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O Main objectives of study
o Regularity of u
o Structure and regularity of the free boundary

[(u) =omi{x e M|u=ae}



The thin obstacle problem

The thin obstacle problem arises in a variety of situations of interest
for the applied sciences:



The thin obstacle problem

The thin obstacle problem arises in a variety of situations of interest
for the applied sciences:

O It presents itself in elasticity, when an elastic body is at rest,
partially laying on a surface M.



The thin obstacle problem

The thin obstacle problem arises in a variety of situations of interest
for the applied sciences:

O It presents itself in elasticity, when an elastic body is at rest,
partially laying on a surface M.

~

e
)

It models the flow of a saline concentration through a
semipermeable membrane when the flow occurs in a preferred
direction.



The thin obstacle problem

The thin obstacle problem arises in a variety of situations of interest
for the applied sciences:

O It presents itself in elasticity, when an elastic body is at rest,
partially laying on a surface M.

O It models the flow of a saline concentration through a
semipermeable membrane when the flow occurs in a preferred
direction.

O It also arises in financial mathematics in situations in which the
random variation of an underlying asset changes
discontinuously.
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The thin obstacle problem arises in a variety of situations of interest
for the applied sciences:

O It presents itself in elasticity, when an elastic body is at rest,
partially laying on a surface M.

O It models the flow of a saline concentration through a
semipermeable membrane when the flow occurs in a preferred
direction.

O It also arises in financial mathematics in situations in which the
random variation of an underlying asset changes
discontinuously.

O Obstacle problem for the fractional Laplacian (-A)5,0 <s <1
u-¢=0, (-A*u=0, (u-¢)(-A)*u=0 inR"

The thin obstacle problem corresponds to s = %
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Regularity of the minimizer u: smooth M

O Generally, it is easy to realize that u
is not smooth in Q, as it may develop
a Lipschitz corner across M.
Explicit example:

u(x) = Re(xp_1 +ilxy|)3/?

O However, on ‘M and consequently on
QL UM, uis better:
u e Ch*(Q, u M) for some « > 0.

o [Caffarelli’79]: for flat M, using semiconvexity in tangential
directions to M.

o [Kinderlehrer'81]: For smooth M (or variable coefficient equations)
by using a filling holes method.

o [Uraltseva’85]: Less regular M, De Giorgi type method.

o In dimension n = 2 this was known at least by [Lewy’70] (C!) and
[Richardson’78] (C11/2),
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For flat M and ¢ = 0: [Athanasopoulos-Caffarelli’'04]
o Using semiconvexity (convexity on M) and the monotonicity of

~
)

O

1 [Vw|? B
Y(r) = p L; X2’ w=0u

akin to Alt-Caffarelli-Friedman monotonicity formula.

O A different proof is given by [Athanasopoulos-Caffarelli-Salsa’08]
using monotonicity of Almgren’s frequency function:

v g [Vul?
N = Jas, u?
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O Nonzero ¢ (still flat 2M): [Caffarelli-Salsa-Silvestre’08]
o Using truncated Almgren’s frequency function

d(r) = re’g‘%logmax{LB UZ,T””}, v=u-¢

o Finer properties can be studied by looking at finer truncations
[Garofalo-P.’09]

o d ; 2k
_ r 2 ,n—1+2k+0
Pyp(r) =re ar log max {LBY Vi,V } )

Uk = u — Pr(x) - [p(x") = Pr(x",0)],

where APy = 0 kills the k-th Taylor polynomial of ¢ at 0, k > 2,
6>0
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O Straighten M ~ B} = {x;; = 0} n B; and consider the minimizer
of

Vu-Ax)Vu, u(-,0)>¢ onB
By

O Then v(x) = u(x) — ¢(x’,0) satisfies the complementarity
conditions

Lav =div(AVv) = f = —La¢ in By
v>0, viAVY + v AVY =20, v(vEAVY + v AVY) =0 on B].

O Technical difficulty: co-normals A (x)v may not be aligned with
normals v on Bj.

O Easily rectified with a diffeomorphism (as regular as M). Thus,
w.l.o.g. we may assume for A(x) = (a;j(x)) that

ain(x’,0) =0, i=1,...,n—1.
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Optimal regularity of the minimizer u: non-flat M

Minimizers u € C1'/?(B;* U B}), under suitable assumptions on
A, ¢.

