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Lecture 1

1. Obstacle type problems

1.1. The classical obstacle problem.

The Dirichlet Principle. A well-known variational principle of Dirichlet says that
the solution of the boundary value problem

∆u = 0 in D, u = g on ∂D

can be found as the minimizer of the (Dirichlet) functional

J0(u) =

∫
D

|∇u|2dx

among all u such that u = g on ∂D. More precisely (and slightly more generally),
if D is a bounded open set in Rn, g ∈W 1,2(D) and f ∈ L∞(D), then the minimizer
of

(1.1) J(u) =

∫
D

(|∇u|2 + 2fu)dx

on the set

Kg = {u ∈W 1,2(D) : u− g ∈W 1,2
0 (D)},

solves the Poisson equation

−∆u+ f = 0 in D, u = g on ∂D

in the sense of distributions, i.e.∫
D

(∇u∇η + fη)dx = 0

for all test functions η ∈ C∞0 (D) (and more generally for all η ∈ W 1,2
0 (D)). One

can think of the graph of u as a membrane attached to a thin wire (the graph of g
over ∂D).

D

u

Λ

Ω

u

ψ

Figure 1.1. Free membrane and the solution of the obstacle problem
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The Classical Obstacle Problem. Suppose now that we are given a certain function
ψ ∈ C2(D), known as the obstacle, satisfying the compatibility condition ψ ≤ g on

∂D in the sense that (ψ−g)+ ∈W 1,2
0 (D). Consider then the problem of minimizing

the functional (1.1), but now on the constrained set

Kg,ψ = {u ∈W 1,2(D) : u− g ∈W 1,2
0 (D), u ≥ ψ a.e. in D}.

Since J is continuous and strictly convex on a convex subset Kg,ψ of the Hilbert
space W 1,2(D), it has a unique minimizer on Kg,ψ.

As before, we may think of the graph of u as a membrane attached to a fixed
wire, which is now forced to stay above the graph of ψ. A new feature in this
problem is that the membrane can actually touch the obstacle, i.e. the set

Λ = {u = ψ},

known as the coincidence set, may be nonempty. We also denote

Ω = D \ Λ.

The boundary

Γ = ∂Λ ∩D = ∂Ω ∩D

is called the free boundary, as it is not known apriori.
To obtain the conditions satisfied by the minimizer, we note that using the so-

called method of penalization (or regularization) one can show that the minimizer

is not only in W 1,2(D), but actually is in W 2,p
loc (D) for any 1 < p < ∞ and con-

sequently (by the Sobolev embedding theorem) are in C1,α
loc (D) for any 0 < α < 1

(see also Theorems 1.2 and 1.3). Then, it is straightforward to show that

−∆u+ f = 0 in Ω = {u > ψ}, ∆u = ∆ψ a.e. on Λ = {u = ψ}.

Besides,

−∆u+ f ≥ 0 in D

in the sense of distributions, i.e.∫
D

(∇u∇η + fη)dx ≥ 0

for any nonnegative η ∈W 1,2
0 (D), which follows by passing to the limit ε→ 0+ in

the inequality

J(u+ εη)− J(u)

ε
≥ 0.

Combining the properties above, we obtain that the solution of the obstacle problem
is a function u ∈W 2,p(D) for any p <∞, which satisfies

−∆u+ f ≥ 0, u ≥ ψ, (−∆u+ f)(u− ψ) = 0 a.e. in D(1.2)

u− g ∈W 1,2
0 (D)(1.3)

This is known as the complementary problem and uniquely characterizes the mini-
mizers of J over Kg,ψ.
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Reduction to the case of zero obstacle. Since the governing operator (∆) is linear
it is possible to reduce the problem to the case when the obstacle is 0. Indeed, if u
is the solution of the obstacle problem as above, consider the difference v = u− ψ.
It is straightforward to see that v is the minimizer of the functional

J1(v) =

∫
D

(|∇v|2 + 2f1v)dx

on the set Kg1,0, where

f1 = f −∆ψ, g1 = g − ψ.
Moreover, v will satisfy

∆v = f1χ{v>0} in D

in the sense of distributions.

Problem O. We will consider a simplified version of the problem above with f1 ≡ 1

(O)

{
∆u = χ{u>0} in D

u ≥ 0 in D

The free boundary in this problem is Γ = ∂{u > 0} ∩D. Occasionally we will also
use the notations Ω := {u > 0} and Λ := D \ Ω.

1.2. A problem from potential theory. Let Ω be a bounded open set in Rn
and f a certain bounded measurable function on Ω. Consider then the Newtonian
potential of the distribution of mass fχΩ, i.e.

U(x) = Φn ∗ (fχΩ)(x) =

∫
Ω

Φn(x− y)f(y)dy

where Φn is the fundamental solution of the Laplacian in Rn, i.e. ∆Φn = δ in the
sense of distributions. It can be shown that the potential U is in W 2,p

loc (Rn) for any
p <∞ and satisfies

∆U = fχΩ in Rn

in the sense of distributions (or a.e., which is the same in this case). In particular,
U is harmonic in Rn \ Ω.

∆U = 0

Ω

f(x)

x0

Figure 1.2. Harmonic continuation of Newtonian potentials
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Let x0 ∈ ∂Ω and suppose for some small r > 0 there is a harmonic function h
in the ball Br(x

0) such that h = U on Br \ Ω. We say in this case that h is a
harmonic continuation of U into Ω at x0. If such continuation exists, the difference
u = U − h satisfies

(1.4) ∆u = fχΩ in Br(x
0), u = |∇u| = 0 on Br(x

0) \ Ω.

Using the Cauchy-Kowalevskaya theorem, it is straightforward to show that the
harmonic continuation exists if ∂Ω and f are real-analytic in a neighborhood of x0.
We are interested in the converse question: if the solution of (1.4) exists for some
r > 0, then what can be said about the regularity of ∂Ω?

Problem I. The second model problem that we will study in this mini-course is
going to be the one above with f ≡ 1

(I)

{
∆u = χΩ in D

u = |∇u| = 0 on D \ Ω

Note that we do not assume that u ≥ 0. In fact, when u ≥ 0 then Problem I is
equivalent Problem O. For that reason we may refer to Problem I as the obstacle
problem without obstacle. The free boundary in this problem is Γ := ∂Ω∩D. Note
that without loss of generality we may assume that Ω = {u 6= 0 or |∇u| 6= 0}.

1.3. Two-phase membrane problem. Given a bounded open set D in Rn, g ∈
W 1,2(D) and nonnegative bounded measurable functions λ+ and λ− in D consider
the problem of minimizing the functional

(1.5) J(u) =

∫
D

(|∇u|2 + 2λ+(x)u+ + 2λ−(x)u−)dx

over the set

Kg = {u ∈W 1,2(D) : u− g ∈W 1,2
0 (D)}.

Here

u+ = max{u, 0}, u− = max{−u, 0}
The case λ− = 0 and g ≥ 0 the problem is equivalent to the obstacle problem with
zero obstacle, see above.

u = 0
u < 0

u > 0

Figure 1.3. Two-phase membrane problem



6 ARSHAK PETROSYAN

Possible applications of this functional may come in several problems when the
external force is a function of u itself, in this case the external force is

λ+χ{u>0} − λ−χ{u<0}.

As a specific example, imagine a membrane in Rn+1 under the influence of an
electric or a magnetic field of the form

F = −λ+χ{xn+1>0}en+1 + λ−χ{xn+1<0}en+1,

where en+1 is (n + 1)-th vector in the standard basis in Rn+1. If we assume the
membrane to be modeled by a graph in the xn+1-direction and to be clamped in
at the boundary, then the equilibrium state would correspond to the minimizer of
our functional.

Another physical interpretation of this problem is the consideration of a thin
membrane (film) which is fixed on the boundary of a given domain, and some part
of the boundary data of this film is below the surface of a thick liquid (heavier than
the film itself). Now the weight of the film produces a force downwards (call it λ+)
on that part of the film which is above the liquid surface. On the other side the
part in the liquid is pushed upwards by a force λ−, since the liquid is heavier than
the film. Obviously the equilibrium state of the film is given by a minimization of
the above mentioned functional.

One of the difficulties one confronts in this problem is that the interface {u = 0}
consists in general of two parts – one where the gradient of u is nonzero and one
where the gradient of u vanishes. Close to points of the latter part we expect the
gradient of u to have linear growth. However, because of the decomposition into
two different types of growth, it is not possible to derive a growth estimate by
classical techniques.

A good reference for this problem is Shahgholian-Uraltseva-Weiss [SUW07].

Problem II. Our next model problem is going to be the two-phase obstacle problem
with λ± ≡ const

(II) ∆u = λ+χ{u>0} − λ−χ{u<0} in D.

We will denote Ω+ = {u > 0} and Ω− = {u < 0} and call the the positive and
negative phases, respectively. The boundaries of these apriori unknown regions will
form the free boundary in this problem. Namely, we denote Γ± = ∂Ω± ∩ D and
Γ = Γ+ ∪ Γ−.

1.4. General framework of obstacle type problems. Some of our results will
be proved in a more general framework of what we call obstacle-type problems.

