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Abstract

The paper mainly concerns with functions f , analytic in S : |Imz| < 1
and bounded by a constant M > 1. We state sharp estimates for supR |f ′|
under the additional condition supR |f | ≤ 1. Using these estimates we
deduce well-known Bernstein’s inequality and some its generalizations for
entire functions of a finite type with respect to an arbitrary proximate
order.

Parallely we investigate also the next extremal problem, related to the
mentioned class of functions: if f(ζ) = f(ζ) = 1, for some ζ ∈ S, what is
the minimal value of supR |f |?

Also we present the description of extremal functions for these prob-
lems.
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1 Introduction

For a given M > 1 consider the class B = BM (S) of functions f analytic in the
strip S : |Imz| < 1 and satisfying the conditions

sup
S
|f | ≤M, sup

R
|f | ≤ 1.

By the compactness of the class B, there exists a <∞ such that |f ′(0)| ≤ a for
each f ∈ B. Moreover, since the class B is closed under translations along R,
we may conclude that supR |f ′| ≤ a for each f ∈ B. Obviously, the sharpest a
is

a = a(M) = sup
f∈BM (S)

|f ′(0)|

One of the main purposes of this paper is to investigate the value of a(M) and
to describe extremal functions, attaining these values.

The problem was suggested by Norair Arakelian and to some extent was
considered in [1].
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Parallelly we investigate the next extremal problem.
For given A > 1 and ζ ∈ S consider the class HA,ζ of functions f , analytic

in S and satisfying the conditions

sup
S
|f | ≤ A, f(ζ) = f(ζ) = 1.

Let us denote
ε = ε(A, ζ) = inf{sup

R
|f | : f ∈ HA,ζ}.

The problem is to investigate the smallness of ε, its asymptotic behavior as A
tends to ∞, and to describe the extremal functions, attaining ε.

This problem was posed in [2]. The estimates for ε and extremal functions
may be applied to construct an approximation of the Cauchy kernel.

The contest of paper is as follows. In section 2 we state the main theorems,
estimating a and ε. Besides we deduce Bernstein’s inequality [4] from the esti-
mates of a(M). Sections 3, 4, 5 are basic for the proofs of the main theorems,
located in section 6. In section 7 we describe extremal functions of the investi-
gated problems. In concluding section 8 we give an application of the estimates
of the quantity a(M) to prove an asymptotic analogue of Bernstein’s inequality
for entire functions of a finite type with respect to an arbitrary proximate order.

The author would like to express thanks to Norair Arakelian for suggestion of
the problems investigated here and for guidance during the work on this paper.

2 Main theorems

Theorem 2.1 The quantity a(M) = supf∈BM (S) |f ′(0)| satisfies the inequalities

log(M +
√

M2 − 1) ≤ a(M) ≤ log(M +
√

M2 + 1), M > 1. (1)

Particularly

lim
M→∞

a(M)
logM

= 1. (2)

Besides, the exact value of a(M) may be expressed in terms of an elliptic integral:

a(M) =
M2

M2 + 1

1
∫

0

dt
√

(1− t2)(1− k′2M t2)
, k′M =

M2 − 1
M2 + 1

. (3)

Remark. It is easy to establish for a(M) the estimate a(M) ≤ c logM ,
where c is an absolute constant, by using the 2-constant theorem. See the proof
of lemma 6 in [1]. But our purpose is to describe a(M) exactly and therefore
we have to use more delicate methods. However, the lower estimate in (1) does
not need such methods. Simply consider sin ai(M)z, where ai(M) = log(M +√
M2 − 1), for which | sin ai(M)z| ≤ cosh ai(M) = M, z ∈ S, sin |ai(M)x| ≤

1, x ∈ R and (sin ai(M)z)′
∣

∣

z=0
= ai(M).
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Corollary 2.2 (Bernstein’s inequality) If g is an entire function of expo-
nential type σg ≤ σ, such that

sup
R
|g| ≤ 1,

then its derivative g′ satisfies the inequality

sup
R
|g′| ≤ σ.

Proof. First we recall that for such g the following estimate is fulfilled:
|g(z)| ≤ exp(σ|y|) for each z = x+ iy. Therefore functions gh(z) = g(hz) belong
to the classes Bexp(σh)(S), for each h > 0 and hence

sup
R
|g′| = 1

h
sup
R
|g′h| ≤

a(exp(σh))
h

.

Tending h→ +∞ and using asymptotic equality (2), we receive the result.

