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Semipermeable Membranes and Osmosis

Picture Source: Wikipedia

Semipermeable membrane is a
membrane that is permeable only
for a certain type of molecules
(solvents) and blocks other
molecules (solutes).
Because of the chemical
imbalance, the solvent �ows
through the membrane from the
region of smaller concentration of
solute to the region of higher
concentation (osmotic pressure).

�e �ow occurs in one direction.�e �ow continues until a su�cient
pressure builds up on the other side of the membrane (to compensate for
osmotic pressure), which then shuts the �ow.�is process is known as
osmosis.
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Mathematical Formulation: Unilateral Problem

Given open Ω ⊂ Rn

M ⊂ ∂Ω semipermeable part of the
boundary
φ ∶ MT ∶= M× (, T]→ R osmotic pressure
u ∶ ΩT ∶= Ω × (, T]→ R the pressure of
the chemical solution, that satis�es a
di�usion equation (slightly compressible
�uid)

∆u − ∂tu =  in ΩT

Ω

M

φ

(∆ − ∂t)u = 
ΩT

MT no �ow

�ow

OnMT we have the following boundary conditions (�nite permeability)

u > φ ⇒ ∂νu =  (no �ow)
u ≤ φ ⇒ ∂νu = λ(u − φ) (�ow)
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Parabolic Signorini Problem

Letting λ →∞ we obtain the following
conditions onMT (in�nite permeability)

u ≥ φ
∂νu ≥ 

(u − φ)∂νu = 

�ese are known as the Signorini
boundary conditions
Since u should stay above φ onMT , φ is
known as the thin obstacle.�e problem
is known as Parabolic Signorini Problem
or Parabolic�in Obstacle Problem.

ΩT

MT no �ow

�ow

u > φ

∂νu = 

u = φ

∂νu ≥ 
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Parabolic Signorini Problem

�e function u(x , t) the solves the
following variational inequality:

∫
Ω
∇u ⋅ ∇(u − v) + ∂tu(u − v) ≥ 

u ∈ K, ∂tu ∈ L(Ω)
for all v ∈ K

where

K = {v ∈W ,(Ω) ∶ v∣
M
≥ φ, v∣∂Ω∖M

= }

ΩT

MT u > φ

∂νu = 

u = φ

∂νu ≥ 

u = φ

u = 

�en for any (reasonable) initial condition

u = φ on Ω = Ω × {}

the solution exist and unique. See [Duvaut-Lions 1986].
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Free Boundary Problem

�e parabolic Signorini problem is a free
boundary problem.

Let Λ ∶= {(x , t) ∈ MT ∶ u = φ} be the
so-called coincidence set.�en

Γ ∶= ∂MΛ

is the free boundary.
One then interested in the structure,
geometric properties and the regularity of
the free boundary.

Λ

Γ

In order to do so one has to know the optimal regularity of the solution u
in ΩT up toMT .
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Parabolic Signorini Problem: Known Results

�eorem (“C,α-regularity” [Ural’tseva 1985])

Let u be a solution of the Parabolic Signorini Problem with φ ∈ C,x ∩ C,t (MT),
φ ∈ Lip(Ω), and  ∈ L(ST).�en ∇u ∈ Cα,α/

x ,t (K) for any K ⋐ ΩT ∪MT
and

∥∇u∥Cα ,α/
x ,t (K)

≤ CK(∥φ∥C,x ∩C,t (MT)
+ ∥φ∥Lip(Ω) + ∥∥L(ST))

In the elliptic case a similar result has been proved by [Caffarelli 1979]
Proof in [Ural’tseva 1985] in the elliptic case worked also for
nonhomogeneous equation ∆u = f , f ∈ L∞(Ω), with Signorini boundary
conditions.�at fact then implies the regularity in the parabolic case.
Except some speci�c cases, no general results have been known for the
free boundary.
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Parabolic Signorini Problem: Optimal Regularity

In the case whenM is �at, we have the following theorem.

