Arshak Petrosyan

PURDUE UNIVERSITY

Free Boundary Problems in Biology Math Biosciences Institute, OSU

November 14-18, 2011

Parabolic Signorini Problem

(日)

Semipermeable Membranes and Osmosis

Picture Source: Wikipedia

- Semipermeable membrane is a membrane that is permeable only for a certain type of molecules (*solvents*) and blocks other molecules (*solutes*).
- Because of the chemical imbalance, the solvent flows through the membrane from the region of smaller concentration of solute to the region of higher concentation (*osmotic pressure*).

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

• The flow occurs in one direction. The flow continues until a sufficient pressure builds up on the other side of the membrane (to compensate for osmotic pressure), which then shuts the flow. This process is known as **osmosis**.

Arshak Petrosyan (Purdue)

• Given open $\Omega \subset \mathbb{R}^n$

Arsha	k Petros	yan (F	Purdue)	
-------	----------	--------	---------	--

э

- Given open $\Omega \subset \mathbb{R}^n$
- *M* ⊂ ∂Ω *semipermeable* part of the boundary

- Given open $\Omega \subset \mathbb{R}^n$
- *M* ⊂ ∂Ω *semipermeable* part of the boundary
- $\varphi : \mathcal{M}_T := \mathcal{M} \times (0, T] \rightarrow \mathbb{R}$ osmotic pressure

- Given open $\Omega \subset \mathbb{R}^n$
- $\mathcal{M} \subset \partial \Omega$ semipermeable part of the boundary
- $\varphi : \mathcal{M}_T := \mathcal{M} \times (0, T] \rightarrow \mathbb{R}$ osmotic pressure
- *u* : Ω_T := Ω × (0, T] → ℝ the *pressure* of the chemical solution, that satisfies a diffusion equation (*slightly compressible fluid*)

 $\Delta u - \partial_t u = 0 \quad \text{in } \Omega_T$

- Given open $\Omega \subset \mathbb{R}^n$
- *M* ⊂ ∂Ω *semipermeable* part of the boundary
- $\varphi : \mathcal{M}_T := \mathcal{M} \times (0, T] \rightarrow \mathbb{R}$ osmotic pressure
- *u* : Ω_T := Ω × (0, T] → ℝ the *pressure* of the chemical solution, that satisfies a diffusion equation (*slightly compressible fluid*)

 $\Delta u - \partial_t u = 0 \quad \text{in } \Omega_T$

• On M_T we have the following boundary conditions (*finite permeability*)

$$u > \varphi \implies \partial_{\nu} u = 0 \quad (\text{no flow})$$
$$u \le \varphi \implies \partial_{\nu} u = \lambda (u - \varphi) \quad (\text{flow})$$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Given open $\Omega \subset \mathbb{R}^n$
- *M* ⊂ ∂Ω *semipermeable* part of the boundary
- $\varphi : \mathcal{M}_T := \mathcal{M} \times (0, T] \rightarrow \mathbb{R}$ osmotic pressure
- *u* : Ω_T := Ω × (0, T] → ℝ the *pressure* of the chemical solution, that satisfies a diffusion equation (*slightly compressible fluid*)

 $\Delta u - \partial_t u = 0 \quad \text{in } \Omega_T$

• On M_T we have the following boundary conditions (*finite permeability*)

$$u > \varphi \implies \partial_{\nu} u = 0 \quad (\text{no flow})$$
$$u \le \varphi \implies \partial_{\nu} u = \lambda(u - \varphi) \quad (\text{flow})$$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Letting λ → ∞ we obtain the following conditions on M_T (*infinite permeability*)

 $u \ge \varphi$ $\partial_{\nu} u \ge 0$ $(u - \varphi) \partial_{\nu} u = 0$

イロト イポト イヨト イヨト

Letting λ → ∞ we obtain the following conditions on M_T (*infinite permeability*)

 $u \ge \varphi$ $\partial_{\nu} u \ge 0$ $(u - \varphi) \partial_{\nu} u = 0$

• These are known as the Signorini boundary conditions

(日)

Letting λ → ∞ we obtain the following conditions on M_T (*infinite permeability*)

$$u \ge \varphi$$
$$\partial_{\nu} u \ge 0$$
$$u - \varphi) \partial_{\nu} u = 0$$

- These are known as the Signorini boundary conditions
- Since *u* should stay above φ on *M_T*, φ is known as the thin obstacle. The problem is known as *Parabolic Signorini Problem* or *Parabolic Thin Obstacle Problem*.

