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Abstract. We prove the parabolic counterpart of the almost monotonicity

formula of Caffarelli, Jerison and Kening for pairs of functions u±(x, s) in the

strip S1 = Rn × (−1, 0] satisfying

u± ≥ 0, (∆− ∂s)u± ≥ −1, u+ · u− = 0 in S1.

We also establish a localized version of the formula as well as prove one of its
variants. At the end of the paper we give an application to a free boundary

problem related to the caloric continuation of heat potentials.

Introduction

In [Caf93] Caffarelli established the following monotonicity formula for caloric
functions in disjoint domains: If u±(x, s) are two continuous functions in the unit
strip S1 = Rn × (−1, 0] satisfying

u± ≥ 0, (∆− ∂s)u± ≥ 0, u+ · u− = 0 in S1,

then the functional

Φ(r) =
1
r4

∫ 0

−r2

∫
Rn

|∇u+|2G(x,−s) dx ds
∫ 0

−r2

∫
Rn

|∇u−|2G(x,−s) dx ds

is monotone increasing in r, 0 < r < 1, provided u± have moderate growth at
infinity. Here G(x, t) is the heat kernel. This is a direct parabolic analogue of the
celebrated monotonicity formula of Alt, Caffarelli, and Friedman [ACF84], which
says that for continuous functions u±(x) in the unit ball B1, satisfying

u± ≥ 0, ∆u± ≥ 0, u+ · u− = 0 in B1,

the functional

ϕ(r) =
1
r4

∫
Br

|∇u+|2

|x|n−2
dx

∫
Br

|∇u−|2

|x|n−2
dx

is monotone increasing in r, 0 < r < 1.
These monotonicity formulas (and their variations) have been extremely impor-

tant in the regularity theory of elliptic and parabolic free boundary problems, see
e.g. [ACF84,Caf87,Caf89,Caf88,Caf95,CK98,CKS00,CPS04,Ura01]. One signifi-
cance of the monotonicity formulas is the ability to produce the following kind of
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estimates (say, in the elliptic case):

cn|∇u+(0)|2|∇u−(0)|2 ≤ ϕ(0+) ≤ ϕ(1/2) ≤ Cn‖u+‖2L2(B1)
‖u−‖2L2(B1)

,

which makes them a central tool in establishing the optimal regularity of the solu-
tions in two-phase and other free boundary problems.

Recently, Caffarelli, Jerison, and Kenig [CJK02] generalized the elliptic mono-
tonicity formula to the functions u± satisfying

u± ≥ 0, ∆u± ≥ −1, u+ · u− = 0 in B1.

The function ϕ, however, is no longer monotone but still has an estimate

ϕ(r) ≤ Cn

(
1 + ‖u+‖2L2(B1)

+ ‖u−‖2L2(B1)

)2

, 0 < r ≤ 1/2.

This is known in the literature as the almost monotonicity formula. In particular,
one still has a control of |∇u+(0)||∇u−(0)|. The main objective of this paper is to
establish a parabolic version of this almost monotonicity formula.

One of the differences between the elliptic and parabolic monotonicity formulas
is that the elliptic ones are “local” in the sense that u± must be defined only in
a ball, say B1. For the parabolic formula, however, u± must be defined in an
infinite strip such as S1 = Rn × (−1, 0]. One of the ways to obtain a localized
version of the formula for subsolutions u± defined only in a parabolic cylinder
Q−1 = B1 × (−1, 0] is to multiply them with a cutoff function ψ(x) thus extending
them to S1. This introduces a small error in the computations, which, however,
can be easily controlled.

Finally, let us make a remark on the proof of the parabolic almost monotonic-
ity formula. Caffarelli-Jerison-Kenig’s proof of the elliptic formula (Theorem 1.3
in [CJK02]) consists of two independent parts: the first (“technical”) part estab-
lishes recursive inequalities based on the properties of subsolutions u±; the second
(“arithmetic”) part is purely arithmetic and uses the recursive inequalities proved
in the first part to obtain the required inequality. This means that we only need
to establish the parabolic counterpart of the “technical” part and can reuse the
“arithmetic” part.

Structure of the paper. In Section 1 we prove the monotonicity formula for
solutions in the infinite strip (Theorem I). In Section 2 we prove the localized form
of the monotonicity formula (Theorem II). Section 3 is devoted to a variation of the
almost monotonicity formula (Theorem III) with more features of the monotonicity
under additional assumptions on the growth of u± near the origin. Finally, in
Section 4 we give an applications in a parabolic free boundary problem.

Notation. Throughout the paper we will use the following notations:

Br(x) = {y ∈ Rn : |x− y| < r} (spatial ball)

Br = Br(0)

Q−r = Br × (−r2, 0] (lower parabolic cylinder)

Sr = Rn × (−r2, 0] (infinite strip)
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G(x, t) =
1

(4πt)n/2
e−|x|

2/4t, x ∈ Rn, t > 0 (the heat kernel)

dγ(x, s) = G(x,−s) dx ds
dγs(x) = G(x,−s) dx

dν = dγ−1/2 (the standard Gaussian measure)

∆u =
n∑

i=1

∂xixiu (Laplacian)

∇u = ∇xu = (∂x1u, . . . , ∂xn
u) (spatial gradient)

For integrals in space and time we use the double-integral sign
∫∫

, regardless of
the space dimension, while for the integrals in space only we use the single-integral
sign

∫
.

1. The global case

Theorem I (Almost Monotonicity Formula). Suppose we have two continuous
functions u±(x, s) is the unit strip S1, which satisfy

u± ≥ 0, (∆− ∂s)u± ≥ −1, u+ · u− = 0 in S1.

Assume also that u± have moderate growth at infinity, for instance

|u±(x, s)| ≤ Ce|x|
2/(8+ε), (x, s) ∈ S1

for some ε > 0. Then the functional

Φ(r) := r−4A+(r)A−(r), where A±(r) :=
∫∫

Sr

|∇u±|2 dγ,

satisfies
Φ(r) ≤ C(1 +A+(1) +A−(1))2, 0 < r ≤ 1,

for an absolute constant C.

