Non- $C^{1,1}$ solution of $\Delta u = -\chi_{\{u>0\}}$ with a cross-shaped singularity

The family $\{u_{\epsilon}\}$ is uniformly bounded in C^{α} -norm on \overline{B}_1 and in $W^{2,p}$ -norm on any $B_{1-\delta}, \delta > 0$. Therefore for a subsequence $\epsilon = \epsilon_k \to 0$ $u_{\epsilon} - u_{\epsilon}(0)$ converges uniformly to a function $u_0 \in C^{\alpha}(\overline{B}_1) \cap W^{2,p}_{\text{loc}}(B_1)$. Moreover, since

$$\chi_{\{u_0>\delta\}} \le f^{\epsilon}(u_{\epsilon} - u_{\epsilon}(0)) \le \chi_{\{u_0>-\delta\}}$$

for $\delta > 0$ and sufficiently small $\epsilon > 0$, in the limit we obtain that

$$-\chi_{\{u_0 \ge 0\}} \le \Delta u_0 \le -\chi_{\{u_0 > 0\}}$$

weakly in B_1 . On the other hand, $\Delta u_0 = 0$ a.e. on $\{u_0 = 0\}$, since $u_0 \in W^{2,p}_{\text{loc}}(B_1)$. Hence,

$$\Delta u_0 = -\chi_{\{u_0 > 0\}}$$

weakly in B_1 . Moreover, it is immediate that $u_0 = g - \kappa$ on ∂B_1 for a constant $\kappa = \lim_{k \to \infty} u_{\epsilon_k}(0)$. Finally, $|\nabla u_0(0)| = 0$ follows from the symmetry and the $C_{\text{loc}}^{1,\beta} \cap W_{\text{loc}}^{2,p}$ regularity of u_0 follows from the elliptic L^p estimates (see Theorem 2.1). \Box

Proposition 7.2. Let u be the solution of $\Delta u = -\chi_{\{u>0\}}$ in B_1 with

$$u(x_1, x_2) = M(x_1^2 - x_2^2) - \kappa, \qquad (x_1, x_2) \in \partial B_1$$

obtained by Proposition 7.1. Then $u \notin C_{\text{loc}}^{1,1}(B_1)$ if M is sufficiently large. Moreover,

$$\frac{u(rx)}{\|u\|_{L^2(\partial B_r)}} \to \frac{x_1^2 - x_2^2}{\|x_1^2 - x_2^2\|_{L^2(\partial B_1)}} \qquad as \quad r \to 0$$

The latter convergence implies that the origin is a cross-shaped singularity, see Fig. 1.

At the moment, we postpone the proof of this proposition, as we will need to know more about so-called Weiss monotonicity formulas.