Theorem 2.3 The quantity ε(A, ζ) = inf {supR |f | : f ∈ HA,ζ} satisfies the fol-
lowing inequalities

1
cosh ηae

≤ ε(A, ζ) ≤ 1
cosh ηai

(4)

where η = Imζ and numbers ae and ai are chosen such that sinh ae/ cosh ηae =
A = cosh ai/ cosh ηai. Particularly

lim
A→∞

ε(A, ζ)

2A−
η

1−η
= 1 (5)

Remark. As it is noted in [2], the upper estimate in (4) may be easily
obtained by consideration of the function f(z) = cos ai(z − ξ)/ cosh ηai, where
ξ = Reζ.

3 Symmetrization

We will prove Theorems 2.1 and 2.3 in the following four sections.
Let us begin with some evident notes. First we note that ε(A, ζ) = ε(A, iη),

where η = Imζ. Therefore, with no loss of generality we assume in further that
ζ = iη and moreover 0 ≤ η < 1.

Next we note that to attain ε(A, ζ) it is sufficient to take inf by f ∈ HA,ζ
that are symmetric with respect to R, i.e. f(z) = f(z) for each z ∈ S . Indeed,
if f(z) is replaced by f1(z) = 1

2 [f(z) + f(z)], z ∈ S then supR |f1| ≤ supR |f |.
Further we claim that

ε(A, ζ) = c0(M, ζ)−1 for M = A/ε(A, ζ),

where
c0(M, ζ) = sup

f∈B0

f(ζ),
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B0 =
{

f ∈ BM (S) : f(z) = f(z), z ∈ S and f(ζ) > 0
}

.

It follows from the possibility to transfer any symmetric f 6= 0 from HA,ζ to B0

by dividing it on supR |f |, and on the other hand, to transfer any g, g(ζ) 6= 0,
from B0 to HA,ζ by dividing it on g(ζ), if g(ζ) > ε(A, ζ)−1.

Symmetrization is applicable also to the quantity a(M). Namely,

a(M) = sup
f∈B1

|f ′(0)|,

where

B1 =
{

f ∈ BM (S) : f(z) = f(z), f(−z) = −f(z), z ∈ S and f ′(0) > 0
}

so to attain a(M) it is enough to take sup by such f that are symmetric with
respect to the real and imaginary axes. Indeed, if f ∈ BM (S) and arg f ′(0) = θ
then, setting successively

f0(z) = e−iθf(z), f1(z) =
1
2

[f0(z) + f0(z)], f2(z) =
1
2

[f1(z)− f1(−z)], z ∈ S

we come to such a function f2 ∈ B1 that

f ′2(0) = f ′1(0) = Ref ′0(0) = |f ′(0)|.

This implies the statement.

4 The covering mapping p

To solve the extremal problems from introduction we use the harmonic measure
principle, combined with the symmetrization from the previous section.

Let EM = DM\I, where DM is the open disk |z| < M and I = [−1, 1]. The
boundary of the doubly-connected region EM consists of the segment I and the
circle ΓM : |z| = M . Denote by ωM the harmonic measure of ΓM with respect
to the region EM (see, for example [7]). We define ωM also on I as identically
equal to 0 and thus obtain continuous subharmonic function in DM .

Consider now the class of all functions f , analytic in S and symmetric with
respect to R , i.e. f(z) = f(z) for all z ∈ S, which is equivalent to the inclusion
f(R) ⊂ R. By the Schwarz reflection principle, this class may be identified with
the class of all functions, analytic in S+ = {z ∈ S : Imz > 0} and having on R
real boundary values. Functions of this type belong to the class BM (S) iff

f(R) ⊂ I, f(S+) ⊂ DM ,

where f(R) is the set of boundary values on R of the function f . Under these
conditions, by the harmonic measure principle it follows that

ωM (f(z)) ≤ Imz, z ∈ S+ (6)
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since Imz is the harmonic measure of the line Imz = 1 with respect to the strip
S+. This inequality follows also from observation that ωM (f(z)) is a bounded
subharmonic function in S+, with boundary values not exceeding 1 on Imz = 1
and equal to 0 on Imz = 0, so that Imz is its harmonic majorant. Hence, by
the maximum principle, the equality sign in (6) for some z ∈ S+ implies the
equality sign for all such z.

Let us describe now all functions f that possess this property. For this
purpose consider the universal covering surface E∞M of the annual region EM .
Since the boundary of EM consists of two continuums, E∞M may be identified
with the strip S+. Then the covering mapping

p : S+ −→ EM

may be constructed as follows. There exist a number τ = τ(M) and a con-
formal mapping of the rectangle Q+

τ : |Rez| < τ, 0 < Imz < 1 to the region
E+
M = {w ∈ EM : Imw > 0}, that carries the upper side of the rectangle to

the semicircle Γ+
M = {w ∈ ΓM : Imw ≥ 0} and the lower side to the segment

I. Since this conformal mapping takes real values on vertical sides of Q+
τ , it

may be analytically continued by the reflection principle to the whole strip
S+. The resulting mapping is the covering mapping p : S+ → EM . It has a
primitive period 4τ and is symmetric with respect to the imaginary axis, i.e.
p(−z) = −p(z), z ∈ S+. Besides,

p(R) = I, p({Imz = 1}) = ΓM ,

where p(R) and p({Imz = 1}) are the boundary values of p on R and Imz = 1
respectively. It implies immediately the equality

ωM (p(z)) = Imz, z ∈ S+, (7)

since the both sides are bounded harmonic functions, having the same boundary
values.