Remark 1.1. Everywhere in this paper we assume that the inequality (∆−∂s)u± ≥
−1 is satisfied in the sense of distributions. The standard energy inequality implies
that ∇u± are in fact in L2

loc(S1). Moreover, as we will see later in Proposition 1.1,
A±(r) are finite.

As we mentioned in Introduction, to prove this theorem we only need to establish
the parabolic counterpart of the “technical” part of the proof of Theorem 1.3 in
[CJK02]. This will consist of six propositions below. For reader’s convenience we
give direct references to the corresponding parts in [CJK02].

Before we proceed, we also remark that some of the constants that appear in
the elliptic case are dimension-dependent, while the corresponding constants in the
parabolic case are actually absolute. In the local case (Section 2), the constants
again depend on the dimension.

Proposition 1.1 (cf. Remark 1.5 in [CJK02]). Let u ≥ 0 and (∆− ∂s)u ≥ −1 in
S2. Assume also that |u(x, s)| ≤ Ce|x|

2/(32+ε), (x, s) ∈ S2. Then there exists an
absolute constant C such that we have the following estimates

(1.1)
∫∫

S1

|∇u|2dγ ≤ C +
[∫

Rn

u(·,−1)2dγ−1

]1/2

+
1
2

∫
Rn

u(·,−1)2dγ−1
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(1.2)
∫∫

S1

|∇u|2dγ ≤ C + C inf
s∈[−4,−1]

∫
Rn

u(·, s)2dγs,

and

(1.3)
∫∫

S1

|∇u|2 dγ ≤ C + C

∫∫
S2\S1

u2 dγ.

Proof. We start with an observation that if uε are mollifications of u (convolutions
with a mollifier) then uε still satisfy the same assumptions in the proposition as
u. Moreover, once we prove the inequalities (1.1)–(1.3) for uε, the corresponding
inequalities for u will follow simply by passing to the limit. Thus, without loss of
generality, we may assume that u is a C∞ function both in x and in t.

The assumptions (∆− ∂s)u ≥ −1 and u ≥ 0 imply that

(∆− ∂s)(u2) ≥ −2u+ 2|∇u|2

and therefore

2
∫∫

Sr

|∇u|2dγ ≤
∫∫

Sr

(∆− ∂s)(u2)dγ + 2
∫∫

Sr

u dγ =: I1(r) + I2(r)

for any 0 < r < 2. We next estimate each of the integrals I1 and I2.

1) Using that (∆ + ∂s)G(x,−s) = 0 for s < 0 and integrating by part in x-
variables, we obtain

I1(r) =
∫∫

Sr

(∆− ∂s)(u2)G(x,−s)dxds = −
∫ 0

−r2

∫
Rn

∂s(u2G(x,−s))dxds

≤
∫

Rn

u(·,−r2)2dγ−r2
.

Note that there are no spatial boundary terms after integration by parts in x-
variables, because of the growth assumption on u.

2) To estimate I2(r) notice that (∆− ∂s)(u(x, s)− s) ≥ 0, which implies that∫
Rn

(u(·, s1)− s1) dγs1 ≤
∫

Rn

(u(·, s2)− s2) dγs2

for any −r2 < s2 ≤ s1 ≤ 0, 0 < r < 2. Consequently, for such s1, s2∫
Rn

u(·, s1) dγs1 ≤ r2 +
∫

Rn

u(·, s2) dγs2 ≤ r2 +
[∫

Rn

u(·, s2)2 dγs2

]1/2

and therefore

I2(r) ≤ 2r4 + 2r2
[∫

Rn

u(·,−r2)2dγ−r2
]1/2

≤ 3r4 +
∫

Rn

u(·,−r2)2dγ−r2
, 0 < r < 2.

Now, collecting the estimates for I1 and I2 for r = 1, we immediately obtain
(1.1). Further,

2
∫∫

S1

|∇u|2dγ ≤ 2
∫∫

Sr

|∇u|2dγ ≤ 3r4 + 2
∫

Rn

u(x,−r2)2dγ−r2
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for any 1 ≤ r < 2. Taking the infimum of the latter quantity for all such r, we
obtain ∫∫

S1

|∇u|2dγ ≤ 24 + inf
s∈[−4,−1]

∫
Rn

u(·, s)2dγs,

which gives (1.2). Finally, (1.3) is a simple consequence from (1.2). �

Proposition 1.2 (cf. Lemma 2.1 in [CJK02]). Let u ≥ 0, (∆ − ∂s)u ≥ −1 in S1

and Ω := {u > 0}. Suppose ∫∫
Ω∩S1

|∇u|2dγ = α <∞

and ∫∫
Ω∩S1/4

|∇u|2dγ ≥ α

256
.

Then
|Ω ∩ (S1/2 \ S1/4)| ≥ c0 > 0,

provided α > α0 for sufficiently large α0. Here

|E| = γ(E) =
∫∫

E

dγ, for E ⊂ Rn × (−∞, 0).

To prove this proposition, we will need the log-Sobolev inequality of Gross
[Gro75].

Lemma 1.1 (Log-Sobolev inequality). For any f ∈ L2(Rn, dν) with ∇f ∈ L2(Rn, dν)
one has

(1.4)
∫

Rn

f2 log f2 dν ≤
∫

Rn

f2 dν log
∫

Rn

f2 dν + 2
∫

Rn

|∇f |2 dν.

Here dν = (2π)−n/2e−|x|
2/2dx = dγ−1/2 is the standard Gaussian measure.

We will also need the following corollary from the log-Sobolev inequality.

Lemma 1.2. For f ∈ L2(Rn, dν) with ∇f ∈ L2(Rn, dν) let ω = {|f | > 0}. Then

(1.5) log
1
|ω|

∫
Rn

f2 dν ≤ 2
∫

Rn

|∇f |2 dν,

where |ω| = ν(ω) =
∫

ω
dν.

Proof. Let us define ψ(y) = y log y for y > 0 and ψ(0) = 0. Then the log-Sobolev
inequality can be rewritten as∫

Rn

ψ(f2) dν ≤ ψ

(∫
Rn

f2 dν

)
+ 2

∫
Rn

|∇f |2 dν.