Let D be an open subset in Rn and suppose that we are given a function u ∈
L∞loc(D) such that

(1.6) ∆u = g in D

in the sense of distributions for some function g ∈ L∞(D). This means that∫
D

u∆η dx =

∫
D

gη dx
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for all test functions η ∈ C∞0 (D). Assume further that there exists an open subset
G ⊂ D such that

g(x) = f(u(x))χG in D,(1.7)

|∇u| = 0 on D \G,(1.8)

where f is a monotone nondecreasing function

(1.9) f(s) ≤ f(t) if s ≤ t.

Depending on the problem, the free boundary is going to be ∂G∩D and/or the set
where f has a discontinuity.

The Problems O, I, and II fit into the framework (1.6)–(1.9) in the following
way.

• Problem O: G = {u > 0}, g = χG.
• Problem I: G = Ω, g = χG.
• Problem II: G = D, g = λ+χ{u>0} − λ−χ{u<0}.

One of the results that we are going to prove in this course is the following
version of the theorem of Shahgholian [Sha03] (for the classical obstacle problem
the result goes back to Frehse [Fre72]).

Theorem 1.1 (C1,1-regularity). Let u ∈ L∞(D) satisfy (1.6)–(1.9). Then u ∈
C1,1

loc (D) and

‖u‖C1,1(K) ≤ C
(
‖u‖L∞(D) + ‖g‖L∞(D)

)
,

for any K b D, where C = C(n, dist(K, ∂D)).

The proof of this theorem will require the use of the so-called Alt-Caffarelli-
Friedman monotonicity formula [ACF84], that we will discuss in the next lecture.
However, the proof of this result for Problem O is rather elementary and can be
found in the appendix to this lecture.

1.5. W 2,p-Regularity of solutions. Even though the optimal C1,1 regularity will
require some efforts, it turns out that the W 2,p regularity for any 1 < p < ∞ is
immediate. In fact, one has to use only the equation (1.6).

Theorem 1.2. Let u ∈ Lp(D), g ∈ Lp(D), 1 < p <∞, satisfy ∆u = g in D in the

sense of distributions. Then u ∈W 2,p
loc (D) and

‖u‖W 2,p(K) ≤ C
(
‖u‖Lp(D) + ‖g‖Lp(D)

)
for any K b D with C = C(p, n,K,D). �

Thus, for solutions of (1.6) we obtain

(1.10) u ∈W 2,p
loc (D), for all 1 < p <∞,

Consequently, we also have

(1.11) u ∈ C1,α
loc (D), for all 0 < α < 1,

by the Sobolev embedding W 2,p ↪→ C1,α with α = 1 − n/p for p > n. It is worth

noting that for u ∈W 2,p
loc (D) the validity of (1.6) a.e. in D is equivalent to the one

in the sense of distributions.
An easy counterexample shows that in general we cannot have p =∞ in (1.10)

and α = 1 in (1.11). Instead we have the following
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Theorem 1.3. Let u ∈ L∞(D), g ∈ L∞(D) satisfy ∆u = g in the sense of

distributions. Then u ∈W 2,p
loc (D) ∩ C1,α

loc (D) for all 1 < p <∞, 0 < α < 1 and

|∇u(x)−∇u(y)| ≤ C|x− y| log
1

|x− y|
, for x, y ∈ K b D, |x− y| ≤ 1/e

and C = C(n,K,D)
(
‖u‖L∞(D) + ‖g‖L∞(D)

)
. �

Essentially, we will show that the logarithmic term in this theorem can be
dropped if one assumes the additional structure as in (1.6)–(1.9).

1.6. The Thin Obstacle (Signorini) problem. Let D be a domain in Rn and
M a smooth (n−1)-dimensional manifold in Rn that divides D into two parts: D+

and D−. For given functions φ : M → R and g : ∂D → R satisfying g > φ on
M ∩ ∂D, consider the problem of minimizing the Dirichlet integral

J(u) =

∫
D

|∇u|2dx

on the closed convex set

K = {u ∈W 1,2(D) : u = g on ∂D, u ≥ φ on M ∩D}.

This problem is known as the thin obstacle problem, with φ known as the thin
obstacle. Them main difference from the classical obstacle problem is that u is
constrained to stay above the obstacle φ only on M and not on the entire domain
D.

The thin obstacle problem arises in a variety of situations of interest for the
applied sciences. It presents itself in elasticity, when an elastic body is at rest,
partially laying on a surface M. It also arises in financial mathematics in situations
in which the random variation of an underlying asset changes discontinuously (in
the form of the obstacle problem for the half Laplacian). It models the flow of a
saline concentration through a semipermeable membrane when the flow occurs in
a preferred direction.

When M and φ are smooth, it has been proved by Caffarelli [Caf79] (and in
more general case by Uraltseva [Ura85]) that the minimizer u in the thin obstacle

problem is of class C1,α
loc (D±∪M). Since we can make free perturbations away from

M, it is easy to see that u satisfies

∆u = 0 in D \M = D+ ∪D−,

but in general u does not need to be harmonic across M. Instead, on M, one has
the following complementary conditions

u− φ ≥ 0, ∂ν+u+ ∂ν−u ≥ 0, (u− φ)(∂ν+u+ ∂ν−u) = 0,

where ν± are the outer unit normals to D± on M. One of the main objects of study
in this problem is the so-called coincidence set

Λ(u) := {x ∈M : u(x) = φ(x)}

and its boundary (in the relative topology on M)

Γ(u) := ∂MΛ(u),

known as the free boundary.
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A similar problem is obtained when M is a part of ∂D and one minimizes J(u)
over the convex set

K = {u ∈W 1,2(D) : u = g on ∂D \M, u ≥ φ on M}.
In this case u is harmonic in D and satisfies the so-called Signorini boundary con-
ditions

u− φ ≥ 0, ∂νu ≥ 0, (u− φ)∂νu = 0

on M, where ν is the outer unit normal on ∂D. This problem is known as the
boundary thin obstacle problem or the Signorini problem. Note that in the case
when M is a plane and D and g are symmetric with respect to M, then the thin
obstacle problem in D is equivalent to the boundary obstacle problem in D+.

D+D− M

φ

u

Figure 1.4. The thin obstacle (Signorini) problem

Problem S. We will make the following simplifying assumptions in considering the
problem. We will assume that M = {xn = 0}, φ ≡ 0, and D is symmetric with
respect to M, the solution u is even in xn variable and satisfies

(S)
∆u = 0 in D+ ∪D−

u ≥ 0, −∂xnu ≥ 0, u ∂xnu = 0 on D′ = M ∩D
As before, we denote by Λ = {u(·, 0) = 0} the coincidence set and by Γ = ∂Λ ∩D′
the free boundary. Note that form the Signorini conditions on D′ imply that

∆u = 0 on D \ Λ

and in the intire domain D

∆u = 2(∂xnu)Hn−1
∣∣
Λ

in D

in the sense of distributions. The condition u∂xnu = 0 on D′ is then equivalent to

u∆u = 0 in D.

One of the results that we are going to prove for Problem S is the following
optimal regularity result, that was first proved by Athanasopoulos-Caffarelli [AC04].

Theorem 1.4 (Optimal regularity in Signorini problem). Let u ∈ W 1,2(D) be a

solution of Problem S. Then u ∈ C1,1/2
loc (D± ∪D′), moreover

‖u‖C1,1/2(K±∪K′) ≤ C‖u‖L2(D),

for any K b D, symmetric with respect to M, where C = C(n, dist(K, ∂D)).



10 ARSHAK PETROSYAN

Note that this is indeed the best regularity possible for the solution of the Sig-
norini problem, since the function

u(x) = Re(x1 + i|xn|)3/2

is a solution of the Signorini problem. The proof of the theorem above will re-
quire the application of Almgren’s frequency formula [Alm00], combined with Alt-
Caffarelli-Friedman monotonicity formula [ACF84].

As a starting point we will take the following regularity result due to Caffarelli
[Caf79] and Ural’tseva [Ura85] (in a more general setting).

Theorem 1.5. Let u ∈ W 1,2(D) be a solution of Problem S. Then there exists

α > 0 such that u ∈ C1,α
loc (D± ∪D′), moreover

‖u‖C1,α(K±∪K′) ≤ C‖u‖L2(D),

for any K b D, symmetric with respect to M, where C = C(n, dist(K, ∂D)).

Appendix.

Proof of Theorem 1.1 for Problem O. We start with the following result on the
growth of u away from the free boundary ∂{u > 0}.

Lemma 1.6 (Quadratic growth). Let u be a solution of Problem O, Ω = {u > 0},
x0 ∈ ∂Ω, and B2R(x0) ⊂ D. Then

sup
BR(x0)

u ≤ CnR2.

Proof. Split u into the sum u1 + u2 in B2R(x0), where

∆u1 = ∆u, ∆u2 = 0 in B2R(x0)

u1 = 0, u2 = u on ∂B2R(x0).

We then estimate the functions u1 and u2 separately.
1) To estimate u1, we consider the auxiliary function

φ(x) =
1

2n
(4R2 − |x− x0|2),

which is the solution of

∆φ = −1 in B2R(x0), φ = 0 on ∂B2R(x0).

Then we have
−φ(x) ≤ u1(x) ≤ 0, x ∈ B2R(x0).

This follows from the comparison principle, since

0 ≤ ∆u1 ≤ 1 in B2R(x0),

and that both u1 and φ vanish on ∂B2R(x0). In particular, this implies that

|u1(x)| ≤ 2

n
R2, x ∈ B2R(x0).