Let now a function f be such that there is equality sign in (6) for some and
consequently all z ∈ S+. We claim that there exists ξ ∈ R such that f(z) =
p(z + ξ), z ∈ S+. Indeed, equality in (6) implies particularly the inequality
0 < ωM (f(z)) < 1, z ∈ S+, which is equivalent to inclusion f(S+) ⊂ EM . From
universality of the covering p there exists a lifting ˜f : S+ → S+ of the mapping
f along p, which satisfies the equality f = p ◦ ˜f . But then

Im ˜f(z) = ωM (p ◦ ˜f(z)) = ωM (f(z)) = Imz

for all z ∈ S+, which is possible only if ˜f(z) = z + ξ for some real constant ξ.
Therefore f(z) = p(z + ξ), as claimed.

5 Main Lemmas

The covering mapping p described in previous section and its shifting on −τ
along R are natural extremal functions for a and ε, as it is seen from the
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following lemma. Besides the quantities a(M) and c0(M, ζ), we introduce the
quantity

c1(M, ζ) = sup {|f(ζ)| : f ∈ B1}

for ζ = iη, 0 ≤ η < 1.

Lemma 5.1 Let ζ = iη, 0 ≤ η < 1. Then
(i) c0(M, ζ) = p(ζ + τ);
(ii) c1(M, ζ) = 1

i p(ζ);
(iii) a(M) = p′(0) = ∂

∂η c1(M, iη)
∣

∣

η=0+
= ( ∂∂vωM (iv)

∣

∣

v=0+
)−1.

For the proof we use the additional lemma.

Lemma 5.2 The harmonic measure ωM is symmetric with respect to the real
and imaginary axes. It strongly increases along all radiuses argw = θ as |w|
increases, w ∈ EM .

Proof. The statement that ωM is symmetric is an immediate consequence of
symmetry of both EM and ΓM . Therefore the only last statement of the lemma
needs to be proved.

For 0 < t < 1 consider the function ωM (tw). It is harmonic in DM\[− 1
t ,

1
t ]

and so is ωM . Comparing the boundary values on ΓM and [− 1
t ,

1
t ] we conclude

that ωM (tw) ≤ ωM (w).
Proof of lemma 5.1. We suppose that p is continued by the Schwarz reflection

principle to the whole strip S. Then p ∈ B1 and p(·+ τ) ∈ B0, as it follows from
the construction of p in the previous section.

(i) If f ∈ B0, then by (6) and (7) we have that

ωM (f(ζ)) ≤ ωM (p(ζ + τ))

and the conclusion of (i) follows from lemma 5.2, since arg f(ζ) = arg p(ζ+τ) = 0
and moreover 1 ≤ p(ζ + τ) < M .

(ii) If f ∈ B1, then again by (6) and (7) we will have that

ωM (f(ζ)) ≤ ωM (p(ζ))

and again the conclusion of (ii) follows from lemma 5.2.
(iii) First we note that all numbers c1(M, ζ), ζ = iη, are attained on the

same extremal function p. Therefore, if f ∈ B1, then

f ′(0) = lim
η→0+

f(iη)− f(0)
iη

= lim
η→+0

|f(iη)|
η

≤ lim
η→0+

c1(M, iη)
η

= lim
η→0+

c1(M, iη)− c1(M, 0)
η

=
∂

∂η
c1(M, iη)

∣

∣

η=0+

and
p′(0) =

∂

∂η
c1(M, iη)

∣

∣

η=0+
.
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We used that f(0) = c1(M, 0) = 0; 1
i f(iη) = |f(iη)|, for sufficiently small η,

because f ′(0) > 0 and 1
i f(iη) ∈ R; 1

i p(iη) = c1(M, iη) by (ii). Therefore

a(M) = p′(0).

The last equality sign in (iii) follows from (7). Indeed,

1 = lim
η→0+

ωM (p(iη))
η

= (
∂

∂v
ωM (iv)

∣

∣

v=0+
)−1p′(0).