�eorem (“C,/-regularity” [Danielli-Garofalo-P.-To 2011])
Let u be a solution of the Parabolic Signorini Problem with �at M and
φ ∈ C,x ∩ C,t (MT), φ ∈ Lip(Ω), and  ∈ L(ST).�en ∇u ∈ C/,/x ,t (K) for
any K ⋐ ΩT ∪MT and

∥∇u∥C/,/x ,t (K) ≤ CK(∥φ∥C,x ,t∩C,t (MT)
+ ∥φ∥Lip(Ω) + ∥∥L(ST))

�is theorem is precise in the sense that it gives the best regularity
possible, even in time-independet case:

u(x , t) = Re(x + ixn)/

solves the Signorini problem in Rn
+
×R withM = Rn−.
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Elliptic Case:�in Obstacle Problem

Given Ω ⊂ Rn,M ⊂ ∂Ω

φ ∶ M→ R (thin obstacle)
 ∶ ∂Ω ∖M→ R,  > φ onM ∩ ∂Ω.
Minimize the Dirichlet integral

DΩ(u) = ∫
Ω
∣∇u∣dx

on the closed convex set

K = {u ∈W ,(Ω) ∣ u∣
M
≥ φ, u∣∂Ω∖M

= }.

Ω

M

φ

ΩM

φ

u

�e minimizer u satis�es

∆u =  in Ω
u ≥ φ, ∂νu ≥ , (u − φ)∂νu =  onM
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Elliptic Case: Optimal Regularity

�e progress in parabolic case was motivated by the breakthrough result
of [Athanasopoulos-Caffarelli 2000] establishing the C,/ regularity
in the elliptic thin obstacle problem.

�eorem
Let u be a solution of the thin obstacle problem for �at M, with φ ∈ C,(M) and
 ∈ L(∂Ω ∖M).�en u ∈ C,/(K) for any K ⋐ Ω ∪M and

∥u∥C,/(K) ≤ CK (∥φ∥C,(M) + ∥∥L) .

φ = : [Athanasopoulos-Caffarelli 2000]
φ ∈ C,: [Athanasopoulos-Caffarelli-Salsa 2007]
φ ∈ C,: [P-To 2010]
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Zero Obstacle φ: Normalization

AssumeM is �at: M = Rn− × {}, φ = 

If u solves Signorini problem, a�er translation, rotation, and scaling, we
may normalize u as follows:

De�nition (ClassS)
We say u is a normalized solution of Signorini problem i�

∆u =  in B+
u ≥ , −∂xnu ≥ , u ∂xnu =  on B′

 ∈ Γ(u) = ∂Λ(u) = ∂{u = }.

We denote the class of normalized solutions byS.

Notation: Rn
+
= Rn− × (,+∞), B+ ∶= B ∩Rn

+
, B′ ∶= B ∩ (Rn− ×{})
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 ∈ Γ(u) = ∂Λ(u) = ∂{u = }.

We denote the class of normalized solutions byS.

Notation: Rn
+
= Rn− × (,+∞), B+ ∶= B ∩Rn

+
, B′ ∶= B ∩ (Rn− ×{})
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Zero Obstacle φ: Normalization

Every u ∈S can be extended from B+ to B by even symmetry

u(x′,−xn) ∶= u(x′, xn).

�e resulting function will satisfy

∆u ≤  in B
∆u =  in B ∖ Λ(u)

u ∆u =  in B.

Here Λ(u) = {u = } ⊂ B′.
More speci�cally:

∆u = (∂xnu)Hn−∣Λ(u) in D′(B).

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 12 / 31



Zero Obstacle φ: Normalization

Every u ∈S can be extended from B+ to B by even symmetry

u(x′,−xn) ∶= u(x′, xn).

�e resulting function will satisfy

∆u ≤  in B
∆u =  in B ∖ Λ(u)

u ∆u =  in B.

Here Λ(u) = {u = } ⊂ B′.

More speci�cally:

∆u = (∂xnu)Hn−∣Λ(u) in D′(B).

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 12 / 31



Zero Obstacle φ: Normalization

Every u ∈S can be extended from B+ to B by even symmetry

u(x′,−xn) ∶= u(x′, xn).

�e resulting function will satisfy

∆u ≤  in B
∆u =  in B ∖ Λ(u)

u ∆u =  in B.

Here Λ(u) = {u = } ⊂ B′.
More speci�cally:

∆u = (∂xnu)Hn−∣Λ(u) in D′(B).