On the other hand, since ψ is convex on [0,∞), by Jensen’s inequality we have

1
|ω|

∫
Rn

ψ(f2) dν ≥ ψ

(
1
|ω|

∫
Rn

f2 dν

)
.

Combining these inequalities and using the identity λψ
(a
λ

)
− ψ(a) = a log

1
λ

, we

arrive at (1.5). �
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Proof of Proposition 1.2. We want to apply (1.5) to function u(·, s) with respect to
the Gaussian measure dγs, for s ∈ [−( 1

2 )2,−( 1
4 )2]. So, let

ω(s) := {u(·, s) > 0}.

Then

log
1

|ω(s)|

∫
Rn

u(·, s)2 dγs ≤ C

∫
Rn

|∇u(·, s)|2 dγs.

We now use Proposition 1.1, more precisely the estimate (1.2). Then

α

256
≤
∫

S1/4

|∇u|2 dγ ≤ C + C inf
s∈[−(1/2)2,−(1/4)2]

∫
Rn

u(·, s)2dγs

Now, if α > 512C then∫
Rn

u(·, s)2dγs ≥ α

512C
for all s ∈ [−( 1

2 )2,−( 1
4 )2]

On the other hand, since ∫∫
S1

|∇u|2 dγ = α,

we have ∫
Rn

|∇u(·, s)|2 dγs ≤ 16α,

for any s ∈ (−1, 0) except a set of linear measure at most 1/16. Since the length of
the interval [−( 1

2 )2,−( 1
4 )2] is 3/16 we obtain that for a set of s ∈ [−( 1

2 )2,−( 1
4 )2] of

linear measure at least 1/8 we must have

log
1

|ω(s)|
α

512C
≤ 16αC

which implies that

|ω(s)| ≥ e−213C2

and consequently

|Ω ∩ (S1/2 \ S1/4)| ≥
e−213C2

8
.

�

Proposition 1.3 (cf. Lemma 2.3 in [CJK02]). Let u ≥ 0, (∆ − ∂s)u ≥ −1 in S1,
and Ω = {u > 0}. Suppose ∫∫

Ω∩S1

|∇u|2 dγ = α <∞.

Suppose also there exists λ > 0 such that

|Ω ∩ (S1/2 \ S1/4)| < (1− λ)|S1/2 \ S1/4|.

Then there exists µ < 1, depending only λ, such that∫∫
Ω∩S1/4

|∇u|2 dγ ≤ µ

∫∫
Ω∩S1

|∇u|2 dγ,

provided α > α0 for sufficiently large α0.
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Proof. Since |Ω∩ (S1/2 \S1/4)| =
∫ −(1/4)2

−(1/2)2
|ω(s)|ds it follows that |ω(s)| ≤ (1−λ/2)

for s in a set Eλ ⊂ [−( 1
2 )2,−( 1

4 )2] of the linear measure |Eλ| ≥ (λ/2)|S1/2 \ S1/4|.
Thus by Lemma 1.1

(1.6)
∫

Rn

u(·, s)2 dγs ≤ Cλ

∫
Rn

|∇u(·, s)|2 dγs, s ∈ Eλ,

where Cλ = −C/ log(1− λ/2). Now, if∫∫
Ω∩S1/4

|∇u|2 dγ ≤ α/2

then there is nothing to prove. Otherwise we apply Proposition 1.1, which gives
α

2
≤ C + C inf

s∈[−(1/2)2,−(1/4)2]

∫
Rn

u(·, s)2 dγs

and if α > α0 for sufficiently large α0, we will have
α

4C
≤
∫

Rn

u(·, s)2 dγs ≤ Cλ

∫
Rn

|∇u(·, s)|2 dγs

for all s ∈ Eλ. This implies that∫∫
Ω∩(S1/2\S1/4)

|∇u|2 dγ ≥ α|Eλ|
4CCλ

and the proposition follows with µ = (1− 3λ/32CCλ). �

Proposition 1.4 (cf. Lemma 2.4 in [CJK02]). Let u± and A± be as in Theorem I.
There exists an absolute constant C0 such that if A±(r) ≥ C0 for all r ∈ [ 14 , 1], then

Φ′(r) ≥ −C

(
1√
A+(r)

+
1√
A−(r)

)
Φ(r).

for all r ∈ [ 14 , 1]. (Recall that Φ(r) = r−4A+(r)A−(r).)

Proof. We start with the same remark as in the proof of Lemma 2.4 in [CJK02].
The functions A± are continuous nondecreasing functions, hence Φ′ is the sum of
a nonnegative singular measure and an absolutely continuous part and we need to
obtain the bound on Φ′ at the points r that are Lebesgue point both for both A±.
Thus, we assume that r is such that

B±(r) =
∫

Rn

|∇u±(·,−r2)|2 dγ−r2
<∞.

For the sake of notational convenience assume that r = 1 and abbreviate A± =
A±(1), B± = B±(1). Then

Φ′(1)
Φ(1)

= −4 + 2
B+

A+
+ 2

B−

A−

Next, by inequality (1.1) in Proposition 1.1, we have

2A+ ≤ C1 + C1

[∫
Rn

u+(·,−1)2 dγ−1

]1/2

+
∫

Rn

u+(·,−1)2dγ−1

for some absolute constant C1. Before we proceed, observe that u+(·,−1) cannot
vanish identically on Rn if the constant C0 in the statement of Proposition 1.4 is
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sufficiently large. Indeed, otherwise we would have A+ ≤ C1/2, which would be a
contradiction. Similarly, u−(·,−1) cannot vanish identically on Rn. Then

ω± = {u±(·,−1) > 0}

are nonempty. The eigenvalue inequality for ω+ now says

λ+

∫
ω+

f2 dγ−1 ≤
∫

ω+

|∇f |2 dγ−1,

which implies

(1.7) 2A+ ≤ C1 + C1

√
B+/λ+ +B+/λ+.