It remains to note that ∂
∂vωM (iv)

∣

∣

v=0+
truly exists: the part of ωM in the

upper semi-disk D+
M may be continued harmonically trough the interval (−1, 1)

by the reflection principle. The derivative needed simply coincides with the
partial derivative of the obtained harmonic function along the imaginary axis
in 0.

The next lemma relates to estimates of c0(M, ζ), c1(M, ζ) , where ζ = iη,
by elementary functions. But first we give estimates for the harmonic measure
ωM .

Let E iM and EeM (i-interior, e-exterior) be regions, obtained by removing
the segment I from the interiors of the ellipses ΓiM and ΓeM with focuses in
±1 touching the circle ΓM inside and outside of it respectively, so that E iM ⊂
EM ⊂ EeM . By the function z(w) = w +

√
w2 − 1, the inverse of the Zhukovski

function w(z) = 1
2 (z + z−1), the regions E iM and EeM are mapped onto rings

1 < |z| < ai(M) and 1 < |z| < ae(M), where

ai(M) = log(M +
√

M2 − 1) and ae(M) = log(M +
√

M2 + 1).

Then, if ωiM and ωeM denote the harmonic measures of ΓiM and ΓeM with respect
to E iM and EeM respectively, we obtain that

ωiM (w) =
log |z(w)|
ai(M)

, w ∈ E iM , and ωeM (w) =
log |z(w)|
ae(M)

, w ∈ EeM .

By virtue of the Carleman extension principle (see [7]) we have that

ωM (w) ≤ ωiM (w), w ∈ E iM , and ωeM (w) ≤ ωM (w), w ∈ EM . (8)

Now we can easily prove the following lemma.

Lemma 5.3 If ζ = iη, 0 ≤ η < 1, then the following inequalities hold
(i) cosh ηai(M) ≤ c0(M, ζ) ≤ cosh ηae(M);
(ii) sinh ηai(M) ≤ c1(M, ζ) ≤ sinh ηae(M).

Proof. The points c0(M, ζ) and ic1(M, ζ) belong to the level line ωM (w) = η,
as it follows from lemma 5.1. and equality (7). On the other hand, (8) and
lemma 5.2 imply that the level line ωM (w) = η is placed inside of the level
line ωeM (w) = η and outside of the level line ωiM (w) = η, which , according to
elementary properties of the Zhukovski function are ellipses with focuses in ±1,
and semi-axes cosh ηae(M), sinh ηae(M), and cosh ηai(M), sinh ηai(M). This
implies inequalities (i) and (ii)
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6 Proof of main theorems

Proof of inequality (1). From lemma 5.1 (iii) and lemma 5.3 (ii) we obtain that

a(M) = lim
η→0+

c1(M, iη)
η

,

sinh ηai(M)
η

≤ c1(M, iη)
η

≤ sinh ηae(M)
η

and tending η → 0+ we conclude that

ai(M) ≤ a(M) ≤ ae(M),

which proves (1).
Proof of inequality (4). Let us apply the equality

ε(A, ζ) = c0(M, ζ)−1, M = A/ε(A, ζ)

and the lemma 5.3 (i). Then

1
cosh ηae(M)

≤ ε(A, ζ) ≤ 1
cosh ηai(M)

and moreover
sinh ae(M)

cosh ηae(M)
≤ A ≤ cosh ai(M)

cosh ηai(M)
,

which imply that ae(M) ≤ ae and ai ≤ ai(M) and hence (4) is also proved.
Asymptotic equalities (2) and (5) are immediate corollaries of (1) and (4)

respectively.
It remains to prove the equality (3). To do this we go back to section 4

and review the construction of the universal covering mapping p : S+ → EM ,
which is based on the conformal mapping Q+

τ → E+
M that carries vertices z =

−τ + i, −τ, τ, τ + i to w = −M, −1, 1, M in the mentioned order. Moreover,
the value τ = τ(M) is defined by this condition uniquely. To construct this
conformal mapping, recall (see [3]) that the elliptic integral

z(ζ) =
1
K ′

ζ
∫

0

dt
√

(1− t2)(1− k2t2)
, 0 < k < 1

maps conformally the upper half-plane Imζ > 0 to the rectangle Q+
τ for τ = K

K′ ,
where K and K ′ are complete elliptic integrals of parameters k and k′, i.e.

K =

1
∫

0

dt
√

(1− t2)(1− k2t2)
,

K ′ =

1
∫

0

dt
√

(1− t2)(1− k′2t2)
=

1/k
∫

1

dt
√

(t2 − 1)(1− k2t2)
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and k′ is conjugate to k by k2 + k′2 = 1. This mapping carries points ζ =
− 1
k , −1, 1, 1

k to the vertices z = −τ + i, −τ, τ, τ + i of Q+
τ . Further, the

function

ζ(w) =
M + 1/M

w/M +M/w

maps conformally the region E+
M to the half-plane Imζ > 0, carrying the points

w = −M, −1, 1, M to ζ = − 1
k , −1, 1, 1

k respectively, where k = kM = 2M
M2+1 .