2) To estimate u2, observe that u2 ≥ 0 inB2R(x0), since u2 = u ≥ 0 on ∂B2R(x0).
Also note that u1(x0) + u2(x0) = u(x0) = 0 and the estimate of u1 gives

u2(x0) ≤ CnR2.

Applying now the Harnack inequality, we obtain

u2(x) ≤ C(n)u2(x0) ≤ CnR2, x ∈ BR(x0).
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Finally, combining the estimates for u1 and u2, we obtain the desired estimate for
u. �

We can now proceed to the proof of Theorem 1.1.
Let K b D, x0 ∈ K, and let δ = 1

2 dist(K, ∂D) and d = 1
2 dist(x0,Ωc). Then we

have two possibilities.

y0

x04d 2d

d

Ωc

K

Figure 1.5. Case 1) d < δ/5

1) d < δ/5. In this case, let y0 ∈ ∂B2d(x
0) ∩ ∂Ω. Then B8d(y0) ⊂ B10d(x

0) ⊂⊂
D. Applying Lemma 1.6, we have

‖u‖L∞(B4d(y0)) ≤ Cnd2.

Now note that B2d(x
0) ⊂ B4d(y0) and ∆u = 1 in B2d(x

0). By the interior elliptic
estimate we then have

‖D2u‖L∞(Bd(x0)) ≤ Cn.

2) d ≥ δ/5. In this case, the interior derivative estimate for u in Bd(x
0) gives

‖D2u‖L∞(Bd(x0)) ≤ C(n)

(‖u‖L∞(D)

δ2
+ 1

)
.

Combining cases 1) and 2) above, we obtain

‖u‖C1,1(K) ≤ C(n)

(‖u‖L∞(D)

δ2
+ 1

)
.
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Lecture 2

2. The optimal regularity in obstacle type problems

2.1. ACF monotonicity formula.

2.1.1. Harmonic Functions. For a continuous u ∈ W 1,2(B1) define the following
quantity:

J(r, u) =
1

r2

∫
Br

|∇u|2dx
|x|n−2

, 0 < r < 1.

It is relatively straightforward to show that r 7→ J(r, u) is monotone if u is a
harmonic function. Namely, if we represent u as a locally uniformly convergent
series

u(x) =

∞∑
k=0

fk(x),

where fk(x) are k-th order homogeneous harmonic polynomials, and use the or-
thogonality of homogeneous harmonic polynomials of different order, we will have

J(r, u) =
1

r2

∫ r

0

∫
∂B1

|∇u(ρθ)|2ρ dθdρ =

=
1

r2

∫ r

0

∫
∂B1

ρ

∞∑
k=1

|∇fk(ρθ)|2dθdρ

=
1

r2

∫ r

0

∫
∂B1

∞∑
k=1

ρ2k−1|∇fk(θ)|2dθdρ

=

∞∑
k=1

akr
2(k−1),

with

ak =
1

2k

∫
∂B1

|∇fk(θ)|2dθ ≥ 0.

This implies that r 7→ J(r, u) is monotone increasing.
We next illustrate how to use this monotonicity formula to obtain interior gra-

dient estimates for harmonic functions.

a) Letting r → 0+, we obtain

J(0+, u) ≤ J(1/2, u).

On the other hand, since u is C1 (actually real analytic) at the origin, it is easy to
see that J(0+, u) = cn|∇u(0)|2, for cn > 0, which implies that

cn|∇u(0)|2 ≤ J(1/2, u).

b) Next, we claim that J(1/2, u) is controllable by the L2-norm of u over B1.
Indeed, consider the function |x|2−n in B1/2 and extend it to a function V on B1

in a smooth nonnegative way, so that V ≡ 0 near ∂B1. Let also δ > 0 be a small
number and V̂ = V̂δ = min{V, δ2−n}.
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Then, using the equality |∇u|2 = ∆(u2/2), we have∫
B1/2\Bδ

|∇u|2

|x|n−2
dx ≤

∫
B1

∆

(
u2

2

)
V̂ dx

= −
∫
∂Bδ

u2

2
(n− 2)δ1−ndHn−1 +

∫
B1\Bδ

(
u2

2

)
∆V

≤
∫
B1\B1/2

(
u2

2

)
∆V dx,

which implies as δ → 0

J(1/2, u) ≤ Cn‖u‖2L2(B1).

Combining the estimates in a) and b) above we arrive at

|∇u(0)| ≤ Cn‖u‖L2(B1)

Obviously, this is not the best way to establish the inequality above. This method
is rather a prelude to the application of the monotonicity formula of Alt-Caffarelli-
Friedman [ACF84] for a pair of nonnegative subharmonic functions with “disjoint”
supports.

2.1.2. ACF monotonicity formula.

Theorem 2.1 (Alt-Caffarelli-Friedman (ACF) monotonicity formula). Let u± be
a pair of continuous functions in B1 such that

u± ≥ 0, ∆u± ≥ 0, u+ · u− = 0 in B1.

Then the functional

r 7→ Φ(r) = Φ(r, u+, u−) : = J(r, u+)J(r, u−)

=
1

r4

∫
Br

|∇u+|2dx
|x|n−2

∫
Br

|∇u−|2dx
|x|n−2

is finite and nondecreasing for 0 < r < 1.

��

u− > 0

∆u− ≥ 0

u+ > 0

∆u+ ≥ 0

ν

Figure 2.1. ACF monotonicity formula

We then have the following series of remarks.



14 ARSHAK PETROSYAN

a) Each of the terms J(r, u±) can be understood as a weighted average of |∇u±|2.
For instance, if u± = α±x

±
1 , then

J(r, u±) ≡ cnα2
±, Φ(r, u+, u−) ≡ c2nα2

+α
2
−

b) Let C be a cone with vertex at the origin, i.e. given a subset Σ0 ⊂ ∂B1,

C = {r θ : r > 0, θ ∈ Σ0}.
Consider a homogeneous harmonic function in C of the form

h(r θ) = rαf(θ), α > 0,

vanishing on ∂C. We have

∆h = ∂rrh+
n− 1

r
∂rh+

1

r2
∆θh

= rα−2[(α(α− 1) + (n− 1)α)f(θ) + ∆θf(θ)].

Thus, we have that h is harmonic in C iff f is an eigenfunction for the spherical
Laplacian ∆θ in Σ0:

−∆θf(θ) = λf(θ) in Σ0,

where
λ = α(n− 2 + α).

Thus, if we take two disjoint open set Σ± on the unit sphere, find there first
eigenvalues λ± and the corresponding eigenfunctions f±, then the homogeneous
harmonic functions

u± = rα±f±(θ), in C± = {r θ : r > 0, θ ∈ Σ±}
where α± > 0 are found from the identity

λ± = α±(n− 2 + α±).

Observe that u± extended by zero in the complements of C± are subharmonic in
Rn. Further, it is easy to calculate that

Φ(r, u+, u−) = Cr2(α++α−−2)

for C > 0 and therefore the monotonicity formula will follow in this case once we
know

α+ + α− ≥ 2.

Σ+

u+ = rα+f+(θ)

u− = rα−f−(θ)

Σ−

Figure 2.2. Two homogeneous harmonic functions u± in cones
generated by spherical regions Σ±
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This inequality has been established first by Friedland-Hayman [FH76]. What is
interesting is that it actually implies the monotonicity formula for all u± as in
Theorem 2.1, not necessarily homogeneous, see the appendix to this lecture. We
refer to the book of Caffarelli-Salsa [CS05, Chapter 12] for a detailed proof of the
Friedland-Hayman inequality.

If u is a nonnegative subharmonic function, then J(r, u) can be controlled in
terms of L2-norm of u, arguing as in the case of harmonic function and using that
|∇u|2 ≤ ∆(u2/2). More precisely, one has that

J(1/2, u) ≤ Cn‖u‖2L2(B1).

Combining this with the ACF monotonicity formula, we obtain the following esti-
mate.

Theorem 2.2 (ACF estimate). Let u± be as in Theorem 2.1. Then

Φ(r, u+, u−) ≤ Cn‖u+‖2L2(B1)‖u−‖
2
L2(B1)

for 0 < r ≤ 1/2.

In some applications, this weaker form of the monotonicity formula turns out
to be sufficient. However, in other applications, one needs to use Theorem 2.1 at
its full strength, moreover, one needs to have the information for the case of Φ(r)
being a constant in some interval.

Theorem 2.3 (Case of equality in ACF monotonicity formula). Let u± be as in
Theorem 2.1 and suppose that Φ(r1) = Φ(r2) for some 0 < r1 < r2 < 1. Then one
of the following holds:

(i) either u+ = 0 in Br2 or u− = 0 in Br2 ,
(ii) for every r1 < r < r2, suppu± ∩ ∂Br are complementary half-spheres and

u+∆u+ = u−∆u− = 0 on Br2 in the sense of measures.

This follows directly from analyzing the proof of the ACF Monotonicity Formula,
in particular, from analyzing the case of inequality in Friedland-Hayman inequality:
α+ + α− = 2 if and only if Σ± are complementary half-spherical caps. For more
details we refer to the paper by Caffarelli-Karp-Shahgholian [CKS00] where this
theorem has first appeared.

2.2. Optimal regularity in obstacle type problems. In this section, following
the idea of Shahgholian [Sha03], we use the ACF estimate to prove Theorem 1.1.

One of the important ingredients in the proof is the following fundamental
lemma. Basically, it says that the positive and negative parts of the directional
derivatives of solutions to obstacle type-problems satisfy to the assumptions in the
ACF monotonicity formula.