Clearly we have a similar inequality for u−. The proof will follow now by simple
arithmetic from the eigenvalue inequality of Beckner, Kenig and Pipher [BKP98],
which says

(1.8) λ+ + λ− ≥ 2λ0 = 1,

where λ0 is the eigenvalue corresponding to the halfspace1. We have the following
several cases:

1) B+ ≥ 2A+ (or B− ≥ 2A−). Then

Φ′(1)
Φ(1)

= −4 + 2
B+

A+
+ 2

B−

A−
≥ 0.

2) B+ ≤ 2A+ and λ+ ≥ 1 (or B− ≤ 2A− and λ− ≥ 1). Then by (1.7), if
A+ ≥ C0 is sufficiently large

2A+ ≤ C2

√
A+ +B+.

It follows then
Φ′(1)
Φ(1)

≥ −4 + 2
B+

A+
≥ − 2C2√

A+
.

3) B± ≤ 2A± and λ± ≤ 1. Then by (1.7), if A± ≥ C0 are sufficiently large

2λ±A± ≤ C3

√
A± +B±.

It follows then
Φ′(1)
Φ(1)

= −4 + 2
B+

A+
+ 2

B−

A−
≥ − 2C2√

A+

≥ −4 + 4(λ+ + λ−)− C3

(
1√
A+

+
1√
A−

)
.

Then the estimate for Φ′(1) follows now from (1.8). In the exact same way we prove
the estimate for Φ′(r) for any r ∈ [ 14 , 1] and the proof is complete. �

As we already mentioned, the propositions above constitute the technical core
of the proof of Theorem I. The rest of the proof is of purely arithmetic nature and
is exactly the same as in [CJK02]. Let

A±k = A±(4−k), b±k = 44kA±k .

1Since [BKP98] is not published, we refer to Section 2.4 in [CK98] for the proof of (1.8).
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One should treat b±k as the correctly rescaled versions of A±k , which is explained as
follows. If u ≥ 0 satisfies (∆−∂s)u ≥ −1 then the rescaling ur(x, s) := r−2u(rx, r2s)
will satisfy exactly the same inequalities and one will have

(1.9)
∫∫

S1

|∇ur|2 dγ = r−4

∫∫
Sr

|∇u|2dγ.

Note also that
Φ(4−k) = 44kA+

k A
−
k .

Proposition 1.5 (cf. Lemma 2.8 in [CJK02]). There exists an absolute constant
C such that if b±k ≥ C, then

44A+
k+1A

−
k+1 ≤ A+

k A
−
k (1 + δk) with δk =

C√
b+k

+
C√
b−k

Proof. The proof in [CJK02] is obtained from Lemma 2.4 by arithmetic arguments.
Using Proposition 1.4 instead, we will obtain the proof of Proposition 1.5. �

Proposition 1.6 (cf. Lemma 2.9 in [CJK02]). There exist an absolute constant
ε > 0 such that if b±k ≥ C0 and 44A+

k+1 ≥ A+
k , then A−k+1 ≤ (1− ε)A−k .

Proof. See the proof in [CJK02]. We just use Propositions 1.2 and 1.3 instead of
their counterparts, Lemmas 2.1 and 2.3, respectively. �

Proof of Theorem I. As already noted in [CJK02], Theorem 1.3 there is obtained
from Lemmas 2.8 and 2.9 by pure arithmetic. Using Propositions 1.5 and 1.6
instead, we obtain the proof of Theorem I. �

2. The local case

Theorem II (Localized Almost Monotonicity Formula). Suppose now we have two
continuous L2 functions u±(x, s) in the lower parabolic half-cylinder Q−3 , which
satisfy

u± ≥ 0, (∆− ∂s)u± ≥ −1, u+ · u− = 0 in Q−3 .

Let ψ ∈ C∞0 (Rn) be a cutoff function in x such that

0 ≤ ψ ≤ 1, suppψ ⊂ B2, ψ
∣∣
B1

= 1.

Then if w±(x, s) = u±(x, s)ψ(x) for (x, s) ∈ S3, the functional

Φ(r) := r−4A+(r)A−(r), where A±(r) :=
∫∫

Sr

|∇w±|2 dγ,

satisfies

Φ(r) ≤ Cn

(
1 + ‖u+‖2L2(Q−3 )

+ ‖u−‖2L2(Q−3 )

)2

, 0 < r ≤ 1,

where Cn depends only on the dimension n and the cutoff function ψ.

The proof follows the lines of the proof of Theorem I. However, we need to
state the appropriate scaled versions of the estimates, since we want to have the
dependence on constants M and n only.
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Proposition 2.1 (cf. Proposition 1.1). Let u ≥ 0 and (∆ − ∂s)u ≥ −1 in Q−3 .
Let ψ ∈ C∞0 (Rn) be a cutoff function as in Theorem II and w(x, s) = u(x, s)ψ(x),
(x, s) ∈ S3. Then for 0 < r ≤ 1,∫∫

Sr

|∇w|2dγ ≤ CMr4 + r2
[∫

Rn

w(·,−r2)2dγ−r2
]1/2

(2.1)

+
1
2

∫
Rn

w(·,−r2)2dγ−r2
,

(2.2)
∫∫

Sr

|∇w|2dγ ≤ CMr4 + CM inf
s∈[−4r2,−r2]

∫
Rn

w(·, s)2dγs,

and

(2.3)
∫∫

Sr

|∇w|2dγ ≤ CMr4 +
CM

r2

∫∫
S2r\Sr

w2dγ,

with CM , depending only on M = ‖u‖L2(Q−2 ), the dimension n only and the cutoff
function ψ.

Proof. We revisit the proof of Proposition 1.1. First note that for the function
w(x, s) we have the following inequality

(∆− ∂s)w =ψ(∆− ∂s)u+ u∆ψ + 2∇ψ∇u
≥ −1 + u∆ψ + 2∇ψ∇u,

where the last two terms are supported outside the ball B1, where ψ ≡ 1. Next,
we obtain

(∆− ∂s)(w2) = 2|∇w|2 + 2w(∆− ∂s)w

≥ 2|∇w|2 + 2w(−1 + u∆ψ + 2∇ψ∇u)
≥ 2|∇w|2 − 2w + 2u2ψ∆ψ +∇(u2)∇(ψ2),

where again the last two terms are supported outside B1. We also notice that the
standard energy estimates in this case implies

(2.4)
∫∫

Q−2

|∇u|2 ≤ Cn + Cn

∫∫
Q−3

u2.