Indeed, it is elementary consequence of the properties of the Zhukovski function.
The composition z(ζ(w)) of the mentioned functions is the inverse to p conformal
mapping from E+

M to Q+
τ . Therefore for ωM we receive the expression

ωM (w) = Imz(ζ(w)) =
1
K ′

Im

ζ(w)
∫

0

dt
√

(1− t2)(1− k2t2)
, k = kM .

Now we are able to prove (2.3). By lemma 5.1 (iii)

a(M)−1 =
∂

∂v
ωM (iv)

∣

∣

v=0+
= lim
v→0+

ωM (iv)
v

=

=
1
K ′

Im lim
v→0+

1
v

ζ(iv)
∫

0

dt
√

(1− t2)(1− k2t2)
=
ζ ′(0)
K ′

=
M2 + 1
M2

· 1
K ′

,

and hence (3) follows.

7 Extremal functions

The following two theorems describe the extremal functions for a and ε.

Theorem 7.1 The unique extremal functions f ∈ BM (S) for which |f ′(0)| =
a(M) are functions of the view

f(z) = λp(z), z ∈ S,

where λ is a constant with |λ| = 1

Theorem 7.2 The unique extremal function g ∈ HA,ζ , ζ = iη, for which
supR |g| = ε(A, ζ) is the function

g(z) = ε(A, ζ)p(z + τ), z ∈ S.

To prove these theorems we need the following lemma.

Lemma 7.3 For any w, |w| < M, the following inequality holds

ωM (w) ≥ ωM (|w|).
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Proof. By the Riesz decomposition theorem (see [6], theorem 3.14) the mea-
sure ωM , which is subharmonic in DM and harmonic in EM = DM\I admits
the representation

ωM (w) = 1−
∫

I

gM (w, t)dµ(t), |w| < M,

where gM (w, t) is the Green function of the region DM with a pole in t, i.e.

gM (w, t) = log
∣

∣

∣

∣

M2 − wt
M(w − t)

∣

∣

∣

∣

;

µ is a positive Borel measure on the segment I, in this case symmetric with
respect to 0, since ωM is itself symmetric. Altogether we obtain the represen-
tation

ωM (w) = 1−
1
∫

0

[gM (w, t) + gM (w,−t)] dµ(t), |w| < M.

Observe now that

gM (w, t) + gM (w,−t) = gM2(w2, t2)

and always holds inequalities

gM1(w1, t1) ≤ gM1(|w1|, |t1|), |w1|, |t1| < M1.

As a result we have

ωM (w) = 1−
1
∫

0

gM2(w2, t2)dµ(t) ≥ 1−
1
∫

0

gM2(|w|2, t2)dµ(t) = ωM (|w|),

as stated.
Proof of theorem 7.1. First we assume that a function f ∈ BM (S) for which

|f ′(0)| = a(M) belongs also to the class B1 and particularly f(0) = 0 and
f ′(0) = a(M). Then we consider the quotient

q(z) =
f(z)
p(z)

in the rectangle Qτ : |Rez| < τ, |Imz| < 1. It is analytic since p has the
unique and simple zero in z = 0 and f(0) = 0. Moreover, q(0) = f ′(0)/p′(0) =
a(M)/a(M) = 1. On the other hand we claim that lim supz→z∗ |q(z)| ≤ 1,
where z ∈ Qτ and z∗ ∈ ∂Qτ . By the maximum modulus principle this would
imply that q(z) = 1 for all z ∈ Qτ , which is equivalent to the equality f = p.

So, let z∗ ∈ ∂Qτ . By the symmetry of |q| with respect to the real and
imaginary axes, with no loss of generality we may assume that either Imz∗ = 1
or z∗ = τ + iη for some 0 ≤ η < 1. In the first case limz→z∗ |p(z)| = M and
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lim supz→z∗ |f(z)| ≤ M and therefore lim supz→z∗ |q(z)| ≤ 1. In the second
case, by (6) and (7) and also lemma 7.3 we have

ωM (|f(z∗)|) ≤ ωM (f(z∗)) ≤ ωM (p(z∗)) = ωM (|p(z∗)|),

since 1 ≤ p(z∗) < M . By lemma 5.2 we conclude that |f(z∗)| ≤ p(z∗) and
hence limz→z∗ |q(z)| = |q(z∗)| ≤ 1 and the consideration of the case f ∈ B1 is
completed.