• The function *u*(*x*, *t*) the solves the following variational inequality:

$$\int_{\Omega} \nabla u \cdot \nabla (u - v) + \partial_t u (u - v) \ge 0$$
$$u \in \mathfrak{K}, \quad \partial_t u \in L^2(\Omega)$$
for all $v \in \mathfrak{K}$

where

$$\mathfrak{K} = \{ v \in W^{1,2}(\Omega) : v \big|_{\mathcal{M}} \ge \varphi, v \big|_{\partial \Omega \smallsetminus \mathcal{M}} = g \}$$

(4) (3) (4) (3) (4)

• The function *u*(*x*, *t*) the solves the following variational inequality:

$$\int_{\Omega} \nabla u \cdot \nabla (u - v) + \partial_t u (u - v) \ge 0$$
$$u \in \mathfrak{K}, \quad \partial_t u \in L^2(\Omega)$$
for all $v \in \mathfrak{K}$

where

$$\mathfrak{K} = \{ v \in W^{1,2}(\Omega) : v \big|_{\mathcal{M}} \ge \varphi, \ v \big|_{\partial \Omega \smallsetminus \mathcal{M}} = g \}$$

• Then for any (reasonable) initial condition

$$u = \varphi_0$$
 on $\Omega_0 = \Omega \times \{0\}$

the solution exist and unique. See [DUVAUT-LIONS 1986].

Arshak Petrosyan (Purdue)

(4) (3) (4) (3) (4)

• The parabolic Signorini problem is a free boundary problem.

Arsha	k Petros	yan (Purc	lue)
-------	----------	-------	------	------

3.1

- The parabolic Signorini problem is a free boundary problem.
- Let $\Lambda := \{(x, t) \in \mathcal{M}_T : u = \varphi\}$ be the so-called *coincidence set*. Then

 $\Gamma := \partial_M \Lambda$

is the free boundary.

★ 3 ► ►

- The parabolic Signorini problem is a free boundary problem.
- Let $\Lambda := \{(x, t) \in \mathcal{M}_T : u = \varphi\}$ be the so-called *coincidence set*. Then

 $\Gamma\coloneqq\partial_{\mathcal{M}}\Lambda$

is the *free boundary*.

• One then interested in the structure, geometric properties and the regularity of the free boundary.

通下 イヨト イヨト

- The parabolic Signorini problem is a free boundary problem.
- Let $\Lambda := \{(x, t) \in \mathcal{M}_T : u = \varphi\}$ be the so-called *coincidence set*. Then

 $\Gamma\coloneqq\partial_{\mathcal{M}}\Lambda$

is the *free boundary*.

• One then interested in the structure, geometric properties and the regularity of the free boundary.

Theorem (" $C^{1,\alpha}$ -regularity" [URAL'TSEVA 1985])

Let u be a solution of the Parabolic Signorini Problem with $\varphi \in C_x^{1,1} \cap C_t^{0,1}(\mathcal{M}_T)$, $\varphi_0 \in \operatorname{Lip}(\Omega_0)$, and $g \in L^2(\mathcal{G}_T)$. Then $\nabla u \in C_{x,t}^{\alpha,\alpha/2}(K)$ for any $K \Subset \Omega_T \cup \mathcal{M}_T$ and

$$\|\nabla u\|_{C^{\alpha,\alpha/2}_{x,t}(K)} \le C_K(\|\varphi\|_{C^{1,1}_x \cap C^{0,1}_t(\mathcal{M}_T)} + \|\varphi_0\|_{\operatorname{Lip}(\Omega_0)} + \|g\|_{L^2(\mathcal{G}_T)})$$

A (10) × (10) × (10) ×

Theorem (" $C^{1,\alpha}$ -regularity" [URAL'TSEVA 1985])