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 12 / 31



Almgren’s Frequency Function

�eorem (Monotonicity of the frequency)
Let u ∈S.�en the frequency function

r ↦ N(r, u) ∶=
r ∫Br

∣∇u∣

∫∂Br
u
↗ for  < r < .

Moreover, N(r, u) ≡ κ ⇐⇒ x ⋅ ∇u − κu =  in B, i.e. u is homogeneous of
degree κ in B.

[Almgren 1979] for harmonic u

[Garofalo-Lin 1986-87] for divergence form elliptic operators
[Athanasopoulos-Caffarelli-Salsa 2007] for thin obstacle problem
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Figure: Solution of the thin obstacle problem Re(x + i∣x∣)/
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Figure: Multi-valued harmonic function Re(x + ix)/
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Rescalings and Blowups

For a solution u ∈S and r >  consider rescalings

ur(x) ∶=
u(rx)

( 
rn− ∫∂Br

u)


.

�e rescaling is normalized so that

∥ur∥L(∂B) = .

Limits of subsequences {ur j} for some r j → + are known as blowups.
Generally the blowups may be di�erent over di�erent subsequences
r = r j → +.
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Homogeneity of Blowups

Uniform estimates on rescalings {ur}:

∫
B

∣∇ur ∣ = N(, ur) = N(r, u) ≤ N(, u).

Hence, ∃ blowup u over a sequence r j → +

ur j → u inW ,(B)

Proposition (Homogeneity of blowups)
Let u ∈S and the blowup u be as above.�en, u is homogeneous of degree
κ = N(+, u).

Proof.
N(r, u) = limr j→+ N(r, ur j) = limr j→+ N(rr j , u) = N(+, u)
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Proof of C,/ regularity

Lemma ([Athanasopoulos-Caffarelli 2000])
Let u be a homogeneous global solution of the thin obstacle problem with
homogeneity κ.�en κ ≥ /.

Explicit solution for which κ = / is achieved is Re(x + i∣xn∣)/

From Lemma we obtain that N(+, u) = κ ≥ / for any u ∈S.
From here one can show that

∫
∂Br

u ≤ Crn+,  < r < 

and consequently that

u ∈ C,/(B±/ ∪ B′/).
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Nonzero Obstacle φ: Normalization

Let now u solve the thin obstacle problem with nonzero obstacle φ ∈ C,:

∆u =  in B+
u ≥ φ, −∂xnu ≥ , (u − φ) ∂xnu =  on B′.

Consider the di�erence

v(x) = u(x) − φ(x′).

�en it will be the classS f with f = ∆′φ ∈ L∞(B+ ).

De�nition (ClassS f )
We say that v ∈S f for some f ∈ L∞(B+ ) if

∆v = f in B+
v ≥ , −∂xnv ≥ , v ∂xnv =  on B′.
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Nonzero Obstacle φ: Truncated Frequency Function

�eorem (Monotonicity of truncated frequency)

Let v ∈S f .�en for any δ >  there exists C = C(∥ f ∥L∞ , δ) >  such that

r ↦ Φ(r, v) = reCr
δ d
dr
logmax{∫

∂Br
v, rn+−δ} + (eCrδ − )↗

for  < r < .

Originally due to [Caffarelli-Salsa-Silvestre 2008] in the thin obstacle
problem, under the additional assumption ∣ f (x)∣ ≤ C∣x′∣.
In this form, essentially in [P.-To 2010].
Proof consists in estimating the error terms.�e truncation of the growth
is needed to absorb those terms.
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Parabolic Case: Poon’s Monotonicity Formula

�e optimal regularity in the elliptic case was obtained with the help of
Almgren’s Frequency Function. So we need a parabolic analogue of the
frequency.

�eorem ([Poon 1996])

Let u be a caloric function (solution of the heat equation) in the strip
SR = Rn × (−R, ].�en

N(r, u) =
r ∫t=−r ∣∇u∣G(x , r)dx
∫t=−r uG(x , r)dx ↗ for  < r < R.

Moreover, N(r, u) ≡ κ ⇐⇒ u is parabolically homogeneous of degree κ, i.e.
u(λx , λt) = λκu(x , t).