Consider now the general case. If |f ′(0)| = a(M) and arg f ′(0) = θ then
symmetrizing f as in section 3 we obtain

f0(z) = e−iθf(z), f1(z) =
1
2

[f0(z) + f0(z)], f2(z) =
1
2

[f1(z)− f1(−z)], z ∈ S

and f2 ∈ B1, f ′2(0) = a(M). By the considerations above f2 = p and therefore

1
2

[f1(z)− f1(−z)] = p(z), z ∈ S.

Tend z → z∗, Imz∗ = ±1. Then |p(z)| → M . But 1
2 [f1(z)− f1(−z)] may tend

to M only if [p(z)− f1(z)]→ 0, and [p(z) + f1(−z)]→ 0, since |f1(z)| ≤M and
|f1(−z)| ≤ M . Hence p − f1 tends to 0 as z → z∗, Imz∗ = ±1. But p − f1 is
bounded and we obtain that f1 = p. Similarly, from the equality

1
2

[f0(z) + f0(z)] = p(z), z ∈ S

we obtain that f0 = p and therefore f(z) = eiθp(z), z ∈ S.
Proof of theorem 7.2. A function g ∈ HA,ζ , symmetric with respect to R

and such that supR |g| = ε(A, ζ), admits evidently a representation

g(z) = ε(A, ζ)f(z), z ∈ S,

where f ∈ B0 and f(ζ) = c0(M, ζ). Particularly f satisfies the condition

ωM (f(ζ)) = ωM (p(ζ)) = Imζ.

By section 4 it is possible only if f(z) = p(z+ ξ) for some real constant ξ, which
can be chosen from interval [−2τ, 2τ) since p is 4τ -periodical. But f ∈ B0 and
hence f(iη) = p(ξ + iη) > 0 which implies that ξ = τ . We obtain that

g(z) = ε(A, ζ)p(z + τ), z ∈ S.

The general case may be derived from the considered case as it was done in the
proof of the previous theorem.

8 Application: an asymptotic analogue of Bern-
stein’s inequality

To make quantities a(M) more flexible and applicable we continue as follows.
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Let D be a simply connected region, symmetric with respect to the real axis
R. We define corresponding classes BM (D) for M > 1 to be the classes of all
functions f , analytic in D and satisfying the conditions

sup
D
|f | ≤M, sup

D∩R
|f | ≤ 1

By the Riemann mapping theorem there exists such a conformal mapping w :
D −→ S that w(R) ⊂ R. Then to each f ∈ BM (D) we have the unique
g ∈ BM (S) corresponded such that f = g ◦ w. Since f ′ = (g′ ◦ w)w′ we obtain
that

|f ′(x)| ≤ a(M)
hD(x)

, x ∈ D ∩R, (9)

where
hD(x) = 1/w′(x)

for x ∈ D∩R. This quantity is well-defined, since w is unique up to translations
along R. By an analogy with the conformal radius, we call hD(x) a conformal
semi-width of D in x. For example, the conformal semi-width of the strip
Sh : |Imz| < is equal to h in each real x.

Under some restrictions on D we are able to replace the conformal semi-
width in (9) by a metric characteristic of D. Namely, symmetric D is said to be
a L-strip in the sense of Warschawski if it is given by inequalities x > x0, |y| <
θD(x), where θD is a positive continuous function with the following regularity
condition at infinity:

lim
x1,x2→+∞

θD(x1)− θD(x2)
x1 − x2

= 0.

Warschawski’s theorem (see [8], theorem X) states that

lim
x→+∞

θD(x)
hD(x)

= 1.

In further we will use the notation α ∼ β to indicate that α/β → 1. Thus
θD(x) ∼ hD(x) as x→ +∞. By (9) we conclude that

lim sup
x→+∞

|f ′(x)|θD(x) ≤ a(M) (10)

for each f ∈ BM (D). Note that the quantity in right-hand side of (10) is
the sharpest possible for the class BM (D), since there are periodic extremal
functions f ∈ BM (S) with f ′(0) = a(M) and therefore there is a function
g ∈ BM (D) and a sequence xn → +∞ such that g′(xn) = a(M)/hD(xn).

Further note, that (10) remains valid, if f is not from the class BM (D), but
satisfies the conditions

lim sup
z→∞,z∈D

|f(z)| ≤M, lim sup
x→+∞

|f(z)| ≤ 1.

12



Below we apply (10) to prove an asymptotic analogue of Bernstein’s inequal-
ity for entire functions of a finite type with respect to an arbitrary proximate
order ρ(r). But first recall a proximate order.