When A € CL% (M € C%%), the truncated Almgren’s formula still
works [Guillen’09]

When A € C%! (M e CL1), there are considerable difficulties but
the truncation can be made to work

[Garofalo-Smit Vega Garcia’14]:

W) ko d 1 I 2, 3+5
D(r) = —— K" 2]
(r) n2® ar 0g max e aBrv u,r ,
where
v Ig v2Lalx|
. 0 faps v
u(x) = Xﬁ(‘f)", Y(r) = e’ _133 * v =0onB
rn-4 v =0onB,

Very recently, [Koch-Ruland-Shi’15] have shown that u € C11/2
alsowhen A €¢ W7 p > 2n
o Uniform almost optimal regularity by using Carleman estimates,
regularity of I3,2, and then back to optimal regularity.
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Structure of free boundary

O Truncated Almgren’s formula ®; can be used to classify free
boundary points

=Lk, Tc={xoel|®°(0+)=n—1+2k}.
K

O Possible values of k
k=3/2 or ke|[2k]

O I3,z is called the regular set. The gap of values between 3/2 and 2
implies that I3/, is a relatively open subset of T..

O Equivalent characterization of I3/, is by Almgren blowups:
u(xo +rx)
172
1
(V”'l faBV uZ)

over a sequence v =t — 0+, for some unit vector e € R 1,

)3/2

X0 €132 = TUx,r(X) = — cpRe(x-e+i|xyl
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O Let xo = 0 € I32 and ilx,,r; — cnRe(xp-1 + ilxp])3/2.

Theorem (Regularity of I3,2)

If ¢ € C21, them there exists 6 = 6, > 0 such that

32 N Bs = {xn-1=9g(x")} nBs forge C*(B)

O Step 1. [Athanasopoulos-Caffarelli-Salsa’08]. When M is flat
(A =1 and ¢ € C%!, for unit e € R"! close to e, _; and
h = 0,110, we have
h=0 OnAr:{ﬁr:(i)r}CRnila
|[Ah| < €9 in By \ Ar
h>-€y) inB;
h>cy>0 onBj X {+cp}

which implies that 0,71, > 0 = I3/, is a Lipschitz graph.
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) Step 2. Lipschitz = C1%. Classical idea of
[Athanasopoulos-Caffarelli’84]. Apply the boundary Harnack
principle in a slit domain Bs \ A to conclude

O

aeju

Oe, U

€ C%(Bs2), j=1,...,n—1.

implying that I3,» N Bs)2 is C%.
O Recently, [De Silva-Savin’14] have shown that essentially

O, U
Oc, U

“as regular as” T

implying that I3,2 € C* by a bootstrapping argument.

O Side result: Real analyticity of I3,2 can be shown with a
hodograph-Legendre type transformation through subelliptic
estimates for Baouendi-Grushin type operator [Koch-P.-Shi’14].

11



Regularity of I3,2: non-flat M (variable A)

O For variable A (x), directional derivatives h = d,u satisfy

div(A(x)Vh) = 0ef — div(0e A(x)Vu) = divF

12



Regularity of I3,2: non-flat M (variable A)

O For variable A (x), directional derivatives h = d,u satisfy
div(A(x)Vh) = 0 f — div(0e A(x)Vu) = divF

O When A € C%! or worse, F is L*® at best, and the RHS is not as
simple to deal with to conclude that h = d,u > 0 near regular
points.

12



Regularity of I3,2: non-flat M (variable A)

O

) For variable A (x), directional derivatives h = d,u satisfy
div(A(x)Vh) = 0o.f — div(0. A(x)Vu) = divF

O When A € C%! or worse, F is L*® at best, and the RHS is not as
simple to deal with to conclude that h = d,u > 0 near regular
points.

O Very recently, this was actually shown to hold even for A € W7,
p > 2n, by [Koch-Ruland-Shi’15] with elaborate harmonic analysis
techniques.

12



Regularity of I3,2: non-flat M (variable A)

For variable A (x), directional derivatives h = d,u satisfy
div(A(x)Vh) = 0o.f — div(0. A(x)Vu) = divF

When A € C%! or worse, F is L*® at best, and the RHS is not as
simple to deal with to conclude that h = d,u > 0 near regular
points.

Very recently, this was actually shown to hold even for A € Wl»,
p > 2n, by [Koch-Ruland-Shi’15] with elaborate harmonic analysis
techniques.