Lemma 2.4. Let u ∈ C1(D) satisfy (1.6)–(1.9). Then for any unit vector e,

∆(∂eu)± ≥ 0 in D.

Proof. Fix a direction e and let v = ∂eu. Let also

V := {v > 0}.
Note that V ⊂ G because of the assumption (1.8). Then, formally, for x ∈ V ,

∆(v+) = ∂e∆u(x) = f ′(u)∂eu = f ′(u)v ≥ 0.
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To justify this computation, observe that ∆(v+) ≥ 0 in D is equivalent to the
inequality

(2.1) −
∫
D

∇(v+)∇η dx ≥ 0

for any nonnegative η ∈ C∞0 (D). Suppose first that supp η ⊂ {v > δ} with δ > 0.
Then writing the equation

−
∫
D

∇u∇η dx =

∫
D

fη dx

with η = η(x) and η = η(x−he), we obtain an equation for the incremental quotient

v(h)(x) :=
u(x+ he)− u(x)

h
.

Namely, we obtain

(2.2) −
∫
D

∇v(h)∇η dx =
1

h

∫
D

[f(u(x+ he))− f(u(x))]η dx ≥ 0

for small h > 0, where we have used that u(x+he) > u(x) on supp η ⊂ {v > δ} for
small enough h, combined with the monotonicity of f . Letting in (2.2) h→ 0 and
then δ → 0 we arrive at

−
∫
D

∇v∇η dx ≥ 0

for arbitrary η ≥ 0 with supp η b {v > 0}.
Thus, we proved that ∆v ≥ 0 in the open set V = {v > 0} in the sense of distri-

butions. Then it is a simple exercise to show that (2.1) holds for any nonnegative
η ∈ C∞0 (D).

To prove the same inequality for v−, we simply reverse the direction e.
�

Proof of Theorem 1.1. Without loss of generality, we may assume that D = B1 and
K = B1/2. Further observe the function u is twice differentiable at every Lebesgue

point x0 ∈ B1 of the Hessian of u, since u ∈ W 2,p
loc (B1) with p > n, see e.g. Evans

[Eva98, Theorem 5.8.5]. Then fix such a point x0 ∈ B1/2 and define

v(x) = ∂eu(x)

for a unit vector e orthogonal to ∇u(x0) (if ∇u(x0) = 0, take arbitrary unit e).
Again, without loss of generality we may assume x0 = 0. Our aim is to obtain a
uniform estimate for ∂xjeu(0) = ∂xjv(0), j = 1, . . . , n. By construction, v(0) = 0
and v is differentiable at 0. Hence, we have the Taylor expansion

v(x) = ξ · x+ o(|x|), ξ = ∇v(0).

Now, if ξ = 0 then ∂xjv(0) = 0 for all j = 1, . . . , n and there is nothing to estimate.
If ξ 6= 0, consider the cone

C = {x ∈ Rn : ξ · x ≥ |ξ||x|/2},

which has a property that

C ∩Br ⊂ {v > 0}, −C ∩Br ⊂ {v < 0}
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for sufficiently small r > 0. Consider also the rescalings

vr(x) =
v(rx)

r
, x ∈ B1.

Note that vr(x)→ v0(x) := ξ ·x uniformly in B1 and ∇vr → ∇v0 in Lp(B1), p > n.
The latter follows from the equality∫

B1

|∇vr(x)− ξ|pdx =
1

rn

∫
Br

|∇v(x)−∇v(0)|pdx,

where the right-hand side goes to zero as r → 0, since x0 = 0 is a Lebesgue point
for ∇v. Then we have

cn|ξ|4 =

∫
C∩B1

|∇v0(x)|2dx
|x|n−2

∫
−C∩B1

|∇v0(x)|2dx
|x|n−2

= lim
r→0

∫
C∩B1

|∇vr(x)|2dx
|x|n−2

∫
−C∩B1

|∇vr(x)|2dx
|x|n−2

= lim
r→0

1

r4

∫
C∩Br

|∇v(x)|2dx
|x|n−2

∫
−C∩Br

|∇v(x)|2dx
|x|n−2

≤ lim
r→0

Φ(r, v+, v−),

where Φ is as in ACF Monotonicity Formula (Theorem 2.1). Then applying the
ACF estimate (Theorem 2.2, slightly scaled) we obtain

cn|ξ|4 ≤ lim inf
r→0

Φ(r, v+, v−) ≤ Cn‖∇u‖4L∞(B3/4)

Hence, we obtain that |ξ| ≤ Cn‖∇u‖L∞(B3/4), which implies that

|∇∂eu(x0)| ≤ Cn(‖u‖L∞(B1) + ‖g‖L∞(B1)) = N.

This doesn’t give the desired estimate on |D2u| yet, since e is subject to the con-
dition e · ∇u(x0) = 0, unless ∇u(x0) = 0. If ∇u(x0) 6= 0, we may choose the
coordinate system so that ∇u(x0) is parallel to e1. Then, taking e = e2, . . . , en in
the estimate above, we obtain

|∂xixju(x0)| ≤ N, i = 2, . . . , n, j = 1, 2, . . . , n

To obtain the estimate in the missing direction e1, we use the equation ∆u = g:

|∂x1x1
u(x0)| ≤ |∆u(x0)|+ |∂x2x2

u(x0)|+ . . .+ |∂xnxnu(x0)|
≤ ‖g‖L∞(D) + (n− 1)N ≤ CnN.

This completes the proof of the theorem. �

Appendix.

Reduction of ACF monotonicity formula to Friedland-Hayman inequality. Here we
follow Caffarelli [Caf98].

We start with a remark that the functional J scales linearly, in the sense that if

uλ(x) =
1

λ
u(λx),

then
J(r/λ, uλ) = J(r, u).

In particular, this implies that we can assume u± to be defined in BR for a certain
R > 1. Then it will suffice to show that Φ′(r) ≥ 0 only for r = 1.
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It will be convenient to introduce

I(r, u) =

∫
Br

|∇u|2

|x|n−2
dx

Thus, J(r, u) = 1
r2 I(r, u) and Φ(r, u+, u−) = 1

r4 I(r, u+)I(r, u−). Note that we may
assume that I(1, u±) < ∞. Besides, since I± are absolutely continuous functions
of r, without loss of generality we may assume that r = 1 is a Lebesgue point
for their respective integrands. For simplicity, we will denote I± = I(1, u±) and
I ′± = I ′(1, u±). Then we have

Φ′(1) = I ′+I− + I+I
′
− − 4I+I−.

Thus, we want to show

I ′+
I+

+
I ′−
I−
≥ 4.

We now want to rewrite this as an inequality on the unit sphere. To this end, for
u = u±, let Σ = {u > 0} ∩ ∂B1. Let um be mollifications of u. Observe that
∆(1/|x|n−2) is a nonpositive measure. Then we have

I(1, um) =

∫
B1

|∇um|2

|x|n−2
dx ≤

∫
B1

∆
(
u2
m

2

)
|x|n−2

dx

=

∫
∂B1

(
um ∂rum +

n− 2

2
u2
m

)
dθ.

Letting m→∞ we obtain

I(1, u) ≤
∫

Σ

(
u ∂ru+

n− 2

2
u2

)
dθ.

On the other hand

I ′(1, u) =

∫
Σ

|∇u|2dθ.

Thus,

I ′(1, u)

I(1, u)
≥

∫
Σ

[(∂ru)2 + |∇θu|2]dθ∫
Σ

[u ∂ru+
n− 2

2
u2]dθ

Note at this point that ∫
Σ

|∇θu|2∫
Σ

u2
≥ λ,

where λ = λ(Σ) is the first eigenfunction of the spherical Laplacian ∆θ in Σ, so
we want to split u ∂ur in an optimal fashion, to spread its control between

∫
(∂ru)2

and
∫
|∇θu|2, i.e., ∫

Σ

u ∂ru ≤
1

2

[
A

∫
Σ

u2 +
1

A

∫
Σ

(∂ru)2

]
.
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This will leave us with

I ′(1, u)

I(1, u)
≥ 2

∫
Σ

(∂ru)2 + |∇θu|2

1

A

∫
Σ

(∂ru)2 + (A+ n− 2)

∫
Σ

u2
.

To perfectly balance both terms, we want

1

A
=
A+ n− 2

λ
, or A[A+ n− 2] = λ

This choice will give us
I ′(1, u)

I(1, u)
≥ 2A.

But now observe that A is precisely the homogeneity of the homogeneous harmonic
function, constructed from the first eigenfunction of the spherical Laplacian in Σ.
So, if Σ± = {u± > 0} ∩ ∂B1, then these are disjoint open sets on ∂B1 and if A±
are the corresponding homogeneities, then we have

I ′+
I+

+
I ′−
I−
− 4 ≥ 2(A+ +A− − 2)

and therefore the required inequality will follow from the Friedland-Hayman in-
equality

A+ +A− − 2 ≥ 0.
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Lecture 3

3. The free boundary in obstacle type problems

3.1. Normalized solutions, rescalings, and blowups.

3.1.1. Local and global solutions. Our analysis of the free boundary is based on the
study of so-called blowups. Since the regularity of the free boundary is a local
question, we may restrict ourselves to the solutions defined in balls centered at free
boundary points. We may further translate these points to the origin.