This, together with the estimate of the Gaussian function

(2.5) 0 ≤ G(x, t) ≤ Cn

tn/2
e−1/4t ≤ Cn,mt

m, |x| ≥ 1, t > 0,

which holds with any m > 0, will help us to control those additional extra terms
that come from the cutoff function.

We then estimate

2
∫∫

Sr

|∇w|2dγ ≤
∫∫

Sr

(∆− ∂s)(w2)dγ + 2
∫∫

Sr

w dγ

−
∫∫

Sr

[2u2ψ∆ψ +∇(u2)∇(ψ2)]dγ =: I1(r) + I2(r) + I3(r)

for any 0 < r ≤ 2.

1) Arguing precisely as in the proof of Proposition 1.1, we obtain

I1(r) ≤
∫

Rn

w2(·,−r2)dγ−r2
, 0 < r ≤ 2.
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2) To estimate I2(r), consider the auxiliary function ŵ(x, s) = w(x, s)−s, which
satisfies

(∆− ∂s)ŵ ≥ u∆ψ + 2∇ψ∇u.
Integrating by parts, for any −4 ≤ s2 ≤ s1 < 0, we have∫

Rn

ŵ(x, s1)dγs1 −
∫

Rn

ŵ(x, s2)dγs2 = −
∫ s1

s2

∫
Rn

(∆− ∂s)ŵ dγ

≤ −
∫ s1

s2

∫
B2\B1

[u∆ψ + 2∇ψ∇u]G(x,−s)dx ds

≤ CM |s2|,

where we have used the inequalities (2.4) and (2.5) with m = 1 in the last step.
Consequently, for −r2 ≤ s2 ≤ s1 < 0 with 0 < r ≤ 2, we have∫

Rn

w(·, s1) dγs1 ≤ CMr2 +
∫

Rn

w(·, s2) dγs2 ≤ CMr2 +
[∫

Rn

w(·, s2)2 dγs2

]1/2

and therefore

I2(r) ≤ CMr4 + 2r2
[∫

Rn

w(·,−r2)2dγ−r2
]1/2

≤ (CM + 1)r4 +
∫

Rn

w(·,−r2)2dγ−r2
, 0 < r ≤ 2.

3) Using the energy estimate (2.4) and estimate (2.5) on G outside B1 with
m = 1, we easily obtain

I3(r) ≤ CMr4, 0 < r ≤ 2

Thus, collecting the estimates for I1, I2, I3 for r = 1, we will immediately obtain
(2.1). Further, we have∫∫

Sr

|∇w|2dγ ≤
∫∫

Sρ

|∇w|2dγ =
1
2
[I1(ρ) + I2(ρ) + I3(ρ)]

≤ CMρ4 +
∫

Rn

w(·,−ρ2)2dγ−ρ2
,

for any r ≤ ρ ≤ 2r and 0 < r ≤ 1. Taking infimum by all such ρ, we obtain (2.2)
and consequently (2.3). �

The next five propositions are obtained one after another from Proposition 2.1
exactly as Propositions 1.2–1.6 are obtained from Proposition 1.1. The only differ-
ence is that we have to work with the scaled versions all the time and the function
w = uψ instead of u. Also, all involved constants are now not absolute but depend
on M , n, and ψ (which we indicate by subscript M). Because of this, the proofs
are omitted.

Proposition 2.2 (cf. Proposition 1.2). Let u(x, s) and w(x, s) = u(x, s)ψ(x) be as
in Proposition 2.1 and Ω := {w > 0}. Suppose∫∫

Ω∩Sr

|∇w|2dγ = αr4 <∞
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and ∫∫
Ω∩Sr/4

|∇w|2dγ ≥ αr4

256
,

for some 0 < r ≤ 1. Then

|Ω ∩ (Sr/2 \ Sr/4)| ≥ cMr2 > 0,

provided α > αM for sufficiently large αM . (Here |E| = γ(E) =
∫∫

E
dγ, for

E ⊂ Rn × (−∞, 0).) �

Proposition 2.3 (cf. Proposition 1.3). Let u(x, s) and w(x, s) = u(x, s)ψ(x) be as
in Proposition 2.1 and Ω := {w > 0}. Suppose∫∫

Ω∩Sr

|∇w|2 dγ = αr4 <∞,

for some 0 < r ≤ 1. Suppose also there exists λ > 0 such that

|Ω ∩ (Sr/2 \ Sr/4)| < (1− λ)|Sr/2 \ Sr/4|.
Then there exists µ < 1, depending on λ, M , n, and ψ such that∫∫

Ω∩Sr/4

|∇w|2 dγ ≤ µ

∫∫
Ω∩Sr

|∇w|2 dγ,

provided α > αM for sufficiently large αM . �

Proposition 2.4 (cf. Proposition 1.4). Let w± and A± be as in Theorem II. There
exists a constant CM such that if A±(ρ) ≥ CM for all ρ ∈ [ 14r

2, r2], 0 < r ≤ 1 then

Φ′(ρ) ≥ −CMr2

(
1√
A+(ρ)

+
1√
A−(ρ)

)
Φ(ρ).

for all ρ ∈ [ 14r
2, r2]. �

Hereafter, M = max
{
‖u±‖L2(Q−3 )

}
. In the next propositions

A±k = A±(4−k), b±k = 44kA±k ,

where A± are evaluated for w± as in Theorem II. Recall also that

Φ(4−k) = 44kA+
k A

−
k .

Proposition 2.5 (cf. Proposition 1.5). There exists a constant CM such that if
b±k ≥ CM , then

44A+
k+1A

−
k+1 ≤ A+

k A
−
k (1 + δk) with δk =

CM√
b+k

+
CM√
b−k

. �

Proposition 2.6 (cf. Proposition 1.6). There exist a constant εM > 0 such that if
b±k ≥ CM and 44A+

k+1 ≥ A+
k , then A−k+1 ≤ (1− εM )A−k . �

Proof of Theorem II. Similarly to the local case, Propositions 2.2–2.6 imply the
following inequality:

(2.6) Φ(r) ≤ CM (1 +A+(1) +A−(1))2, 0 < r ≤ 1.