Let u be a solution of the Parabolic Signorini Problem with $\varphi \in C_x^{1,1} \cap C_t^{0,1}(\mathcal{M}_T)$, $\varphi_0 \in \operatorname{Lip}(\Omega_0)$, and $g \in L^2(\mathcal{G}_T)$. Then $\nabla u \in C_{x,t}^{\alpha,\alpha/2}(K)$ for any $K \Subset \Omega_T \cup \mathcal{M}_T$ and

$$\|\nabla u\|_{C^{\alpha,\alpha/2}_{x,t}(K)} \le C_K(\|\varphi\|_{C^{1,1}_x \cap C^{0,1}_t(\mathcal{M}_T)} + \|\varphi_0\|_{\operatorname{Lip}(\Omega_0)} + \|g\|_{L^2(\mathcal{G}_T)})$$

• In the elliptic case a similar result has been proved by [CAFFARELLI 1979]

Theorem (" $C^{1,\alpha}$ -regularity" [URAL'TSEVA 1985])

Let u be a solution of the Parabolic Signorini Problem with $\varphi \in C_x^{1,1} \cap C_t^{0,1}(\mathcal{M}_T)$, $\varphi_0 \in \operatorname{Lip}(\Omega_0)$, and $g \in L^2(\mathcal{G}_T)$. Then $\nabla u \in C_{x,t}^{\alpha,\alpha/2}(K)$ for any $K \in \Omega_T \cup \mathcal{M}_T$ and

$$\|\nabla u\|_{C^{\alpha,\alpha/2}_{x,t}(K)} \le C_K(\|\varphi\|_{C^{1,1}_x \cap C^{0,1}_t(\mathcal{M}_T)} + \|\varphi_0\|_{\operatorname{Lip}(\Omega_0)} + \|g\|_{L^2(\mathcal{G}_T)})$$

- In the elliptic case a similar result has been proved by [CAFFARELLI 1979]
- Proof in [URAL'TSEVA 1985] in the elliptic case worked also for nonhomogeneous equation $\Delta u = f, f \in L^{\infty}(\Omega)$, with Signorini boundary conditions. That fact then implies the regularity in the parabolic case.

イロト 不得 トイヨト イヨト 二日

Theorem (" $C^{1,\alpha}$ -regularity" [URAL'TSEVA 1985])

Let u be a solution of the Parabolic Signorini Problem with $\varphi \in C_x^{1,1} \cap C_t^{0,1}(\mathcal{M}_T)$, $\varphi_0 \in \operatorname{Lip}(\Omega_0)$, and $g \in L^2(\mathcal{G}_T)$. Then $\nabla u \in C_{x,t}^{\alpha,\alpha/2}(K)$ for any $K \in \Omega_T \cup \mathcal{M}_T$ and

$$\|\nabla u\|_{C^{\alpha,\alpha/2}_{x,t}(K)} \le C_K(\|\varphi\|_{C^{1,1}_x \cap C^{0,1}_t(\mathcal{M}_T)} + \|\varphi_0\|_{\operatorname{Lip}(\Omega_0)} + \|g\|_{L^2(\mathcal{G}_T)})$$

- In the elliptic case a similar result has been proved by [CAFFARELLI 1979]
- Proof in [URAL'TSEVA 1985] in the elliptic case worked also for nonhomogeneous equation $\Delta u = f, f \in L^{\infty}(\Omega)$, with Signorini boundary conditions. That fact then implies the regularity in the parabolic case.
- Except some specific cases, no general results have been known for the free boundary.

イロト 不得 トイヨト イヨト 二日

Parabolic Signorini Problem: Optimal Regularity

In the case when \mathcal{M} is flat, we have the following theorem.

Arshak Petrosyan (Purdue)

Parabolic Signorini Problem

FBP in Biology, MBI, Nov 2011 8 / 31

イロト イポト イヨト イヨト

Parabolic Signorini Problem: Optimal Regularity

In the case when \mathcal{M} is flat, we have the following theorem.