Here G(x , t) = (πt)−n/e−∣x∣/t , t >  is the heat (Gaussian) kernel.

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 21 / 31



Parabolic Case: Poon’s Monotonicity Formula

�e optimal regularity in the elliptic case was obtained with the help of
Almgren’s Frequency Function. So we need a parabolic analogue of the
frequency.

�eorem ([Poon 1996])

Let u be a caloric function (solution of the heat equation) in the strip
SR = Rn × (−R, ].�en

N(r, u) =
r ∫t=−r ∣∇u∣G(x , r)dx
∫t=−r uG(x , r)dx ↗ for  < r < R.

Moreover, N(r, u) ≡ κ ⇐⇒ u is parabolically homogeneous of degree κ, i.e.
u(λx , λt) = λκu(x , t).

Here G(x , t) = (πt)−n/e−∣x∣/t , t >  is the heat (Gaussian) kernel.

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 21 / 31



Parabolic Case: Poon’s Monotonicity Formula

�e optimal regularity in the elliptic case was obtained with the help of
Almgren’s Frequency Function. So we need a parabolic analogue of the
frequency.

�eorem ([Poon 1996])

Let u be a caloric function (solution of the heat equation) in the strip
SR = Rn × (−R, ].�en

N(r, u) =
r ∫t=−r ∣∇u∣G(x , r)dx
∫t=−r uG(x , r)dx ↗ for  < r < R.

Moreover, N(r, u) ≡ κ ⇐⇒ u is parabolically homogeneous of degree κ, i.e.
u(λx , λt) = λκu(x , t).

Here G(x , t) = (πt)−n/e−∣x∣/t , t >  is the heat (Gaussian) kernel.

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 21 / 31



Parabolic Case: Normalization

Suppose now u solves the Parabolic Signorini Problem in
Q+

 = B+ × (−, ] withM = B′ and φ ∈ C,x ∩ C,t .

We want to “extend” v to the half-strip S+ = Rn
+
× (−, ] in the following

way.
Let η ∈ C∞ (B) be a cuto� function such that

η = η(∣x∣),  ≤ η ≤ , η∣B/ = , supp η ⊂ B/

and consider
v(x , t) = [u(x , t) − φ(x′, , t)]η(x).

�en v solves the Signorini problem in the half-strip S+ = Rn
+
× (−, ]

with a nonzero right-hand side

∆v − ∂tv = f ∶= η(x)[−∆′φ + ∂tφ] + [u − φ(x′, t)]∆η + ∇u∇η

Important note: the right-hand side f is nonzero even if φ ≡ .
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Averaged and Truncated Poon’s Formula

For the extended u de�ne

hu(t) = ∫
Rn
+

u(x , t)G(x ,−t)dx

iu(t) = −t∫
Rn
+

∣∇u(x , t)∣G(x ,−t)dx ,

Poon’s frequency is now given by

N(r, u) = iu(−r)
hu(−r)

.

For our generalization, however, iu and hu are too irregular and we have
to average them to regain missing regularity:

Hu(r) =

r ∫



−r
hu(t)dt =


r ∫S+r

u(x , t)G(x ,−t)dxdt

Iu(r) =

r ∫



−r
iu(t)dt =


r ∫S+r

∣t∣∣∇u(x , t)∣G(x ,−t)dxdt
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Averaged and Truncated Poon’s Formula

�eorem ([Danielli-Garofalo-P.-To 2011])
Let v ∈S f (S+ ).�en for any δ >  there exist C such that

Φ(r, v) = 

reCr

δ d
dr
logmax{Hv(r), r−δ} +



(eCrδ − ) ↗

for  < r < .

Using this generalized frequency formula, as well as an estimation on
parabolic homogeneity of blowups we obtain the optimal regularity.
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Parabolic Rescalings and Blowups

As in the elliptic case, we consider the rescalings

ur(x , t) =
u(rx , rt)
Hu(r)/

, fr(x , t) =
r f (rx , rt)
Hu(r)/

,

for (x , t) ∈ S+/r = Rn
+
× (−/r, ]

If Φu(+) <  − δ then one can show that the family {ur} is convergent
in suitable sense on Rn