To obtain more explicit dependence on the constant M = max{‖u±‖L2(Q−3 )}, we
can argue as follows. Define

ũ± =
u±

1 +M
.
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Then (∆ − ∂s)ũ ≥ −1 in Q−3 , ‖ũ‖L2Q−3
≤ 1 and we can apply the inequality (2.6)

to ũ± with M = 1. This will give

Φ(r, ũ±) ≤ Cn(1 +A+(1, ũ+) +A−(1, ũ−))2,

where Cn depends only on the dimension n and the cutoff function ψ. Hence

1
(1 +M)4

Φ(r) ≤ Cn

(
1 +

1
(1 +M)2

A+(1) +
1

(1 +M)2
A−(1)

)2

and consequently

Φ(r) ≤ Cn

(
(1 +M)2 +A+(1) +A−(1)

)2
.

Finally, revisiting the proof of Proposition 2.1 and tracing the constants, we can
establish the following more precise version of (2.3), namely∫∫

Sr

|∇w|2dγ ≤ Cn(1 +M)r4 +
1

3r2

∫∫
S2r\Sr

w2dγ.

For r = 1 this gives
A±(1) ≤ Cn(1 +M2)

and therefore
Φ(r) ≤ Cn(1 +M)4.

This completes the proof of the theorem. �

3. Another variant of the formula

Under assumptions on the growth of functions u± near the origin, it is possible
to obtain more precise versions of Theorems I and II.

Theorem III. Let u±, ψ, w±, A± and Φ be as in Theorem II. Assume additionally
that |u±(x, s)| ≤ Cε(|x|2 + |s|)ε/2 for (x, s) ∈ Q−3 for some 0 < ε ≤ 1. Then

Φ(r) ≤ (1 + ρε)Φ(ρ) + CMρε, 0 < r ≤ ρ ≤ 1,

where CM depends only on M = ‖u+‖L2(Q−3 )+‖u−‖L2(Q−3 ), n, ψ, ε and the constant
Cε.

Proof. We will use the notation

A±(r) =
∫∫

Sr

|∇w±|2dγ, B±(r) =
∫

Rn

|∇w±(·,−r2)|2dγ−r2
.

Then Φ(r) = r−4A+(r)A−(r) and therefore

Φ′(r) = −4r−5A+(r)A−(r) + r−4A′+(r)A−(r) + r−4A+(r)A′−(r)

= 2r−5[r2B+(r)A−(r) + r2B−(r)A+(r)− 2A+(r)A−(r)],

where we used that
A′±(r) = 2rB±(r).

1) We now claim that the additional growth assumption implies that

(3.1) A±(r) ≤ CMr2ε
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Indeed, let w be either w+ or w−. Then by estimate (2.3) in Proposition 2.1, we
have ∫∫

Sr

|∇w|2dγ ≤ CMr4 +
CM

r2

∫∫
S2r\Sr

w2dγ

≤ CMr4 + CMr2ε +
∫∫

S2r\(Q−2r∪Sr)

w2G(x,−s)dx ds

≤ CMr2ε + CMr2
∫ ∞

r

G(ξ, r2)dξ ≤ CMr2ε

This implies (3.1).
2) Let now ω±(s) = {w±(·, s) > 0} and let λ±(r) be the largest number such

that

λ±(r)
∫

ω±(−r2)

f2dγ−1 ≤
∫

ω±(−r2)

|∇f |2dγ−1

for any f . Recall also that by the eigenvalue inequality of Beckner, Kenig and
Pipher [BKP98]

λ+(r) + λ−(r) ≥ 1.

Scaling, we also have

λ±(r)
∫

ω±(−r2)

f2dγ−r2
≤ r2

∫
ω±(−r2)

|∇f |2dγ−r2
.

Then the inequality (2.1) in Proposition 2.1 implies

(3.2) 2λ±(r)A±(r) ≤ CMλ±(r)r4 + 2r3
√
B±(r)λ±(r) + r2B±(r).

Based now on (3.2), we obtain estimates on Φ′(r) by considering three possibil-
ities.

Case 1: r2B+(r) ≥ 2A+(r) or r2B−(r) ≥ 2A−(r). Then from the formula above
we easily have Φ′(r) ≥ 0.

Case 2: r2B±(r) ≤ 2A+(r) and λ±(r) ≤ 1. Then by (3.2) we have

2λ±(r)A±(r) ≤ CMr4 + Cr2
√
A±(r) + r2B±(r).

Using now that λ+(r) + λ−(r) ≥ 1 one then finds

Φ′(r) = 2r−5
{
[r2B+(r)− 2λ+(r)A+(r)]A−(r) + [r2B−(r)− 2λ−(r)A−(r)]A+(r)

}
≥ −CMr−1[A+ (r) +A−(r)]− Cr−3

[√
A+(r)A−(r) +

√
A−(r)A+(r)

]
≥ −CMr−1+2ε − Cr−1

√
Φ(r)

[√
A+(r) +

√
A−(r)

]
≥ −CMr−1+2ε − Cr−1+ε

√
Φ(r)

Case 3: r2B±(r) ≤ 2A+(r) and λ+(r) ≥ 1 (or λ−(r) ≥ 1). Then by (3.2) we
have

2A+(r) ≤ CMr4 + Cr2
√
A+(r) + r2B+(r).
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One then finds

Φ′(r) = 2r−5
{
[r2B+(r)− 2A+(r)]A−(r) + r2B−(r)A+(r)

}
≥ 2r−5[r2B+(r)− 2A+(r)]A−(r)

≥ −CMr−1A−(r)− Cr−3
√
A+(r)A−(r)

≥ −CMr−1+2ε − Cr−1
√

Φ(r)
√
A−(r)

≥ −CMr−1+2ε − Cr−1+ε
√

Φ(r)