A function ρ(r) ≥ 0, r ≥ 0 is said to be a proximate order (see [5], chapter II,
§2) iff it is continuously differentiable and there exists limit ρ = limr→+∞ ρ(r)
and 0 = limr→+∞ ρ′(r)r log r. If we denote ν(r) = rρ(r), this conditions are
equivalent to the condition

ρ = lim
r→+∞

rν′(r)
ν(r)

.

Therefore we would operate rather with ν and call it a proximate growth. For
our purposes we may assume that ρ > 0 and, additionally, that ν is monotony
increasing and ν(0) = 0.

Further, it is said an entire function f to have ν-type σf iff

σf = lim sup
r→+∞

logMf (r)
ν(r)

,

where Mf (r) = sup|z|=r |f(z)|.

Theorem 8.1 If g is an entire function of ν-type σf ≤ σ and

lim sup
x→+∞

|g(x)| ≤ 1

then its derivative g′ satisfies the asymptotic inequality

lim sup
x→+∞

|g′(x)|
ν′(x)

≤ σ. (11)

Remark. It is unknown to author if there is any growth ν, for which the σ
in the right-hand side of (11) is not sharp. However, if ν(r) = rn for a positive
integer n, the inequality is sharp. Simply consider the function g(z) = exp(izn).
If we replace σ by cνσ, where cν is a constant depending only ν, the proof will
be easier, the Cauchy inequality is enough for this purpose. See [2], the proof of
theorem 3. From this inequality follows the necessary condition on a function
f , bounded on R, to be uniformly approximable on R by bounded on R entire
functions of finite ν-types. Namely, the composition f ◦ µ must be uniformly
continuous on R, where µ is the inverse of ν, continued on R as an odd function.
This is also a sufficient condition (see [2], theorem 3).

Proof. With no loss of generality we may assume that |g(x)| ≤ 1 for x ≥ 0.
We intend to apply an asymptotic inequality for appropriately chosen L-

strips D. More exactly, for any λ > 1 and t > 0 we construct such L-strips
D = Dλ,t : x > 0, |y| < θλ,t(x) that

θλ,t(x) ∼ tx

λρν(x)
∼ t

λν′(x)
as x→∞
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and |g(z)| ≤ exp(σt) if z = x+ iy ∈ D and x > x0 for some fixed x0. Then by
(10) we would have that

lim sup
x→+∞

|g′(x)|
ν′(x)

≤ λa(exp(σt))
t

and tending λ → 1+, t → +∞ would obtain in right-hand side the required σ.
Therefore we need only to construct L-strips Dλ,t with described properties.

For this purpose consider that the quantity

hg(ϕ) = lim sup
r→+∞

log |g(reiϕ)|
ν(r)

,

called the generalized indicator function (with respect to ν). Obviously, hg(ϕ) ≤
σg. Moreover, the indicator function is ρ-trigonometric convex. For the given g
we have also hg(0) = 0. Altogheter it gives for |ϕ| ≤ π

2ρ ,

hg(ϕ) ≤ σ| sin ρϕ|.

But we are able to state something stronger:

Lemma 8.2 Under conditions of theorem 8.1, for each λ > 1 there exists rλ
such that

log |g(reiϕ)| ≤ λσν(r)| sin ρϕ|

if |ϕ| ≤ α0 = min{ π2ρ ,
π
2 } and r > rλ.

Suppose at moment that this lemma is already proved.
Define L-strips Dλ,t in the polar coordinates as follows

Dλ,t = {z = reiϕ : |ϕ| < α0, r < r(ϕ)}

where r(ϕ) is determined uniquely from the equality

ν(r(ϕ)) =
t

λ| sin ρϕ|
if ϕ 6= 0 and r(0) = +∞. (12)

Since r(ϕ) increases monotonely as |ϕ| decreases, in the Cartesian coordinates
Dλ,t is given by

Dλ,t : x > 0, |y| < θλ,t(x),

where the function θλ,t satisfies the equality

θλ,t(x(ϕ)) = |y(ϕ)|

for x(ϕ) = r(ϕ) cosϕ and y(ϕ) = r(ϕ) sinϕ. Therefore,

θλ,t(x(ϕ)) =
t|y(ϕ)|
t

∼ tr(ϕ)
λρν(r(ϕ))

as |ϕ| → 0+
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Further, recall that for proximate growths ν there exist limits (see [5], chapter
II, theorem 2.2)

lim
r→∞

ν(κr)
ν(r)

= κρ (13)

uniformly on every compact set of κ. Particularly, if r′/r → 1, then ν(r′)/ν(r)→
1. Therefore

θλ,t(x(ϕ)) ∼ tx(ϕ)
λρν(x(ϕ))

.

But if |ϕ| runs α0 downward to 0, x(ϕ) runs x(α0) upward to +∞, without any
skips. So, we conclude that

θλ,t(x) ∼ tx

λρν(x)
∼ t

λν′(x)
as x→ +∞.