+
× (−∞, ] to a parabolically homogeneous

solution u of the Parabolic Signorini Problem

∆u − ∂tu =  in Rn
+
× (−∞, ]

u ≥ , −∂xnu ≥ , u∂xnu =  on Rn− × (−∞, ]

Parabolic homogeneity u is κ = 
Φ(+) < − δ < . Besides, because of

C,α-regularity, also κ ≥  + α > .�us:
 < κ < .
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Parabolically Homogeneous Global Solutions

Lemma ([Danielli-Garofalo-P.-To 2011])
Let u be a parabolically homogeneous solution of the Parabolic Signorini
Problem in Rn

+
× (−∞, ] with homogeneity  < κ < .�en necessarily κ = /

and
u(x , t) = C Re(x + ixn)/,

a�er a possible rotation in Rn−.

�e proof is based on a rather deep monotonicity formula of Ca�arelli to
reduce it to dimension n =  and then analysing of the principal
eigenvalues of the Ornstein-Uhlenbeck operator −∆ + 

x ⋅ ∇ in R for the
slit planes

Ωa ∶= R ∖ ((−∞, a] × {}).
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Proof of Optimal Regularity

From Lemma we obtain that Φu(+) ≥ , if Φu(+) <  − δ.�us,
always Φu(+) ≥ .

�is implies Hu(r) = ∫Rn
+

uG(x ,−t)dxdt ≤ Cr

�is further implies that

sup
Q+r/(x ,t)

∣u∣ ≤ Cr/

for any (x, t) ∈ Q′

/ such that u(x, t) = .
Using interior parabolic estimates one then obtains

∇u ∈ C/,/x ,t (Q+

/).
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Finer Study of the Free Boundary

Assume now φ is in parabolic Hölder class Hℓ,ℓ/
x′ ,t (B′), with ℓ = k + γ ≥ ,

k ∈ N,  < γ ≤ .

�en the parabolic Taylor polynomial qk(x′, t) of degree k satis�es

∣φ(x′, t) − qk(x′, t)∣ ≤ C(∣x′∣ + t)ℓ/.

Extend qk from Rn− ×R to a caloric polynomial Qk(x , t) on Rn ×R:

∆Qk − ∂tQk = , Qk(x′, , t) = qk(x′, t).

Consider then

vk(x , t) = [u(x , t) − Qk(x , t) − φ(x′, t) − qk(x′, t)]η(x)

with a cuto� function η(x).
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Finer Study of the Free Boundary

�en vk solves the Signorini problem inS+

 with nonzero right-hand-side

∆vk − ∂tvk = fk in S+

with
∣ fk(x , t)∣ ≤ C(∣x∣ + ∣t∣)(ℓ−)/.

�eorem (Better Truncated Monotonicity Formula,[D-G-P-T 2011])
For vk as above and δ < γ there exist C = Cδ such that

Φ(ℓ)(r, vk) =


reCr

δ d
dr
logmax{Hvk(r), r

ℓ−δ} + 

(eCrδ − ) ↗

for  < r < .
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Classi�cation of Free Boundary Points

De�nition

We say (, ) ∈ Γ(ℓ)κ i� Φ(ℓ)(+, vk) = κ.

One can show that / ≤ κ ≤ ℓ and therefore we have a foliation

Γ = ⋃
/≤κ≤ℓ

Γ(ℓ)κ

�e more regular is the thin obstacle φ, the larger is ℓ, the �ner we can
classify free boundary points.
It is conjectured that κ can take only discrete values
κ = /, /, . . . , m − /, . . ..
As of now it is known only that there is no κ in (/, ), so κ = / is
isolated.
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Regularity of the Free Boundary

�e set Γ/ is known as the Regular Set.

�eorem ([Danielli-Garofalo-P-To 2011])
Let φ ∈ H,/(Q′

). If (, ) ∈ Γ/ then there
exists δ >  such that

Γ ∩ Qδ = Γ/ ∩ Qδ = {xn− = (x′′, t)} ∩ Qδ ,

where  is such that ∇ ∈ Cα,α/
x′′ ,t .

Λ

u = φ

xn− = (x′′ , t)

Γ/

@I

One �rst shows that  ∈ Lip(, /)
Lip⇒ C,α follows from a special version of the Parabolic Boundary
Harnack Principle by [Shi 2011].
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