So, we see that in all cases we obtain the inequality

Φ′(r) ≥ −CMr−1+2ε − Cr−1+ε
√

Φ(r)

It is now easy to show that
d

dr

[(
Φ(r) + CMr2ε

)1/2
+ CMrε

]
≥ 0

and that
Φ(ρ) ≤ (1 + rε)Φ(r) + CMrε, 0 < r ≤ ρ ≤ 1,

arguing precisely as at the end of the proof of Theorem 3.8 in [CJK02]. �

4. An Application

In a typical application, the functions u± are the positive and negative parts
of a solution of a two-phase free boundary problem, see e.g. [ACF84,Caf88,Caf95,
CJK02]. In yet another class of problems (obstacle-type problems), the mono-
tonicity formulas can be applied to the positive and negative parts (∂eu)± of the
directional derivatives of solutions, see e.g. [CKS00,CPS04, Sha03,Ura01]. In this
section we give an application of the latter kind in a parabolic free boundary prob-
lem related to the caloric continuation of the heat potentials, see [CPS04].

Let u(x, s) be a solution of the equation

(4.1) ∆u− ∂su = f(x, s)χΩ in Q−1 ,

where

(4.2) Ω = Q−1 \ {u = |∇u| = 0}

and f satisfies

(4.3) sup
Q−1

|f(x, s)| ≤ K <∞.

We assume that u and ∇u are continuous functions and that (4.1) is satisfied in
the sense of distributions. In the formulation of Duvaut [Duv73], the famous Stefan
problem of the melting of the ice can be written as (4.1)–(4.3) with f ≡ 1. In that
model, however, both u and ∂su are nonnegative (∂su meaning the temperature)
which significantly simplifies the problem. Without sign assumptions on u and ∂su
the problem has been studied recently by Caffarelli, Petrosyan, and Shahgholian
[CPS04] for f ≡ 1. This paper makes an extensive use of the monotonicity formula
of Caffarelli [Caf93] for caloric functions in disjoint domains. We would like to show
here that some of the results in [CPS04] (if not all) can be extended to the case of
f(x, s) satisfying the following additional assumption:

(4.4) |f(x, t)− f(y, s)| ≤ L(|x− y|2 + |t− s|)1/2,
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i.e. that f is Lipschitz continuous with respect to the parabolic distance. In fact,
this condition can be relaxed to

|∇xf | ≤ L, and f is Dini-continuous w.r.t. the parabolic distance.

The Dini-continuity is needed for interior C2
x ∩ C1

t -estimates for solutions of the
equation (∆− ∂s)w = f(x, s), see for instance Notes to Chapter IV in Lieberman’s
book [Lie96].

Particularly, we prove the following result.

Theorem 4.1. Let u be a solution of (4.1)–(4.4) with ‖u‖L∞(Q−1 ) ≤ M . Then
there exists a constant C = C(K,L,M, n) such that

sup
Q−1/4∩Ω

|∂xixj
u| ≤ C, sup

Q−1/4∩Ω

|∂su| ≤ C, i, j = 1, . . . , n

Observe that the C1,1
x ∩ C0,1

s -regularity is optimal for solutions of (4.1), as fχΩ

may be discontinuous. Also, the boundedness of both u and (∆−∂s)u alone implies
that D2u, ∂su ∈ Lp

loc(Q
−
1 ) for any 1 < p <∞. Consequently u is C1,α

x ∩C0,(1+α)/2
s -

regular for any 0 < α < 1. However, to push the regularity to C1,1
x ∩ C0,1

s , one
needs to use the structure of the right-hand side.

The proof of Theorem 4.1 is based on the following growth lemma.

Lemma 4.1. Let u be a solution of (4.1)–(4.4) with ‖u‖L∞(Q−1 ) ≤ M . Suppose
additionally that u = |∇u| = 0 at the origin. Then there exists C = C(K,L,M, n)
such that

sup
Q−r

|u| ≤ Cr2, 0 < r < 1.

But first, we need to established the following fact, which will allow us to apply
the almost monotonicity formula.

Lemma 4.2. Let u be as in Theorem 4.1. Then for any spatial direction e, the
functions v± = (∂eu)± = max{±∂eu, 0} satisfy

(∆− ∂s)v± ≥ −L in Q−1 .

Proof. In the sense of distributions, we have that

(∆− ∂s)(∂eu) = ∂e(∆− ∂s)u = ∂ef ≥ −L in Ω.

This implies that

(∆− ∂s)v+ ≥ −L in Ω+ = Ω ∩ {∂eu > 0}.
Moreover,

v+ = 0 on Q−1 \ Ω+.

To conclude from here that v+ satisfies

(∆− ∂s)v+ ≥ −L in Q−1
is just one step, since v+ is a limit of truncations vδ = max{v, δ} for δ > 0 which
obviously satisfy the inequality (∆− ∂s)vδ ≥ −L as the maximums of two subsolu-
tions.

The proof for v− is similar. �

We are now ready to prove Lemma 4.1.
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Proof of Lemma 4.1. The proof is based on a compactness argument and follows
the lines of the proof of Theorem in [CPS04].

Let P = P(K,L,M, n) denote the family of all functions u satisfying the as-
sumptions in Lemma 4.1. Further, for u ∈ P denote.

(4.5) Sk = Sk(u) = sup
Q−

2−k

|u|, k = 0, 1, . . . .

The statement of the lemma is equivalent to saying that

(4.6) Sk ≤ C 2−2k, k = 0, 1, . . . ,

for some constant C depending on the class P only. We claim that

(4.7) Sk+1 ≤ max
{

2−2Sk, 2−4Sk−1, . . . , 2−2(k+1)S0, C 2−2(4k+1)
}
,

for C = C(P). A simple inductive argument then shows that (4.7) implies (4.6).
So the lemma will follow once we establish (4.7).

Now, suppose that (4.7) fails. Then there exists a sequence of solutions uj ∈ P
and integers kj such that

(4.8) Skj+1(uj) ≥ j2−2(kj+1), Skj+1(uj) ≥ 2−2Skj
(uj).