Further, by construction and lemma 8.2

log |g(reiϕ)| ≤ λσν(r)| sin ρϕ| ≤ σt ν(r)
ν(r(ϕ))

≤ σt

if rλ < r < r(ϕ), where rλ is that of lemma 8.2. Therefore

|g(z)| ≤ exp(σt) for z ∈ Dλ,t such that x > rλ.

Thus, Dλ,t possesses prescribed properties. But it remains to check the
regularity condition for θλ,t at infinity, to be assured that Dλ,t is true L-strip. It
is easy to see that θλ,t is differentiable and consequently the regularity condition
is equivalent to

lim
x→+∞

θ′λ,t(x) = 0,

which is in its turn equivalent to

lim
ϕ→+0

y′(ϕ)
x′(ϕ)

= lim
ϕ→+0

r′(ϕ) sinϕ+ r(ϕ) cosϕ
r′(ϕ) cosϕ− r(ϕ) sinϕ

= 0.

The terms r′(ϕ) cosϕ and −r(ϕ) sinϕ in the denominator of the second frac-
tion have the same signs. Removing the second term, we only strengthen the
condition. Then, the fraction becomes equal to tanϕ + r(ϕ)/r′(ϕ). Obviously,
tanϕ→ 0 and we have to prove that r′(ϕ)/r(ϕ)→∞. We derive it from (12).
Indeed, denote by µ the inverse function to ν. Then

lim
r→∞

rµ′(r)
µ(r)

=
1
ρ
.

By (12) r(ϕ) = µ(t/(λ sin ρϕ)). Differentiating this equality, we obtain that
r′(ϕ)/r(ϕ) ∼ C/ϕ for some constant C, as ϕ → 0+. The regularity of θλ,t at
infinity is proved and hence Dλ,t is true L-strip.

To complete the proof of theorem 8.1 it remains to prove lemma 8.2.
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Proof of lemma 8.2. By [5], chapter II, theorem 5.1 there exists a function
f , analytic in |ϕ| ≤ α0 such that

f(z) = rρ(r)−ρ(1 + o(1)), (14)

where o(1) tends to 0 uniformly as r → ∞. Additionally we may assume that
f(z) = f(z), otherwise we consider the symmetrization f1(z) = 1

2 [f(z) + f(z)].
Denote

U(z) = Im(f(z)zρ)

in the angle |ϕ| ≤ π
2ρ . We claim that

U(z) = rρ(r) sin ρϕ(1 + o(1)) (15)

Indeed if f(z) = u(z) + iv(z) then

U(z) = rρu(z) sin ρϕ+ rρv(z) cos ρϕ.

Besides, (14) exactly means that

u(z) = rρ(r)−ρ(1 + o(1)), v(z) = o(rρ(r)−ρ) (16)

and we note that (15) will be proved if we prove for v(z) the stronger represen-
tation

v(z) = | sin ρϕ|o(rρ(r)−ρ). (17)

For this purpose consider v in disks ∆r with center at r and radius κr, where
κ = sinα0. By (8.8), for an arbitrarily chosen δ > 0 there exist rδ such that
|v(z)| ≤ δrρ(r)−ρ if r > rδ. Moreover, in the view of (13) we may assume that
|v| ≤ δrρ(r)−ρ in the whole disk ∆r. Further, it is easy to see that v = 0 on R.
Therefore, applying the 2-constant theorem, we receive that

|v(r + iy)| ≤ 4
π
δrρ(r)−ρ arctan

|y|
r

for each r > rδ and |y| ≤ κr. This is equivalent to (17) and hence (15) is proved.
To finish the proof, let us fix λ′ such that 1 < λ′ < λ and consider the

difference q(z) = log |g(z)| − λ′σU(z) in the closed angle 0 ≤ ϕ ≤ α0. On the
sides of this angle q(z) is bounded above since lim supr→∞ |q(z)| < 0 on these
sides. Further, q(z) is subharmonic function of finite ν-type. Since the measure
of the considered angle is less than π/ρ, we may apply the Phragmén-Lindelöf
principle and conclude that q(z) ≤ C for some constant C. Additionally we
have that q(x) ≤ 0 for each real x. Once again applying the 2-constant theorem
this time for the angle we obtain that q(z) ≤ C1ϕ. Thus we conclude that

log |g(reiϕ)| ≤ λ′σ(1 + o(1))ν(r) sin ρϕ+O(ϕ) ≤ λσν sin ρϕ

for 0 ≤ ϕ ≤ α0 and sufficiently large r. Symmetrically this inequality is also
valid for the angle −α0 ≤ ϕ ≤ 0.

This concludes the proof of the theorem.
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