Definition 3.1 (Local solutions). For given R, M > 0, let PR(M) be the class of
C1,1 solutions u of Problems O, I, or II in BR such that

• ‖D2u‖L∞(BR) ≤M ,
• 0 ∈ Γ and additionally |∇u(0)| = 0 in the case of problem II.

Note that in the case when |∇u| > 0 at a free boundary point in Problem II, by
the implicit function theorem the free boundary is a C1,α surface near that point
and therefore we concentrate on the behavior near the free boundaries where the
gradient vanishes.

Taking formally R =∞ in the above definition, we obtain solutions in the entire
space Rn, which grow quadratically at infinity. Slightly abusing the terminology,
we call them global solutions.

Definition 3.2 (Global solutions). For given M > 0 let P∞(M) be the class of C1,1
loc

solutions u of Problems O, I, or II in Rn, such that

• ‖D2u‖L∞(Rn) ≤M ,
• 0 ∈ Γ and additionally |∇u(0)| = 0 in the case of problem II.

3.1.2. Rescalings and blowups. The following scaling properties are enjoyed by the
solutions in the above classes. If u ∈ PR(M) and λ > 0, then the function

(3.1) uλ(x) =
u(λx)

λ2
, x ∈ BR/λ

called the rescaling of u at 0 will be from class PR/λ(M). Using this simple obser-
vation, we will often state the results for P1(M) as the corresponding statements
for classes PR(M) can be easily recovered.

Observe that for u ∈ PR(M) the rescalings uλ satisfy the estimate |D2uλ(x)| ≤
M in BR/λ for all λ > 0. Therefore, we also have

|∇uλ(x)| ≤M |x|, x ∈ BR/λ

|uλ(x)| ≤ 1

2
M |x|2, x ∈ BR/λ.

Hence, we can find a sequence λ = λj → 0 such that

uλj → u0 in C1,α
loc (Rn) for any 0 < α < 1

where u0 ∈ C1,1
loc (Rn). Such u0 is called a blowup of u at the origin and Proposi-

tion 3.4 below says that u0 is a global solution; more precisely, u0 ∈ P∞(M).

Remark 3.3. An important remark is that it is apriori not clear if u0 is unique, as
different sequences λj → 0 may lead to different limits u0.
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λ1 λ2

Figure 3.1. Blowup with a fixed center

Proposition 3.4 (Blowups). Let u ∈ PR(M) and uλj → u0 in C1,α
loc (Rn) for some

sequence λj → 0. Then u0 ∈ P∞(M).

The proposition contains a hidden statement that 0 ∈ Γ, which in particular
implies that u0 is not identically zero. The proof of that fact is contained in the
following important lemma (the proof of which is in the appendix).

Lemma 3.5 (Nondegeneracy). (i) Let u ∈ PR(M) be a solution of Problem O or
I. Then

sup
Br

u ≥ cnr2, 0 < r < R.

(ii) Let u ∈ PR(M) be a solution of Problem II. If 0 ∈ Γ+ then

sup
Br

u ≥ cnλ+r
2, 0 < r < R.

and if 0 ∈ Γ− then

inf
Br
u ≤ −cnλ−r2, 0 < r < R.

3.2. Weiss’s type monotonicity formulas. We next introduce a useful tool in
the study of our problems: the so-called Weiss’s monotonicity formula [Wei99]. We
are going to define this functional for model problems O, I, and II.

Definition 3.6. For a solution u ∈ PR(M) and 0 < r < R define Weiss’s Energy
Functional as follows:

• In Problem O and I

W (r, u) :=
1

rn+2

∫
Br

(|∇u|2 + 2u) dx(3.2)

− 2

rn+3

∫
∂Br

u2dHn−1.

• In Problem II

W (r, u) :=
1

rn+2

∫
Br

(|∇u|2 + 2λ+u
+ + 2λ−u

−) dx(3.3)

− 2

rn+3

∫
∂Br

u2dHn−1.
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The functional W has the following scaling property

(3.4) W (rs, u) = W (s, ur)

for any 0 < r < R, 0 < s < R/r, where ur is the rescaling as in (3.1). This
observation leads to a simple formula for d

drW and ultimately to the proof of the
Monotonicity Formula.

To simplify the notation, we introduce the following operators

∂′v := x · ∇v(x)− 2v(x) =
d

dλ

∣∣∣
λ=1

v(λx)

λ2

Theorem 3.7 (Weiss’s monotonicity formula). Let u ∈ PR(M). Then r 7→W (r, u)
is a nondecreasing absolutely continuous function for 0 < r < R and

(3.5)
d

dr
W (r, u) =

2

rn+4

∫
∂Br

|∂′u|2dHn−1

for a.e. 0 < r < R.
Moreover, the identity W (r, u) ≡ const for r1 < r < r2 implies the homogeneity

of u with respect to the origin, i.e.

(3.6) x · ∇u(x)− 2u(x) ≡ 0, in Br2 \Br1 .

Proof. We only prove the differentiation formula (3.5), as the rest of the theorem
is its simple corollary.
Problems O, I. Using the scaling property (3.4) we will have

d

dr
W (r, u) =

d

dr
W (1, ur)

=

∫
B1

d

dr
(|∇ur|2 + 2ur) dx− 2

∫
∂B1

d

dr
(u2
r)dH

n−1.

If we now use that

d

dr
(∇ur) = ∇dur

dr
dur
dr

=
∂′ur
r
,

then integrating by parts, we will obtain

d

dr
W (r, u) =

2

r

∫
B1

(−∆ur + 1)∂′ur dx+
2

r

∫
∂B1

(∂νur − 2ur)∂
′ur dH

n−1,

where ∂νur is the outer normal derivative of ur on ∂B1. Finally, noting that
(−∆ur + 1)∂′ur = 0 and that ∂νur = x · ∇ur on ∂B1, we obtain

d

dr
W (r, u) =

2

r

∫
∂B1

|∂′ur|2dHn−1,

which implies (3.5) after scaling.

Problem II. In this case, the proof is almost identical to the one for Problems O
and I and requires only minor adjustments. �

Corollary 3.8 (Homogeneity of blowups). Let u ∈ PR(M) and u0(x) = limj→∞ uλj
be a blowup of u at the origin. Then u0 is homogeneous of degree two, i.e.

u0(λx) = λ2u0(x), x ∈ Rn, λ > 0.
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Proof. We may assume that the convergence uλj → u0 is in C1,α
loc (Rn). Then, we

have

W (r, u0) = lim
j→∞

W (r, uλj ) = lim
j→∞

W (λjr, u) = W (0+, u)

for any r > 0, which means that W (r, u0) is constant. Hence, using the second part
of Theorem 3.7, we obtain that u0 is homogeneous of degree 2 in Rn. �

3.3. Homogeneous global solutions. Even though the information on blowups
that we obtained is significant, it is still far from being complete. We will need to
invoke the ACF monotonicity formula (to be more precise, the case of equality) in
order to complete the classification of blowups.

Theorem 3.9 (Homogeneous solutions of obstacle type problems). Let u0 ∈ P∞(M)
be a homogeneous of degree two global solution. Then u0 is either a monotone func-
tion of one independent variable or a homogeneous quadratic polynomial.

Being a monotone function of one independent variable here means that there
exists a unit vector e and a monotone function φ : R→ R such that u0(x) = φ(x ·e)
for all x ∈ Rn.

We start with identifying the obstacle type problem solved by u0.

Proof of Theorem 3.9. Let e be a direction in Rn and consider the pair of functions
(∂eu0)±, positive and negative parts of the directional derivative of u0. Recall that
by Lemma 2.4 (∂eu0)± are subharmonic and therefore satisfy the assumptions of
the ACF monotonicity formula. Thus, if we define

φe(r, u0) := Φ(r, (∂eu0)+, (∂eu0)−)

=
1

r4

∫
Br

|∇(∂eu0)+|2 dx
|x|n−2

∫
Br

|∇(∂eu0)−|2 dx
|x|n−2

.

then φe(r, u0) must be monotone nondecreasing in r.
On the other hand, if u0 is homogeneous of degree two, then the simple change

of variables shows that

φe(r, u0) ≡ const.
Thus, we are in the case of equality in the ACF monotonicity formula, and therefore
we have the following two alternatives (see Theorem 2.3):

(i) one of the functions (∂eu0)+ and (∂eu0)− vanishes identically in Rn, or
(ii) the supports of (∂eu0)+ and (∂eu0)− intersected with ∂Br are comple-

mentary hemispheres for any r > 0 and (∂eu0)+∆(∂eu0)+ = 0 in Rn and
(∂eu0)−∆(∂eu0)− = 0 in Rn in the sense of measures.

To finish the proof we need to consider several possibilities.
1) Suppose {|∇u0| = 0} has a nonzero Lebesgue measure. Then the supports of

(∂eu0)± cannot be complementary spheres for some r > 0. This means the situation
(ii) above is impossible and therefore we are in situation (i). This means that ∂eu0

has a sign for any unit vector e. This is equivalent to u0 being a monotone function
of one variable.

2) Suppose now that {|∇u0| = 0} has a Lebesgue measure zero. In the case of
Problems O and I this means ∆u0 = 1 a.e. in Rn and therefore by the Liouville
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theorem u0 is a quadratic polynomial. Therefore, it is left to consider the case of
Problem II, i.e. when u0 satisfies

∆u0 = λ+χ{u0>0} − λ−χ{u0<0} a.e. in Rn,

where λ± > 0.
2a) Suppose now that there exists y0 ∈ Γ = Γ+ ∪ Γ− with |∇u0(y0)| > 0.