We will show however that there is a completely different
technique, purely energy based that avoids directional
differentiation completely and proves C1* regularity of T3)».
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Epiperimetric inequality for minimal surfaces

Theorem (Epiperimetric inequality [Reifenberg’64a])

Let Y be a (polyhedral) orientable cone, with vertex at 0, of dimension
m in R™, whose boundary lies on on the unit sphere. If Y lies suffi-
ciently close to the diametral plane, then there exists a new surface
Y * with the same boundary such that

H"Y* < (1 -n)H™Y + nH™B™,
where B™ is the m dimensional unit ball and n = n(n,m) € (0,1).
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Epiperimetric inequality for minimal surfaces

Theorem (Epiperimetric inequality [Reifenberg’64a])

Let Y be a (polyhedral) orientable cone, with vertex at 0, of dimension
m in R™, whose boundary lies on on the unit sphere. If Y lies suffi-
ciently close to the diametral plane, then there exists a new surface
Y * with the same boundary such that

H"Y* < (1 -n)H™Y + nH™B™,
where B™ is the m dimensional unit ball and n = n(n,m) € (0,1).

O This then has been used to prove the real
analyticity of flat minimal surfaces in
[Reifenberg’64b]

9

i

13



Epiperimetric inequality for classical obstacle problem

O Let u be a solution of the normalized classical obstacle problem

AU = Xus0;, u=0 inB

14



Epiperimetric inequality for classical obstacle problem

O Let u be a solution of the normalized classical obstacle problem
AU = Xus0;, u=0 inB

O [Weiss’99] has proved that the following functional is monotone
increasing:
2
n+3 J uz’
r 0By (x0)

WXo(u,r) = J' (IVul? +2u) -
By (x0)

yn+2

for solutions of the classical obstacle problem.

14



Epiperimetric inequality for classical obstacle problem

O Let u be a solution of the normalized classical obstacle problem
AU = Xus0;, u=0 inB

O [Weiss’99] has proved that the following functional is monotone
increasing:
2
n+3 J uz’
r 0By (x0)

WXo(u,r) = J' (IVul® +2u) —
By (x0)

yn+2

for solutions of the classical obstacle problem.

O This functional can be used to classify free boundary points
(T'=0{u>0})

oy if xq is regular

WX (u,0+) = . o
20, if xq is singular
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Epiperimetric inequality for classical obstacle problem

O There is also the following analogue of the epiperimetric

inequality. Below, let h(x) = %(XJ)Z be the halfspace solution.

Theorem (Epiperimetric inequality [Weiss’99])

Let v be homogeneous of degree 2, v(Ax) = A2v(x), with v = 0.
There exists 6 > 0 and n € (0, 1) such that if ||v — h|lwi2(p,) < 6, then
there exists v* withv* = v on 0By and v* > 0 in By such that

wWw*,1) <1 -nW(w,1) + nW(h,1)

O Combining with the monotonicity of W (v,7), [Weiss’99] then
proves the C1¢ regularity of the free boundary.
O This approach turns out to be adaptable to the solutions of

div(A(x)Vu) = f(X)Xix>01, uU=0
by [Focardi-Gelli-Spadaro’13] with A € C%!, f € CO«,
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Epiperimetric inequality for thin obstacle problem

O [Garofalo-P.’09] have proved that the following Weiss-type
formulas are monotone for solutions of the thin obstacle
problem (M = B}, ¢ = 0).

1 J K

X0 2 2
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O [Garofalo-P.’09] have proved that the following Weiss-type
formulas are monotone for solutions of the thin obstacle
problem (M = B}, ¢ = 0).

1 J K

X0 2 2

i (r) = ———= [Vuls - us, xo € Ik.
yn—2+2k By (x0) yn—1+2k 3B, (x0) ’

O The role of the “flat” solution is played by
h(x) = Re(xy_1 + i|lxy|)3/?. Note that W3,2(h,r) = 0.
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O The role of the “flat” solution is played by
h(x) = Re(xy_1 + i|lxy|)3/?. Note that W3,2(h,r) = 0.