Define ũj as

ũj(x, t) =
uj(2−kjx, 2−2kj t)

Skj+1(uj)
in Q−1 .

Then

sup
Q−1

|(∆− ∂s)(ũj)| ≤
2−2kjK

Skj+1(uj)
≤ 4K

j
→ 0,(4.9)

sup
Q−1/2

|ũj | = 1, (by (4.5)),(4.10)

sup
Q−1

|ũj | ≤
Skj (uj)
Skj+1(uj)

≤ 4 (by (4.8)),(4.11)

ũj(0, 0) = |∇ũj(0, 0)| = 0.(4.12)

Now by (4.9)–(4.12) we will have a subsequence of ũj converging in C1,α
x ∩C0,α

t (Q−1 )
to a nonzero caloric function u0 in Q−1 , satisfying u0(0, 0) = |∇u0(0, 0)| = 0. More-
over, from (4.10), we will have

(4.13) sup
Q−1/2

|u0| = 1.

For any spatial unit vector e define

v = ∂eu0, vj = ∂euj , ṽj = ∂eũj .

Then, over a subsequence, ṽj converges in C0,α
x ∩C0,α

t (Q−1 ) to a function v satisfying
(∆− ∂s)v = 0.

To proceed, for a fixed cut-off function ψ(x) with ψ|B1/2 = 1 and suppψ ⊂ B3/4

and u ∈ P denote

Φ(r, (∂eu)±ψ) =
1
r4
A(r; (∂eu)+ψ)A(r; (∂eu)−ψ),
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where A are defined as in Theorem II. By Lemma 4.2, we may apply Theorem II
to v±j = (∂euj)±, which will give the estimate

(4.14) Φ(r, v±j ψ) ≤ C0

for a constant C0 depending on the class P and ψ only. Let now ψj(x) = ψ(2−kjx).
Then rescaling the estimate (4.14), we obtain

(4.15) Φ(1; ṽjψj) ≤
(

2−2kj

Skj+1

)4

Φ(2−kj ; vjψ) ≤ C0

(
2−2kj

Skj+1

)4

for kj large enough. Since ψj = 1 in B2kj−1 , we will have

|∇(ṽjψj)|2 ≥ |∇ṽj |2χB1 .

Hence for ε > 0 (small and fixed) we have

cn,ε

∫ −ε

−1

∫
B1

|∇ṽ±j |
2 dx ds ≤

∫ 0

−1

∫
B1

|∇ṽ±j ψj |2G(x,−s) dx ds = A(1, ṽ±j ψj).

This estimate, in combination with Poincare’s inequality, gives∫ −ε

−1

∫
B1

|ṽ±j −M±(s)|2 dx ds ≤ Cn

∫ −ε

−1

∫
B1

|∇ṽ±j |
2 dx ds ≤ Cn,εA(1, ṽ±j ψj),

where M±
j (s) denotes the corresponding mean value of ṽ±j on the s-section.

Using this and (4.15), we will have(∫ −ε

−1

∫
B1

|ṽ+
j −M+

j (s)|2 dx ds
)(∫ −ε

−1

∫
B1

|ṽ−j −M−
j (s)|2 dx ds

)
≤ Cn,ε Φ(1, vjψ) ≤ Cn,ε

(
2−2kj

Skj+1

)4

.

Using (4.8) and letting j →∞ (and then ε→ 0), we obtain

(4.16)
∫ 0

−1

∫
B1

|v+ −M+(s)|2
∫ 0

−1

∫
B1

|v− −M−(s)|2 = 0,

where M±(s) denotes the corresponding mean value of v± on s-sections over B1.
Obviously, (4.16) implies that either of v± is equivalent to M±(s) in Q−1 and is
thus independent of the spatial variables. Let us assume v− = M−(s). Then
−∂sv

− = (∆ − ∂s)v− = 0, i.e. M− is constant in Q−1 . Since v(0, 0) = 0, we must
have M− = 0, i.e. v ≥ 0 in Q−1 . Hence by the minimum principle v ≡ 0 in Q−1 .
Since v = ∂eu0, and e is an arbitrary direction, we conclude that u0 is constant in
Q−1 . Also u0(0, 0) = 0 implies that the constant must be zero, i.e u0 ≡ 0 in Q−1 .
This contradicts (4.13) and the lemma is proved. �

Finally, we prove Theorem 4.1.

Proof of Theorem 4.1. For (x0, s0) ∈ Ω ∩Q−1/4 let

d = d−(x0, s0) = sup{r : Q−r (x0, s0) ⊂ Ω ∩Q−1 }.
Consider then two possibilities:

1) If d ≥ 1/2 then by the parabolic interior Schauder estimates (see Theorem 4.9
in Chapter IV of [Lie96]) ∂xixju(x0, s0) and ∂su(x0, s0) are bounded by a constant
depending only on K, L, M and n.
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2) If d < 1/2 then the parabolic boundary of Q−d (x0, s0) must contain a point
from ∂Ω and therefore by Lemma 4.1

|u(x, s)| ≤ Cd2 in Q−d (x0, s0),

where C = C(K,L,M, n). Now consider the rescaling

ud(x, s) =
u(x0 + d x, s0 + d2s)

d2
in Q−1 .

It satisfies (∆− ∂s)ud = fd(x, s) in Q−1 , where

fd(x, s) = f(x0 + dx, s0 + d2s).

Moreover, |ud| ≤ C in Q−1 . Hence, applying by the parabolic interior Schauder
estimates to ud we obtain that ∂xixj

ud(0, 0) = ∂xixj
u(x0, s0), and ∂sud(0, 0) =

∂su(x0, s0) are bounded by a constant depending only on K, L, M , n, which is the
desired result. The theorem is proved. �

Remark 4.1. In the elliptic case there is a more direct proof of the corresponding
analogue of Theorem 4.1 by using the elliptic almost monotonicity formula, see
Shahgholian [Sha03]. Moreover, the result in [Sha03] is proved for a certain class of
right hand sides (Lipschitz in x and semimonotone in u) , which includes also the
so-called two-phase obstacle problem, see Ural’tseva [Ura01].
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