Theorem ("*C*^{1,1/2}-regularity" [DANIELLI-GAROFALO-*P*.-TO 2011])

Let u be a solution of the Parabolic Signorini Problem with flat \mathcal{M} and $\varphi \in C_x^{1,1} \cap C_t^{0,1}(\mathcal{M}_T)$, $\varphi_0 \in \operatorname{Lip}(\Omega_0)$, and $g \in L^2(\mathcal{G}_T)$. Then $\nabla u \in C_{x,t}^{1/2,1/4}(K)$ for any $K \in \Omega_T \cup \mathcal{M}_T$ and

$$\|\nabla u\|_{C^{1/2,1/4}_{x,t}(K)} \le C_K(\|\varphi\|_{C^{1,1}_{x,t}\cap C^{0,1}_t(M_T)} + \|\varphi_0\|_{\operatorname{Lip}(\Omega_0)} + \|g\|_{L^2(\mathscr{G}_T)})$$

ロト ・ 同ト ・ ヨト ・ ヨト

Parabolic Signorini Problem: Optimal Regularity

In the case when \mathcal{M} is flat, we have the following theorem.

Theorem ("*C*^{1,1/2}-regularity" [DANIELLI-GAROFALO-*P*.-TO 2011])

Let u be a solution of the Parabolic Signorini Problem with flat \mathcal{M} and $\varphi \in C_x^{1,1} \cap C_t^{0,1}(\mathcal{M}_T)$, $\varphi_0 \in \operatorname{Lip}(\Omega_0)$, and $g \in L^2(\mathcal{G}_T)$. Then $\nabla u \in C_{x,t}^{1/2,1/4}(K)$ for any $K \in \Omega_T \cup \mathcal{M}_T$ and

$$\|\nabla u\|_{C^{1/2,1/4}_{x,t}(K)} \le C_K(\|\varphi\|_{C^{1,1}_{x,t}\cap C^{0,1}_t(M_T)} + \|\varphi_0\|_{\operatorname{Lip}(\Omega_0)} + \|g\|_{L^2(\mathcal{G}_T)})$$

• This theorem is precise in the sense that it gives the best regularity possible, even in time-independet case:

$$u(x,t) = \operatorname{Re}(x_1 + ix_n)^{3/2}$$

solves the Signorini problem in $\mathbb{R}^n_+ \times \mathbb{R}$ with $\mathcal{M} = \mathbb{R}^{n-1}$.

Arshak Petrosyan (Purdue)

イロト イヨト イヨト

• Given $\Omega \subset \mathbb{R}^n$, $\mathcal{M} \subset \partial \Omega$

Arsha	k Petros	yan (I	Purdue)
-------	----------	--------	---------

э

イロン イヨン イヨン

- Given $\Omega \subset \mathbb{R}^n$, $\mathcal{M} \subset \partial \Omega$
- $\varphi : \mathcal{M} \to \mathbb{R}$ (thin obstacle) $g : \partial \Omega \setminus \mathcal{M} \to \mathbb{R}, g > \varphi \text{ on } \mathcal{M} \cap \partial \Omega.$

- Given $\Omega \subset \mathbb{R}^n$, $\mathcal{M} \subset \partial \Omega$
- $\varphi : \mathcal{M} \to \mathbb{R}$ (thin obstacle) $g : \partial \Omega \setminus \mathcal{M} \to \mathbb{R}, g > \varphi \text{ on } \mathcal{M} \cap \partial \Omega.$
- Minimize the Dirichlet integral

$$D_{\Omega}(u) = \int_{\Omega} |\nabla u|^2 dx$$

on the closed convex set

$$\mathfrak{K} = \left\{ u \in W^{1,2}(\Omega) \mid u \Big|_{\mathcal{M}} \ge \varphi, \ u \Big|_{\partial \Omega \smallsetminus \mathcal{M}} = g \right\}$$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Given $\Omega \subset \mathbb{R}^n$, $\mathcal{M} \subset \partial \Omega$
- $\varphi : \mathcal{M} \to \mathbb{R}$ (thin obstacle) $g : \partial \Omega \setminus \mathcal{M} \to \mathbb{R}, g > \varphi \text{ on } \mathcal{M} \cap \partial \Omega.$
- Minimize the Dirichlet integral

$$D_{\Omega}(u) = \int_{\Omega} |\nabla u|^2 dx$$

on the closed convex set

$$\mathfrak{K} = \left\{ u \in W^{1,2}(\Omega) \mid u \big|_{\mathcal{M}} \ge \varphi, u \big|_{\partial \Omega \smallsetminus \mathcal{M}} = g \right\}$$