Theorem (Epiper. ineq. [Garofalo-P.-Smit Vega Garcia’15])

Let v be homogeneous of degree 3/2, v(Ax) = A3/2v(x), and v = 0
on B. There exists 6 > 0 and n € (0, 1) such that iflv=nhllwi2p) <6
then there is v* with v* = v on 0By, v* > 0 on By, such that

Wipp(w*,1) < (1 —nWszp(v,1).
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O [Garofalo-P.’09] have proved that the following Weiss-type
formulas are monotone for solutions of the thin obstacle
problem (M = B}, ¢ = 0).

1 J K

X0 2 2

(1) = ———= [Vuls - us, xo € Ik.
yn—2+2k By (x0) yn—1+2k 3B, (x0) ’

O The role of the “flat” solution is played by
h(x) = Re(xy_1 + i|lxy|)3/?. Note that W3,2(h,r) = 0.

Theorem (Epiper. ineq. [Garofalo-P.-Smit Vega Garcia’15])

Let v be homogeneous of degree 3/2, v(Ax) = A3/2v(x), and v = 0
on B. There exists 6 > 0 and n € (0, 1) such that iflv=nhllwi2p) <6
then there is v* with v* = v on 0By, v* > 0 on By, such that

Wipp(w*,1) < (1 —nWszp(v,1).

O Rediscovered by [Focardi-Spadaro’15].
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How does the epiperimetric inequality work?

O Consider more general case of the thin obstacle problem with
variable coefficients A € C%!, ¢ € C11.
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variable coefficients A € C%, ¢ € C1.

O Step 1. The analogue of Weiss’s formula for homogeneity 3/2:

O

~

1

f’/'VL+ 1

3/2 ,
f'/-‘VL+2 8Bru IJ’

w="50%, f=Lad.

Wﬁz(v,1)= JB (Vu-Ax)Vu+vf) -
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variable coefficients A € C%, ¢ € C1.

Step 1. The analogue of Weiss’s formula for homogeneity 3/2:

O

~
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Wﬁz(v,l) = mJB (Vu-Ax)Vu+vf)—

3/2 ,
f'/-‘VL+2 8Bru IJ’

I R

O ¥ — Wi}, (v,7) + Cr'/? is monotone increasing for universal C.
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¥ Wg% (v,r) + Cr'/? is monotone increasing for universal C.
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O In particular this gives a bound from below

Wik (v,r) = —Cr'/?
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How does the epiperimetric inequality work?

) Consider more general case of the thin obstacle problem with
variable coefficients A € C%, ¢ € C1.

Step 1. The analogue of Weiss’s formula for homogeneity 3/2:

O

~
)

1

Wﬁz(v,l) = mJB (Vu-Ax)Vu+vf)—

3/2 ,
f'/-‘VL+2 8Bru IJ’

I R

¥ Wg% (v,r) + Cr'/? is monotone increasing for universal C.

N
O

I

O In particular this gives a bound from below
Wik (v,r) = —Cr'/?
O We hope to get a bound from above from the epiperimetric

inequality.
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How does the epiperimetric inequality work?

O Step 2. Direct calculation shows

a n+1
5 Wi, ) = (W32 (wy, 1) = Wi}, (v,7)]
1
+ f‘[ (v Vv, = 3v,)2 - Cr71/2,
¥ JoB,
where

vr0) = 203wy () = Ix PP e 1)
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How does the epiperimetric inequality work?

O Step 2. Direct calculation shows

d n+1
Ewg%w,r) > (W15 (wy, 1) = Wi, (v,7)]
+ l‘[ (v Vv, — %vy)2 —cr~l2,
v JoB;
where
V) = 2 () =[x 32, (x/1x )
r3/2

O Applying the epiperimetric inequality to w;- (there is a catch!) and
using the minimality of v we arrive at
d

wab(v,r) >

+1
n 71?nW§’j‘2(v,r)—Cr’”2

and integrating:
ng?z(v,r) <Cr¥, withy = % A (m+ 1)%
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How does the epiperimetric inequality work?

O Note that we need the epiperimetric inequality only for the case
A =1
O The catch in Step 2 above is that is that

Vy(x) = vx/f)

is not necessarily close to h(x) = Re(x,_1 + i|xn|)3/? but rather
to a nonnegative multiple of its rotation: aRe(x’ - e + i|xn|)3/?,
were a > 0.
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How does the epiperimetric inequality work?

O Note that we need the epiperimetric inequality only for the case
A =1
O The catch in Step 2 above is that is that

Vy(x) = vx/f)

is not necessarily close to h(x) = Re(x,_1 + i|xn|)3/? but rather
to a nonnegative multiple of its rotation: aRe(x’ - e + i|xn|)3/?,
were a > 0.

