
LECTURE 8

8. Preliminary Analysis of the Free Boundary

In this lecture we start the analysis of the free boundary. Our main focus is
on the obstacle-type problems that we stated in Lecture 2. Namely, we study the
following three problems

Problem A: ∆u = χΩ in D, Ω = D \ {u = |∇u| = 0}
Problem B: ∆u = χΩ in D, Ω = D \ {|∇u| = 0}
Problem C: ∆u = λ+χ{u>0} − λ−χ{u<0} in D, λ± > 0.

Here D is a domain in Rn and we will assume that the solution u ∈ C1,1(D)
throughout this lecture and that the equations are satisfied in the a.e. sense.

8.1. Nondegeneracy. The first property we discuss is the nondegeneracy property
of the solutions, which is in a sense opposite to C1,1 estimates. This is going to be
important when studying the blowups of the solutions.

In Problems A, B, for any x0 ∈ Γ = Ω(u) ∩D we have the estimate

sup
Br(x0)

u ≤ u(x0) +
M

2
|x− x0|2,

if Br(x0) ⊂⊂ D, where M = ‖D2u‖L∞(D). However, the C1,1 regularity doesn’t
exclude that u(x)− u(x0) will decay faster than quadratically at x0. This is taken
care of by the following lemma.

Lemma 8.1 (Nondegeneracy: Problem A). Let u be a solution of Problem A in
D. Then we have the inequality

(8.1) sup
∂Br(x0)

u ≥ u(x0) +
r2

8n
, for any x0 ∈ Ω(u)

provided Br(x0) ⊂⊂ D.

Remark 8.2. Since u is subharmonic if it solves Problem A, we can replace sup over
∂Br(x0) to one over Br(x0), obtaining an equivalent statement.

Before giving the proof, consider a similar nodegeneracy statament for solutions
of ∆u = 1.

Lemma 8.3. Let u safisfy ∆u = 1 in a ball BR. Then

sup
∂Br

u ≥ u(0) +
r2

2n
, 0 < r < R

Proof. Consider the auxuliary function

w(x) = u(x)− |x|2

2n
, x ∈ BR.

1
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Then w is harmonic in BR. Therefore by the maximum principle we obtain that

w(0) ≤ sup
∂Br

w =
(

sup
∂Br

u

)
− r2

2n
,

which implies the required inequality. �

Proof of Lemma 8.1. 1) Assume first that x0 ∈ Ω(u) and moreover u(x0) > 0.
Consider then the auxuliary function

(8.2) w(x) = u(x)− u(x0)−
|x− x0|2

2n
,

similar to the one in the proof the previous lemma. We have ∆w = 0 in Br(x0)∩Ω.
Since w(x0) = 0, by the maximum principle we have that

sup
∂(Br(x0)∩Ω)

w ≥ 0.

Besides, w(x) = −u(x0)− |x− x0|2/(2n) < 0 on ∂Ω. Therefore, we must have

sup
∂Br(x0)∩Ω

w ≥ 0.

The latter is equivalent to

sup
∂Br(x0)∩Ω

u ≥ u(x0) +
r2

2n

and the lemma is proved in this case.
2) Suppose now x0 ∈ Ω(u) and u(x0) ≤ 0. If Br/2(x0) contains a point x1 such

that u(x1) > 0, then

sup
Br(x0)

u ≥ sup
Br/2(x1)

u ≥ u(x1) +
(r/2)2

2n
≥ u(x0) +

r2

8n
.

If it happens that u ≤ 0 in Br/2(x0), from subharmonicity of u and the strong
maximum principle we will have that either u = 0 identically in Br/2(x0), or u < 0
in Br/2(x0). The former case is impossible, as x0 ∈ Ω(u), and the latter case implies
that Br/2(x0) ⊂ Ω(u) and therefore ∆u = 1 in Br/2(x0). Then Lemma 8.3 finishes
the proof in this case and we obtain

sup
Br(x0)

u ≥ sup
Br/2(x0)

u ≥ u(x0) +
r2

8n
.

3) Finally, for x0 ∈ Ω(u), we take a sequence xn ∈ Ω(u) such that xn → x0 and
pass to the limit in the corresponding nondegeneracy inequality at xn. �

Even though the proof above does not work for Problem B in general, we still
have the nondegeneracy.