(Recall that Γ± = ∂{±u0 > 0}.) Then necessarily y0 ∈ Γ+ ∩ Γ−. Let ν0 =
∇u0(y0)/|∇u0(y0)| be the direction of the gradient of u0 at y0. Then there exists a
small neighborhood Bρ(y

0) where ∂ν0u0 > 0 and such that {u0 = 0} ∩Bρ(y0) is a
C1,α-surface. If e · ν0 6= 0 then ∂eu0(y0) 6= 0 and for sufficiently small δ we obtain

|∆∂eu0|(Bδ(y0)) = (λ+ + λ−)

∫
{u0=0}∩Bδ(y0)

|e · ν| dHn−1 > 0,

where ν = ∇u0/|∇u0| is the normal to the surface u0 = 0. Thus, the alternative
(ii) cannot hold for directions e non-orthogonal to ν0. Consequently, (i) holds for
all such directions and, by continuity, for all directions. As before, this implies that
u0 is a monotone function of one variable.

2b) Finally, consider the case when |∇u0| vanishes on Γ = Γ+ ∪ Γ−. Then it is
easy to see that u±0 are global solutions of the classical obstacle problem

∆u±0 = λ±χ{u±0 >0} in Rn

We then invoke the following very well known result for the solution of the classical
obstacle problem.

Lemma 3.10 (Global solutions of Problem O). Let u ∈ P∞(M) be a global solution
of Problem O. Then u is a convex function.

Proof. See the appendix to this lecture. �

Thus, both u+
0 and u−0 are convex functions. This is possible only if the sets

{u±0 > 0} are disjoint halfspaces separated by parallel hyperplanes. The only global
solutions of the classical obstacle problem vanishing on a halfspace have the form
v(x) = C((x · e − c)+)2, where e is the outward unit normal to the boundary of
the halfspace and c ∈ R. Thus, putting u±0 together, we obtain that u0 is indeed a
monotone increasing function of x · e. �

3.4. Classification of free boundary points. With the use of Theorem 3.9 we
can give a full description of blowups in our model problems O, I, and II.

Theorem 3.11 (Classification of blowups). Let u0 be a blowup at the origin of a
solution of Problem O, I, or II. Then u0 has of one of the following forms.

- In Problems O, I:

• Polynomial solution u0(x) = 1
2 (x · Ax), x ∈ Rn. where A is an n × n

symmetric matrix with TrA = 1. In Problem O we additionally have that
A is a nonnegative matrix.
• Halfplane solutions u0(x) = 1

2 (x · e)2
+, x ∈ Rn, where e is a unit vector.

-In Problem II:

• Polynomial solutions (positive or negative) u0(x) = λ+

2 (x ·Ax) or u0(x) =

−λ−2 (x · Ax), x ∈ Rn, where A is an n× n nonnegative symmetric matrix
with TrA = 1.
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Γ+ Γ+Γ−

u > 0

u < 0

u = 0
x1

x2

x3

x4

x5

Figure 3.2. Problem II: Free boundary Γ = Γ+ ∪ Γ−; x1, x2, x3

one-phase points; x4 branching two-phase point; x5 non-branching
two-phase point.

• Halfplane solutions (positive or negative) u0(x) = λ+

2 (x · e)2
+ or u0(x) =

−λ−2 (x · e)2
−, x ∈ Rn, for a unit vector e.

• Two-plane solution u0(x) = λ+

2 (x · e)2
+ −

λ−
2 (x · e)2

−, x ∈ Rn, for a unit
vector e.

Proof. The proof consists in identifying the quadratic polynomial and one-dimensional
solutions of Problems O, I, and II. This is left to the reader as an easy exercise. �

Theorem 3.12 (Unique type of the blowup). Let u ∈ PR(M). Then all possible
blowups of u at the origin have the same type, i.e., they fall into the same category
as described in Theorem 3.11.

Before giving a proof of this theorem, we would like to mention that Theo-
rems 3.11 and 3.12 above lead to the following classification of free boundary points.
Even though we have defined the blowups only at the origin, it is of course straight-
forward to define the blowups at any free boundary point x0 ∈ Γ (with and addi-
tional assumption |∇u(x0)| = 0 in Problem II). Indeed, we consider the rescalings

ux0,λ(x) =
u(x0 + λx)

λ2

and let λ→ 0. Clearly, the results above are applicable for the blowups at any such
point x0 (just translate x0 to the origin!).

Definition 3.13 (Classiffication of free boundary points).
– In Problems O, I for x0 ∈ Γ we will use the following terminology:

• x0 is a regular point, if one and therefore every blowup of u at x0 is a
halfplane solution
• x0 is a singular point, if one and therefore every blowups of u at x0 is

polynomial.

– In Problem II, for x0 ∈ Γ we say

• x0 is a two-phase point, if x0 ∈ Γ+ ∩ Γ−
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• x0 is an one-phase point, otherwise.

Thus, the function u does not change sign in a neighborhood of an one-phase point.
Equivalently, x0 is a two-phase point if either |∇u(x0)| 6= 0 or |∇u(x0)| = 0 and one
(and consequently all) blowups at x0 are two-plane solutions. Further, similarly to
Problems O, I we distinguish regular and singular one-phase points, depending on
their blowups.

Proof of Theorem 3.12. To prove the theorem Problems O and I, we consider the
limit as r → 0 in Weiss’s monotonicity formula leads to a useful notion of balanced
energy. To do so, let us introduce the notation

W (r, u, x0) = W (r, u(· − x0)),

which we call Weiss’s energy functional centered at x0.

Definition 3.14 (Balanced energy). Let u be a solution of Problem O or I. Then
for any x0 ∈ Γ the limit

(3.7) ω(x0) := W (0+, u, x0) = lim
r→0

W (r, u, x0),

which exists by Theorem 3.7, is called the balanced energy of u at x0.

As, we saw in the proof of Corollary 3.8,

ω(x0) = W (r, u0) ≡W (1, u0)

for any blowup u0 of u at x0. Thus, the balanced energy at a point coincides with
the Weiss energy of any of blowups with fixed center x0.

Uniqueness of the type of the blowup will follow from the following lemma.

Lemma 3.15 (Weiss’s energy of homogeneous solutions). Let u0 be a homogeneous
global solution of Problem O or I. Then

W (r, u0) ≡W (1, u0) =

{
αn/2 if u0 is a halfplane solution,

αn if u0 is a polynomial solution,

where αn is a dimensional constant.

Proof. Integrating by parts in the expression for W (r, u0) and using that ∆u0 = 1
in Ω(u0), we obtain that at

W (r, u0) ≡W (1, u0) =

∫
B1

(
|∇u0|2 + 2u0

)
dx− 2

∫
∂B1

u2
0 dH

n−1

=

∫
B1

(−∆u0 + 2)u0 dx−
∫
∂B1

∂′u0u0 dH
n−1 =

∫
B1

u0 dx.

Thus, if we denote by

αn =
1

2

∫
B1

x2
1 dx =

1

2n

∫
B1

|x|2dx =
Hn−1(∂B1)

2n(n+ 2)
,

then for polynomial solutions u0(x) = 1
2 (x ·Ax) we can compute that

W (r, 1
2 (x ·Ax)) =

1

2

∫
B1

x ·Axdx = αn TrA = αn.

On the other hand, for halfplane solutions u0(x) = 1
2 (x · e)2

+ we will have

W (r, 1
2 (x · e)2

+) =
1

2

∫
B1

(x · e)2
+dx =

αn
2
.
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�

This completes the proof of Theorem 3.12 in the case of Problems O and I. It
also completes the proof in the case of Problem II if 0 is a one-phase point. In the
case when 0 is a two-phase point, the nondegeneracy lemma (Lemma 3.5) implies
that 0 is also a two-phase free boundary point for any blowup u0, which is possible
only if u0 is two-plane solution (as defined in Theorem 3.11). �

Appendix.

Proof of Lemma 3.5. We will consider only the case of Problems O and I, the proof
for Problem II being analogous.

In fact, we will prove a slightly more general statement: if u is a solution of
Problem I in a domain D, x0 ∈ Ω ∩D, then

sup
Br(x0)

u ≥ u(x0) + cnr
2,

provided B2r(x
0) b D.

Before giving the proof, we would like to illustrate one of its main ideas by
proving a similar nondegeneracy statement for solutions of ∆u = 1.

Lemma 3.16. Let u satisfy ∆u = 1 in the ball BR. Then

sup
∂Br

u ≥ u(0) +
r2

2n
, 0 < r < R

Proof. Consider the auxiliary function

w(x) = u(x)− |x|
2

2n
, x ∈ BR.

Then w is harmonic in BR. Therefore by the maximum principle we obtain that

w(0) ≤ sup
∂Br

w =

(
sup
∂Br

u

)
− r2

2n
,

which implies the required inequality. �

1) Assume first that x0 ∈ Ω and moreover u(x0) > 0. Consider then the auxiliary
function

(3.8) w(x) = u(x)− u(x0)− |x− x
0|2

2n
,

similar to the one in the proof the previous lemma. We have ∆w = 0 in Br(x
0)∩Ω.

Since w(x0) = 0, by the maximum principle we have that

sup
∂(Br(x0)∩Ω)

w ≥ 0.