O However, the Almgren scaling

v(rx)
(ﬁ IBBV UZH)UZ
is close to ¢, Re(x’ - e + i|xn|)3/2.

O We then notice that if the epiperimetric inequality holds for some
function then it also holds for its nonnegative multiple.

Uy (x) =
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O Step 3. Control of the spinning of rescalings v, (x) =
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v(rx)
32

O Step 3. Control of the spinning of rescalings v, (x) =

O We claim that for 0 < s < t < 1y we have
J lvg — vs| < CtY/?
3B,
O We first have

t
J v —vg| < J J
aBl aBl N

< J r v vu, - %v,l
B,

t 12 /¢ d
< (J r‘1d1f> (I — Wi (v, 7) + Cr‘”2>
s s dar

dirvr(X)'
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How does the epiperimetric inequality work?

O Step 3. Control of the spinning of rescalings v, (x) = v;:/;c) .

O We claim that for 0 < s < t < 1y we have
J lvg — vs| < CtY/?
3B,
O We first have

t
J vy —vs| < J J
aBl aBl S

< J r v vu, - %v,l
B,

t 12 /ot d
- a _
< ([orar) ()] it o)

<C <log§> ty/?

dirvr(X)'

1/2

O Then obtain the claim by a dyadic argument.
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How does the epiperimetric inequality work?

O Step 4. As an immediate corollary, we obtain that for any blowup
Vo at 0 € I3/, (limit of rescalings Uy, ¥j — 0+) we have

J lvy —vol < CrY/?
3B,
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O Step 4. As an immediate corollary, we obtain that for any blowup
Vo at 0 € I3/, (limit of rescalings Uy, ¥j — 0+) we have

J v, — vol < CrY/?
3B,

O This implies the uniqueness of blowup v as well as the
nondegeneracy vg % 0.
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How does the epiperimetric inequality work?

O Step 4. As an immediate corollary, we obtain that for any blowup
Vo at 0 € I3/, (limit of rescalings Uy, ¥j — 0+) we have

J lvy —vol < CrY/?
3B,

O This implies the uniqueness of blowup v as well as the
nondegeneracy vg % 0.

O The blowups have the form
vo(x) = agRe(x” - ex, + ilxn|)?/?,

ap >0, legl =1, eg e R*!
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How does the epiperimetric inequality work?

O Step 5. By recentering at xo € I3,2 and considering

V(xo +r A2 (x0)x) — rbyyXn
Uxor (X) = 372 ,

bxo =én- ﬂl/Z(Xo)VU(Xo)

and choosing ¥ = |x¢ — »o|? for close xg, Yo € I3/2, one can
prove that

JBB’ |vX0,0 - Uyo,O‘ < Clxo — yO|B
1

for some S > 0.
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How does the epiperimetric inequality work?

O Step 5. By recentering at xo € I3,2 and considering

V(xo +r A2 (x0)x) — rbyyXn
Uxor (X) = 372 ,

bxo =én- ﬂl/Z(Xo)VU(Xo)

and choosing ¥ = |x¢ — »o|? for close xg, Yo € I3/2, one can
prove that

J Uxe,0 = Uyg0l = Clxo — yolf
aB;
for some S > 0.
O If we now write for xg € I3,2
Vxp,0 = Ao RE(X - ex, + i]xn])3/2,
we immediately obtain the -Holder continuity of the mappings
XO - aXol XO - eX()
implying C!# regularity of T3 ».

22



Fractional obstacle problem

O For s € (0,1) and given the obstacle ¢ : R™ — R consider the
obstacle problem for the fractional Laplacian (—A)%:

(-A)*u=0, u=¢, (u-9¢)(-A)*u=0 onR"
Here

u(x) —u(y)

N —
(_A) U = Cn,s P.v. - |X — y|n+25
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(-A)*u=0, u=¢, (u-9¢)(-A)*u=0 onR"
Here

u(x) —u(y)

N —
(_A) U = Cn,s P.v. - |X — y|n+25

O When s = 1/2, harmonically extending u to R"™ x R, we can
recover (—A)!/2 as the Dirichlet-to-Neumann operator

(=A)V2y = —J}irgl+ Oyu(x,y).
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Fractional obstacle problem

) For s € (0,1) and given the obstacle ¢ : R" — R consider the
obstacle problem for the fractional Laplacian (—A)%:

O

(-A)*u=0, u=¢, (u-9¢)(-A)*u=0 onR"
Here

u(x) —u(y)

N —
(_A) U = Cn,s P.v. - |X — y|n+25

O When s = 1/2, harmonically extending u to R"™ x R, we can
recover (—A)!/2 as the Dirichlet-to-Neumann operator

(=A)V2y = —J}irgl+ Oyu(x,y).