Lemma 8.4 (Nondegeneracy: Problem B). Let u be a solution of Problem B in
D. Then we have the inequality

(8.3) sup
∂Br(x0)

u ≥ u(x0) +
r2

2n
, for any x0 ∈ Ω(u)

provided Br(x0) ⊂⊂ D.
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Proof. By continuity, it suffices to obtain the estimate (8.3) only for points x0 ∈
Ω(u). Note that at those points we have |∇u(x0)| 6= 0. Consider now the same
auxiliary function w as in (8.2). Then we claim

(8.4) sup
Br(x0)

w = sup
∂Br(x0)

w.

Indeed, if this fails, then the supremum of w is attained at some interior point
y ∈ Br(x0), and we would have that |∇w(y)| = 0, which implies that

|∇u(y)| = |y − x0|
n

.

First off, this implies that y 6= x0, otherwise we would have |∇u(x0)| = 0. Therefore
|∇u(y)| > 0 and consequently y ∈ Ω(u). Since w is harmonic in Ω(u), by the strong
maximum principle w is constant in a neighborhood of y. Thus, the set of maxima
of w is both relatively open and closed in Br(x0), which implies that w is constant
there and (8.4) is trivially satisfied. �

Finally, in Problem C we have nondegeneracy in both phases, provided λ± > 0.

Lemma 8.5 (Nondegeneracy: Problem C). If u is a solution of Problem C in D,
then we have

sup
∂Br(x0)

u ≥ u(x0) + λ+
r2

2n
, for any x0 ∈ Ω+(u)(8.5)

inf
∂Br(x0)

u ≤ u(x0)− λ−
r2

2n
, for any x0 ∈ Ω−(u)(8.6)

provided Br(x0) ⊂⊂ D.

Proof. To prove these inequlities, we consider the auxiliary functions

w(x) = u(x)− u(x0)− λ±
|x− x0|2

2n
and argue similarly to part 1) of the proof of Lemma 8.1. We leave the details to
the reader.

�

Corollary 8.6 (Nondegeneracy of the gradient). Under the conditions of Lem-
mas 8.1, 8.4, 8.5 the following inequality holds

sup
Br(x0)

|∇u| ≥ c0r,

for a positive c0, depending only on n in Problems A, B, and also on λ± for Prob-
lem C.

The proof is an application of the mean value theorem and is left as an exercise
to the reader.

8.2. Porosity of the Free Boundary and its Lebesgue measure.

Definition 8.7. We say that the measurable set E ⊂ Rn is porous with porosity
constant 0 < δ < 1 if every ball B = Br(x) contains a smaller ball B′ = Bδr(y)
such that

Bδr(y) ⊂ Br(x) \ E.
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We say that E is locally porous in D if E ∩ K is porous (with possibly different
porosity constants) for any K ⊂⊂ D.

It is clear that the Lebesgue upper density of a porous set E

d(x) := lim sup
r→0

|E ∩Br(x0)|
|Br(x0)|

≤ 1− δn < 1,

which implies that E must have Lebesgue measure zero.

Proposition 8.8. If E ⊂ Rn is porous then |E| = 0. If E is locally porous in D,
then |E ∩D| = 0. �

An immediate corollary of the nondegeneracy and the C1,1 regularity is the
following result.

Lemma 8.9 (Porosity of the free boundary). Let u be a solution of Problem A, B
in an open set D ⊂ Rn. Then Γ(u) is locally porous for any K ⊂⊂ D.

If u is solution of Problem C, then Γ′(u) = Γ(u) ∩ {|∇u| = 0} is locally porous.

Proof. For Problems A, B, Let x0 ∈ Γ(u) and Br(x0) ⊂⊂ D. Using the non-
degeneracy of the gradient (Corollary 8.6), one can find x1 ∈ Br/2(x0) such that

|∇u(x1)| ≥
c0
2
r.

Now, using that M = ‖D2u‖L∞(D) <∞, we will have

inf
Bδr(x1)

|∇u| ≥
(c0

2
−Mδ

)
r ≥ c0

4
r, if δ =

c0
4M

.

This implies that

Bδ̃r(x1) ⊂ Br(x0) ∩ Ω(u) ⊂ Br(x0) \ Γ,

where δ̃ = min{δ, 1}. This implies the porosity condition is satisfied for any ball
centered at Γ(u). It is a now simple exercise to show that porosity condition is
satisfied for any ball B ⊂⊂ D and therefore Γ(u) is locally porous.