Besides, w(x) = −u(x0)− |x− x0|2/(2n) < 0 on ∂Ω. Therefore, we must have

sup
∂Br(x0)∩Ω

w ≥ 0.

The latter is equivalent to

sup
∂Br(x0)∩Ω

u ≥ u(x0) +
r2

2n

and the lemma is proved in this case.
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2) Suppose now x0 ∈ Ω(u) and u(x0) ≤ 0. If Br/2(x0) contains a point x1 such

that u(x1) > 0, then

sup
Br(x0)

u ≥ sup
Br/2(x1)

u ≥ u(x1) +
(r/2)2

2n
≥ u(x0) +

r2

8n

which implies the lemma in this case.
If it happens that u ≤ 0 in Br/2(x0), from subharmonicity of u and the strong

maximum principle we will have that either u = 0 identically in Br/2(x0), or u < 0

in Br/2(x0). The former case is impossible, as x0 ∈ Ω(u), and the latter case implies

that Br/2(x0) ⊂ Ω(u) and therefore ∆u = 1 in Br/2(x0). Then Lemma 3.16 finishes
the proof in this case and we obtain

sup
Br(x0)

u ≥ sup
Br/2(x0)

u ≥ u(x0) +
r2

8n
.

3) Finally, for x0 ∈ Ω(u), we take a sequence xj ∈ Ω(u) such that xj → x0 as
j →∞ and pass to the limit in the corresponding nondegeneracy statement at xj .

This completes the proof of Lemma 3.5 �

Proof of Lemma 3.10. Fix any direction e. Without loss of generality suppose that
e = en = (0, · · · , 0, 1). Assume, on the contrary, that

−m := inf
Ω
∂xnxnu < 0,

and let xj ∈ Ω(u) be a minimizing sequence for the value −m, i.e.

lim
j→∞

∂xnxnu(xj) = −m.

Let dj = dist(xj ,Γ) and consider the rescalings

uj(x) = uxj ,dj (x) =
u(xj + djx)

d2
j

.

Observe that B1 ⊂ Ω(uj) and the free boundary Γ(uj) contains at leas one point on
∂B1. Since also |D2uj | are uniformly bounded by M we have the uniform estimates

|uj(x)| ≤ M

2
(|x|+ 1)2

and therefore we can extract a subsequence converging in C1,α
loc (Rn) to a global

solution u0 of Problem O. Moreover, similarly to uj , observe that B1 ⊂ Ω(u0) =
{u0 > 0}, and ∂B1 contains at least one free boundary point.

Next observe, since all functions uj satisfy ∆uj = 1 in B1, the convergence to
u0 can be assumed to be at least in C2

loc(B1). Hence, the limit function u0 satisfies

∆u0 = 1, ∂xnxnu0 ≥ −m in B1, ∂xnxnu0(0) = −m.
Since ∂xnxnu0 is harmonic inB1, the minimum principle implies that ∂xnxnu0 ≡ −m
in B1. In fact we have even more, ∂xnxnu0 = −m in the connected component of
Ω(u0) which contains B1. Hence we obtain the representations

(3.9) ∂nu0(x) = g1(x′)−mxn, x′ = (x1, . . . , xn−1)

and

(3.10) u0(x) = g2(x′) + g1(x′)xn −
m

2
x2
n,



MONOTONICITY FORMULAS AND OBSTACLE TYPE PROBLEMS 29

in B1. Now let us choose a point (x′, 0) ∈ B1 and start moving in the direction en.
Observe that as long as we stay in Ω(u0), we still have ∂xnxnu = −m and therefore
still have the representations (3.9)–(3.10). However, sooner or later we will reach
∂Ω(u0), otherwise if xn becomes too large, (3.10) will imply u0 < 0, contrary to
our assumption. Since u0 = |∇u0| = 0 on ∂Ω(u0), from (3.9) we obtain that the
first value ξ(x′) of xn for which we arrive at ∂Ω(u0) is given by

ξ(x′) =
g1(x′)

m
.

Hence from (3.10) we deduce that

g2(x′) = −g1(x′)2

2m
.

Now, the representation (3.10) takes the form

u0(x) = −m
2

(xn − ξ(x′))2,

which is not possible since u0 ≥ 0. This concludes the proof. �
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Lecture 4

4. The Signorini Problem

In this lecture we are going to prove the optimal regularity in Problem S (The-
orem 1.4). One of the main ingredients is Almgren’s frequency formula [Alm00].

4.1. Almgren’s frequency formula.

Harmonic functions. For a harmonic function u in the ball BR consider the follow-
ing quantity

N(r) = N(r, u) =
r
∫
Br
|∇u|2∫

∂Br
u2

, 0 < r < R,

which we will call Almgren’s frequency (the justification for the name will be given
a bit later). A theorem of Almgren then says that N(r) is monotone nondecreasing.
To see that, let us introduce

H(r) =

∫
∂Br

u2, 0 < r < R.

Using the spherical coordinates it is then straightforward to see that

H ′(r) =
n− 1

r
H(r) + 2

∫
∂Br

(∂νu)u.

Then applying the divergence theorem on the last term an using that ∆(u2) =
2|∇u|2 in BR, we arrive at

H ′(r) =
n− 1

r
H(r) + 2

∫
Br

|∇u|2.

Hence, we can write that

rH ′(r)

H(r)
= n− 1 + 2N(r).

Thus, the monotonicity of N(r) is equivalent to the monotonicity of

Φ(r) = r
d

dr
logH(r),

which in turn is equivalent to showing the log-convexity of H(r) in log r (which is
a fancy name for the convexity of logH(et) in t).

Now, writing u in the form of

u(x) =

∞∑
k=0

fk(x),

where fk are homogeneous harmonic polynomials of degree k, we will have that

H(r) =

∞∑
k=0

∫
∂B1

f2
k (θ)rn−1+2kdθ = rn−1

∞∑
k=0

akr
2k,

where ak =
∫
∂B1

fk(θ)2dθ ≥ 0. Then by the Cauchy-Schwarz inequality we obtain

that

H(
√
r1r2) ≤

√
H(r1)

√
H(r2), 0 < ri < R, i = 1, 2,

which is the required convexity for H. This implies that N(r) is indeed monotone.
Moreover, the case of equality in the Cauchy-Schwarz implies that if N(r1) =
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Figure 4.1. Solution of the Signorini problem Re(x1 + i|x2|)3/2

and multi-valued harmonic function Re(x1 + ix2)3/2

N(r2) = κ, for 0 < r1 < r2 < R then N(r) ≡ κ and consequently H(r) ≡ Crn−1+2κ

in the interval (r1, r2), which is possible only if κ = k ∈ Z+ and

u(x) = fk(x).

Now the name frequency comes from the fact that in dimension two, in polar
coordinates

fk = ckr
k cos(kθ + φ)

and N(r) coincides with the frequency of cos(kθ + φ).

Signorini problem. It turns out that Almgren’s frequency formula is valid also for
the solutions of Problem S (as was first observed by Athanasopoulos-Caffarelli-
Salsa [ACS08]). This should come at no surprise, since the solutions of Problem S
extended from D+ to D−, by using both even and odd reflections, form a two-valued
harmonic function and Almgren’s formula was proved originally for multivalued
harmonic functions (see Fig. 4.1).

Theorem 4.1 (Almgren’s frequency formula). Let u be a nonzero solution of Prob-
lem S in BR, then the frequency of u

r 7→ N(r) = N(r, u) =
r
∫
Br
|∇u|2∫

∂Br
u2

is nondecreasing for 0 < r < R. Moreover, N(r, u) ≡ κ for 0 < r < R if and only
if u is homogeneous of degree κ in BR, i.e.

x · ∇u− κu = 0 in BR.

Proof. Consider the quantities

(4.1) H(r) =

∫
∂Br

u2, D(r) =

∫
Br

|∇u|2.

Denoting by uν = ∂νu, where ν is the outer unit normal on ∂Br, we have

(4.2) H ′(r) =
n− 1

r
H(r) + 2

∫
∂Br

uuν .
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On the other hand, using that ∆(u2/2) = u∆u+ |∇u|2 = |∇u|2 and integrating by
parts, we obtain

(4.3)

∫
∂Br

uuν =

∫
Br

|∇u|2 = D(r).

Further, to compute D′(r) we use Rellich’s formula∫
∂Br

|∇u|2 =
n− 2

r

∫
Br

|∇u|2 + 2

∫
∂Br

u2
ν −

2

r

∫
Br

(x · ∇u)∆u.

We now claim that the last intergal is zero and moreover that (x · ∇u)∆u = 0 in
the sense of measures. Since ∆u = 2uxnH

n−1
∣∣
Λ

, it will follow from the fact

(x · ∇u)uxn = 0 on B′1.

Indeed, x · ∇u = 0 on Λ, because of C1,α regularity on B′1 and uxn = 0 on B′1 \ Λ.
Hence,

(4.4) D′(r) =
n− 2

r
D(r) + 2

∫
∂Br

u2
ν .

Thus, we have

N ′(r)

N(r)
=

1

r
+
D′(r)

D(r)
− H ′(r)

H(r)

=
1

r
+
n− 2

r
− n− 1

r
+ 2

{ ∫
∂Br

u2
ν∫

∂Br
uuν
−
∫
∂Br

uuν∫
∂Br

u2

}
≥ 0.