O Then the obstacle problem for (-A)!/2 becomes a thin obstacle
problem.
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Fractional obstacle problem

O Similar localization works also for other fractional powers.
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Fractional obstacle problem

O Similar localization works also for other fractional powers.
O Namely, fora =1 - 2s € (-1, 1) consider the
[Caffarelli-Silvestre’09] extension operator

Lau = divy, (|y|?Vxu) on R™

and extend u(x) from R” to R" x R, by solving a Dirichlet
problem
Loau=0 inR"xXR;, u(x,0)=u(x)
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Fractional obstacle problem

O Similar localization works also for other fractional powers.
O Namely, fora =1 - 2s € (-1, 1) consider the
[Caffarelli-Silvestre’09] extension operator

Lau = divy, (|y|?Vxu) on R™

and extend u(x) from R” to R" x R, by solving a Dirichlet
problem
Loau=0 inR"xXR;, u(x,0)=u(x)

O Then one can recover

(=A)*u = - lim y%o,u(x,y)
y—0+

O This makes the fractional obstacle problem locally equivalent to
the thin obstacle problem for L,:

JB |IVul?|y|* - min, u(x,0) = ¢(x) onBrn{y =0}

24



Fractional obstacle problem

O Many techniques work the same way as in the thin obstacle
problem, when ¢ € C! [Caffarelli-Salsa-Silvestre’09]

25



Fractional obstacle problem

) Many techniques work the same way as in the thin obstacle
problem, when ¢ € C! [Caffarelli-Salsa-Silvestre’09]

O

When ¢ = 0 the following Almgren’s frequency function is
monotone

~
)

N = 7 [p [Vul?|y|®
— Jop, uPlyle
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Fractional obstacle problem

O Many techniques work the same way as in the thin obstacle
problem, when ¢ € C! [Caffarelli-Salsa-Silvestre’09]

O When ¢ = 0 the following Almgren’s frequency function is

monotone 5
vy, IVuR|yle

N = log, w?ly12

O For ¢ € C1! the truncated version is monotone:

d(r) = Teradlogmax{J vﬂyl“,r”*“*‘*}.
dr 3B,
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Fractional obstacle problem

O Many techniques work the same way as in the thin obstacle
problem, when ¢ € C! [Caffarelli-Salsa-Silvestre’09]

O When ¢ = 0 the following Almgren’s frequency function is

monotone 5
vy, IVuR|yle

N = log, w?ly12

O For ¢ € C1! the truncated version is monotone:

d(r) = Teradlogmax{J vﬂyl“,r”*“*‘*}.
dr 3B,

O This allows to establish that u € CLS(R™).

-
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Fractional obstacle problem

O

~

~
)

)
N

Many techniques work the same way as in the thin obstacle
problem, when ¢ € C! [Caffarelli-Salsa-Silvestre’09]

When ¢ = 0 the following Almgren’s frequency function is

monotone 5
vy, IVuR|yle

N = log, w?ly12

For ¢ € C!! the truncated version is monotone:

d(r) = Teradlogmax{J vﬂyl“,r”*“*‘*}.
dr 3B,

This allows to establish that u € C1S(R™).

For ¢p € C21, the C1® regularity of the I'1,s (regular set) can be
proved by taking the directional derivatives of u, as in the thin
obstacle case.
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Fractional obstacle problem with drift

O In applications to financial math, it is more appropriate to
consider the fractional Laplacian with drift,

Lu=(-A)u+b(x)-vVu+c(x)u,

nonlocal version of Black-Scholes operator (here x =1logS§,
S underlying asset price)
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S underlying asset price)

O For (i) :R™ — R, the solution to the obstacle problem
Lit=0, ©t=¢, (@t—-¢)Lit=0 onR"

gives the valuation of perpetual American options.
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Fractional obstacle problem with drift

O In applications to financial math, it is more appropriate to
consider the fractional Laplacian with drift,

Lu=(-A)u+b(x)-vVu+c(x)u,

nonlocal version of Black-Scholes operator (here x =1logS§,
S underlying asset price)

O For (i) :R™ — R, the solution to the obstacle problem
Lit=0, ©t=¢, (@t—-¢)Lit=0 onR"

gives the valuation of perpetual American options.