For Problem C, the same argument as above shows that

Bδ̃r(x1) ⊂ Br(x0) ∩ [Ω(u) ∪ Γ′′(u)] ⊂ Br(x0) \ Γ′(u),

which implies the local porosity of Γ′(u). �

Corollary 8.10 (Lebesgue measure of Γ.). Let u be a solution of Problem A, B,
and C in D. Then Γ(u) has Lebesgue measure zero.

Proof. In case of Problems A, B the statement follows immediately from the local
porosity of Γ(u) and Proposition 8.8.

In the case of Problem C, we obtain |Γ′(u)| = 0. On the other hand Γ′′(u)
is locally a C1,α curve and therefore also has a Lebesgue measure zero. Hence,
|Γ(u)| = 0 also in this case. �

We finish this subsection with the following observation.

Lemma 8.11 (Density of Ω). Let u be a solution of Problem A, B, and C in D
and x0 ∈ Γ(u). Then

(8.7)
|Br(x0) ∩ Ω(u)|

|Br(x0)|
≥ β,
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provided Br(x0) ⊂ D, where β depends only on ‖D2u‖L∞(D) and n for Problems
A, B and additionally on λ± for Problem C.

Proof. The proof of Lemma 8.9 shows that

|Br(x0) ∩ Ω(u)|
|Br(x0)|

≥ δ̃n

in case of Problems A and B and
|Br(x0) ∩ Ω(u)|

|Br(x0)|
=
|Br(x0) ∩ [Ω(u) ∪ Γ′′(u)]|

|Br(x0)|
≥ δ̃n

in case of Problem C. This completes the proof. �

8.3. Hausdorff Measure of the Free Boundary. The porosity if the free bound-
ary not only implies that the its Lebesgue measure is zero but also that it actually
has a Hausdorff dimension less than n. A stronger result is as follows.

Lemma 8.12 (Hausdorff measure of Γ). Let u be a C1,1 solution of Problem A,
B, or C in an open set D ⊂ Rn. Then Γ(u) is a set of finite (n − 1)-dimensional
Hausdorff measure locally in D.

Proof. Let
vi = ∂xiu, Eε = {0 < |∇u| < ε}.

Observe that

c0 ≤ |∆u|2 ≤ cn

n∑
i=1

|∇vi|2 in Ω,

where c0 = 1 in case of Problems A, B and c0 = min{λ2
+, λ

2
−} for Problem C. Thus,

for an arbitrary ball B ⊂⊂ D we have

c0 |B ∩ Eε| ≤ cn

∫
B∩Eε

∑
i

|∇vi|2dx ≤ cn
∑

i

∫
B∩{0<|vi|<ε}

|∇vi|2dx.

To estimate the right hand side here we apply Lemma 6.2 (from Lecture 6) noticing
that M1 = M2 = 0 for Problems A, B, and C. It gives∫

D

∇v±i ∇η dx ≤ 0, i = 1, ..., n

for any non-negative η ∈ C∞0 (D). These inequalities continue to hold for non-
negative η ∈W 1,2

0 (D). Take η = ψε(v±i )φ, with

ψε(t) =


0, t ≤ 0
ε−1t, 0 ≤ t ≤ ε

1, t ≥ ε

and φ ∈ C∞0 (D), φ ≥ 0. We obtain

ε−1

∫
B∩{0<|vi|<ε}

|∇vi|2φdx ≤
∫

D

|∇vi||∇φ| dx ≤ cnM

∫
D

|∇φ| dx

In particular, taking φ = 1 on B, after summation by i, we arrive at the estimate

(8.8) c0 |B ∩ Eε| ≤ C εM,

where C = C(n,B,D).
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Consider now a covering of Γ ∩ B by balls Bi of radius ε with centers on Γ ∩ B
and with property that at most N balls may overlap. For Problems A and B, we
use (8.7), (8.8) and observe |∇u| ≤Mε for in each Bi, which gives∑

i

|Bi| ≤
1
β

∑
i

|Bi ∩ Ω| ≤ 1
β

∑
i

|Bi ∩ EMε|

≤ N

β
|B ∩ EMε| ≤

cNMε

c0β
.

This gives the estimate

Hn−1(Γ(u) ∩B) ≤ C(n,M,B,D).

For Problem C, the same proof works for Γ′, and the rest part of the free boundary
Γ′′ is smooth. �

Remark 8.13. The estimate (8.8) essentially means

|Ω ∩ {|∇u| < ε}| ≤ Cε,

which we will use later. In particular, it gives |Ω ∩ {|∇u| = 0}| = 0.