The last inequality is obtained form the Cauchy-Schwarz inequality and implies the
monotonicity statement in the theorem. Analyzing the case of equality in Cauchy-
Schwarz, we obtain the second part of the theorem. �

4.2. Rescalings and blowups. To study the behavior of u near the free boundary
we want to use the method of rescalings and blowups. And here we see an important
difference of Problem S for Problems O, I, II: whereas in the latter problems one
has to scale quadratically to preserve the equation, in Problem S, any scaling of
the type

ur(x) = c(r)u(rx)

where c(r) > 0 is an arbitrary constant, will preserve the structure of the problem.
There is, however, a special choice of c(r) that plays well with Almgren’s frequency
function. Namely, if we define

(4.5) ur(x) =
u(rx)(

1
rn−1

∫
∂Br

u2
)1/2

,

then we will have an identity

(4.6) N(ρ, ur) = N(rρ, u), r > 0, ρ < R/r.

Note that we will also have the following normalization property

(4.7) ‖ur‖L2(∂B1) = 1.

We then want to study the blowups of u at the origin (assuming 0 ∈ Γ), which are
the limits of the rescalings ur over subsequences r = rj → 0+. And here again we
remark that blowups might be different over different subsequences r = rj → 0+.
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The existence of blowups is justified as follows. The scaling property of the
frequency and Theorem 4.1 imply that∫

B1

|∇ur|2 = N(1, ur) = N(r, u) ≤ N(R, u).

for r < R. Combining with (4.7), we will have a uniform bound for the family {ur}
in W 1,2(B1). Now, this implies that there exists a nonzero function u0 ∈W 1,2(B1),
such that for a subsequence r = rj → 0+

(4.8)

urj → u0 in W 1,2(B1)

urj → u0 in L2(∂B1)

urj → u0 in C1
loc(B±1 ∪B′1).

It is easy to see the weak convergence in W 1,2(B1) and the strong convergence
in L2(∂B1). The third convergence (and consequently the strong convergence in

W 1,2) follows from uniform C1,α
loc estimates on ur in B±1 ∪B′1 in terms of L2-norm

of ur in B1.

Proposition 4.2 (Homogeneity of blowups). Let u be a solution of Problem S in
BR and let u0 be a blowup of u as described above. Then u0 is a nonzero global
solution of Problem S, homogeneous of degree κ = N(0+, u).

Proof. The fact that u0 solves Problem S follows from the above mentioned C1,α
loc

estimates on ur in B±1 ∪B′1. For the blowup u0 over a sequence rj → 0+ we have

N(r, u0) = lim
rj→0+

N(r, urj ) = lim
rj→0+

N(rrj , u) = N(0+, u)

for any 0 < r < 1. This implies that N(r, u0) is a constant. In view of the last
part of Theorem 4.1 we conclude that u0 is a homogeneous function. The fact
that u0 6≡ 0 follows from the convergence urj → u0 in L2(∂B1) and that equality∫
∂B1

u2
rj = 1, implying that

∫
∂B1

u2
0 = 1. �

We emphasize here that although the blowups at the origin might not be unique,
as a consequence of Proposition 4.2 they all have the same homogeneity.

4.3. Homogeneous global solutions. So an important questions we ask is for
what values of κ we have homogeneous global solutions of Problem S of degree κ.
Because of the C1,α regularity in Rn±, we immediately have that κ ≥ 1+α. However,
the general question of possible values of κ is still open, except in dimension n =
2. Using the polar coordinates in dimension n = 2 one can show that the only
homogeneous global solutions are:

uκ = Cκ Re(x1 + i|x2|)κ, κ = 2m− 1/2, 2m, m ∈ N.

and

vκ = Cκ Im(x1 + i|x2|)κ, κ = 2m+ 1, m ∈ N.

However, it can be shown that the solutions vκ can never appear as blowups.
Therefore the range of possible values of κ for blowups in dimension n = 2 is

κ = 2m− 1/2, 2m, m ∈ N.
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Figure 4.2. Graphs of Re(x1 + i |x2|)3/2 and Re(x1 + i |x2|)6

In higher dimensions, very few results are known in this direction, however, the
next theorem establishes the minimal possible value of κ and leads to the optimal
regularity of solutions of Problem S.

Theorem 4.3. Let u be a homogeneous of degree κ solution of Problem S with
1 < κ < 2. Then κ = 3/2 and

u(x) = Cn Re(x1 + i|xn|)3/2,

after a possible rotation in Rn−1.

Proof. For a direction e ∈ ∂B′1 consider two functions

v±e = max{±∂eu, 0}.
Then they satisfy the following conditions

∆v±e ≥ 0, v±e ≥ 0, v+
e · v−e = 0 in Rn.

Hence we can apply ACF monotonicity formula to the pair v±e . Namely, the func-
tional

φe(r) =
1

r4

∫
Br

|∇v+
e |2

|x|n−2

∫
Br

|∇v−e |2

|x|n−2
,

is monotone nondecreasing in r. On the other hand, from the homogeneity of u, it
is easy to see that

φe(r) = r4(κ−2)φe(1), r > 0.

Since κ < 2, φe(r) can be monotone increasing if and only if φe(1) = 0 and conse-
quently φe(r) = 0 for all r > 0.

From here it follows that one of the functions v±e is identically zero, which is
equivalent to ∂eu being ether nonnegative or nonpositive on the entire Rn. Since
this is true for any tangential direction e ∈ ∂B′1, it follows then that u depends only
on one tangential direction, and is monotone in that direction. Therefore, without
loss of generality we may assume that n = 2. However, we already know all possible
homogeneous solutions in dimension n = 2, and the only one with 1 < κ < 2 is

u3/2(x) = C3/2 Re(x1 + i|x2|)3/2.
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�

Corollary 4.4 (Minimal homogeneity). Let u be a solution of Problem S in BR
and 0 ∈ Γ. Then

N(0+, u) ≥ 2− 1

2
.

Moreover, either

N(0+, u) = 2− 1

2
or N(0+, u) ≥ 2. �

The minimal homogeneity allows to establish the following maximal growth of
the solution near free boundary points.

Lemma 4.5 (Growth estimate). Let u be a solution of Problem S in B1, 0 ∈ Γ,
and N(0+, u) ≥ κ. Then

sup
Br

|u| ≤ C0 r
κ, 0 < r < 1/2.

with C0 = C(n, κ, ‖u‖L2(B1)).

Proof. Form the monotonicity of N we will have N(r) ≥ κ for all r. This is
equivalent to having

r
H ′(r)

H(r)
≥ n− 1 + 2κ.

Dividing by r and integrating from r to 3/4 we will obtain

log
H(3/4)

H(r)
≥ (n− 1 + 2κ) log

3/4

r
,

and consequently
H(r) ≤ C0r

n−1+2κ, 0 < r < 3/4.

Next, observing that u± = max{±u, 0} are subharmonic, we will obtain

sup
Br

u± ≤ Cn
( 1

rn−1

∫
∂B(3/2)r

u2
±

)1/2

≤ Cn
(H((3/2)r)

rn−1

)1/2

≤ C0r
κ

which implies the desired estimate. �

The proof of Theorem 1.4 now follows from the growth estimate above with
κ = 3/2 and the interior elliptic estimates.

Proof of Theorem1.4. Without loss of generality we will assume that D = B1,
K = B1/2.

For any x ∈ B+
1/2 let

d(x) = dist(x,Γ).

Note that Bd(x)(x)∩{xn = 0} is fully contained in either {u(·, 0) = 0} or {u(·, 0) >

0} and therefore either the odd or even reflection of u to B−1 is going to be harmonic
in Bd(x)(x). We will denote that extension by ũ.

Now take two points x1, x2 ∈ B+
1/2 with |x1 − x2| ≤ 1/8. We want to show that

(4.9) |∇u(x1)−∇u(x2)| ≤ C|x1 − x2|1/2

with C depending on L2 norm of u in B1.
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1) Assume first that d(x1) ≥ 1/4 (or d(x2) ≥ 1/4). Then ũ is harmonic in
B1/4(x1) and therefore (4.9) follows from the interior estimates for harmonic func-
tions.

2) Suppose now d(x2) ≤ d(x1) ≤ 1/4 and |x1 − x2| ≥ d(x1)/2. We then have
that ũ is harmonic in Bd(xi)(x

i), i = 1, 2, and from Lemma 4.5 we have that

|ũ| ≤ C0d(xi)3/2 in Bd(xi)(x
i).

By the interior gradient estimates we then have

|∇u(xi)| = |∇ũ(xi)| ≤ C0d(xi)1/2.

Hence, in this case

|∇u(x1)−∇u(x2)| ≤ |∇u(x1)|+ |∇u(x2)| ≤ C0d(x1)1/2 ≤ C0|x1 − x2|1/2.
3) Finally, suppose d(x2) ≤ d(x1) ≤ 1/4 and |x1 − x2| ≤ d(x1)/2. Then from

harmonicity of ũ in Bd(x1)(x
1) and the estimate |ũ| ≤ C0d(x1)3/2, combined with

the interior derivative estimates, we will have

|D2ũ| ≤ C0d(x1)−1/2 in Bd(x1)/2(x1)

and therefore

|∇u(x1)−∇u(x2)| = |∇ũ(x1)−∇ũ(x2)| ≤ C0d(x1)−1/2|x1 − x2| ≤ C0|x1 − x2|1/2.
This completes the proof of the theorem. �
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