O

When s > 1/2, long story short, the drift terms can be viewed as
lower order terms and taken to the right hand side to prove that
u € CH*(R") for all & < s first and then by a truncated
Almgren’s formula that u € C15(R"), if b,c € C* [P.-Pop’15]
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Fractional obstacle problem with drift

O More precisely, if we consider
b= (D) (b Vu+cu
Uy (%) =u(x, ) = P(x, ) — 55 (=A) P (x0)|¥|%,
then vy, satisfies

Lavyx, =0 in R" X R.
Uy, =0 onR™x {0}
Lavxo < fxoj{n}yzo on Rn+1

LaVxy = fxoH™| g on R™ 1\ ({y = 0} N {vy, = 0}).
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Fractional obstacle problem with drift

O More precisely, if we consider
b= (D) (b Vu+cu
Uy (%) =u(x, ) = P(x, ) — 55 (=A) P (x0)|¥|%,
then vy, satisfies

Lavyx, =0 in R" X R.
Uy, 20 on R"™ x {0}
LavVx, < fuoH"™ |, onR"™!

LaVx, = fxoH™|,_o on R\ ({3 =0} N {vy, = 0}).
O Here fy,(x) =2((=A)Sp(x) — (—A)SP(xp)) satisfies

[fxo ()] = Clx = x0l*

27



Epiperimetric inequality for fractional obstacle problem

O Note that ¢ € C35(R") at best, even if ¢ is smoother. The proof
if the regularity of I ;s by taking the directional derivatives
becomes difficult (if possible at all).
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Epiperimetric inequality for fractional obstacle problem

O Note that ¢ € C35(R") at best, even if ¢ is smoother. The proof

if the regularity of I ;s by taking the directional derivatives
becomes difficult (if possible at all).

Luckily, there is an analogue of Weiss’s monotonicity formula:

f _ 1 2 a o 1+s 2 a
Wl o) = s jBVvau Y1 | Vst s |, VR

r

We have that W, (vy,,7) + Cr2s-1 »

The blowups at vy,,0 at xg € I+, are then given by

Uxo,0(X,Y) = axyhe, (x,¥)

hete,) = (x e+ e 02+ 22) (e s\ -2+ 52)

28



Epiperimetric inequality for fractional obstacle problem

O When f = 0, Weiss-type formula has the form

1 > 1+s 5
Wiss(v,7) = WJB, IVUITIvI® = 5 LBrv Iy*




Epiperimetric inequality for fractional obstacle problem

O When f = 0, Weiss-type formula has the form

1 > 1+s 5
Wiss(v,7v) = mJBy IVv[=[y]® - 13 JaB,v Iy*

Theorem (Epiper. ineq. [Garofalo-P.-Pop-Smit Vega Garcia’l5])

Let v be homogeneous of degree 1 + s, v(Ax) = Al*Sv(x), and
v > 0 on Bj. There exists 6 > 0 and n € (0,1) such that if ||lv —
he, llw12 (g, |yja) < O then there exists v* withv* = v on 0By, v* = 0
on B}, such that

Wiss(0*,1) < (1 = n)Wigs(v,1).



Epiperimetric inequality for fractional obstacle problem

O When f = 0, Weiss-type formula has the form

1 > 1+s 5
Wiss(v,7v) = mJBy IVv[=[y]® - 13 JaB,v Iy*

Theorem (Epiper. ineq. [Garofalo-P.-Pop-Smit Vega Garcia’l5])

Let v be homogeneous of degree 1 + s, v(Ax) = Al*Sv(x), and
v > 0 on Bj. There exists 6 > 0 and n € (0,1) such that if ||lv —
he, llw12 (g, |yja) < O then there exists v* withv* = v on 0By, v* = 0
on B}, such that

Wiss(0*,1) < (1 = n)Wigs(v,1).

O Arguing as in the case of thin obstacle problem, one can show
that I, is C1* in the fractional obstacle problem with drift.