• The minimizer *u* satisfies

$$\Delta u = 0 \quad \text{in } \Omega$$
$$u \ge \varphi, \quad \partial_{\nu} u \ge 0, \quad (u - \varphi) \partial_{\nu} u = 0 \quad \text{on } \mathcal{M}$$

(日)

• The progress in parabolic case was motivated by the breakthrough result of [ATHANASOPOULOS-CAFFARELLI 2000] establishing the $C^{1,1/2}$ regularity in the elliptic thin obstacle problem.

Theorem

Let u be a solution of the thin obstacle problem for flat \mathcal{M} , with $\varphi \in C^{1,1}(\mathcal{M})$ and $g \in L^2(\partial \Omega \setminus \mathcal{M})$. Then $u \in C^{1,1/2}(K)$ for any $K \subseteq \Omega \cup \mathcal{M}$ and

$$\|u\|_{C^{1,1/2}(K)} \leq C_K \left(\|\varphi\|_{C^{1,1}(\mathcal{M})} + \|g\|_{L^2}\right).$$

(4 冊) (4 回) (4 回)

• The progress in parabolic case was motivated by the breakthrough result of [ATHANASOPOULOS-CAFFARELLI 2000] establishing the $C^{1,1/2}$ regularity in the elliptic thin obstacle problem.

Theorem

Let u be a solution of the thin obstacle problem for flat \mathcal{M} , with $\varphi \in C^{1,1}(\mathcal{M})$ and $g \in L^2(\partial \Omega \setminus \mathcal{M})$. Then $u \in C^{1,1/2}(K)$ for any $K \subseteq \Omega \cup \mathcal{M}$ and

$$\|u\|_{C^{1,1/2}(K)} \leq C_K \left(\|\varphi\|_{C^{1,1}(\mathcal{M})} + \|g\|_{L^2}\right).$$

• $\varphi = 0$: [Athanasopoulos-Caffarelli 2000]

• The progress in parabolic case was motivated by the breakthrough result of [ATHANASOPOULOS-CAFFARELLI 2000] establishing the $C^{1,1/2}$ regularity in the elliptic thin obstacle problem.

Theorem

Let u be a solution of the thin obstacle problem for flat \mathcal{M} , with $\varphi \in C^{1,1}(\mathcal{M})$ and $g \in L^2(\partial \Omega \setminus \mathcal{M})$. Then $u \in C^{1,1/2}(K)$ for any $K \subseteq \Omega \cup \mathcal{M}$ and

$$\|u\|_{C^{1,1/2}(K)} \leq C_K \left(\|\varphi\|_{C^{1,1}(\mathcal{M})} + \|g\|_{L^2}\right).$$

- $\varphi = 0$: [Athanasopoulos-Caffarelli 2000]
- $\varphi \in C^{2,1}$: [Athanasopoulos-Caffarelli-Salsa 2007]

イロト イポト イヨト イヨト

• The progress in parabolic case was motivated by the breakthrough result of [ATHANASOPOULOS-CAFFARELLI 2000] establishing the $C^{1,1/2}$ regularity in the elliptic thin obstacle problem.

Theorem

Let u be a solution of the thin obstacle problem for flat \mathcal{M} , with $\varphi \in C^{1,1}(\mathcal{M})$ and $g \in L^2(\partial \Omega \setminus \mathcal{M})$. Then $u \in C^{1,1/2}(K)$ for any $K \subseteq \Omega \cup \mathcal{M}$ and

$$\|u\|_{C^{1,1/2}(K)} \leq C_K \left(\|\varphi\|_{C^{1,1}(\mathcal{M})} + \|g\|_{L^2}\right).$$

- $\varphi = 0$: [Athanasopoulos-Caffarelli 2000]
- $\varphi \in C^{2,1}$: [Athanasopoulos-Caffarelli-Salsa 2007]
- $\varphi \in C^{1,1}$: [\mathcal{P} -To 2010]

イロト イポト イヨト イヨト

• Assume \mathcal{M} is flat: $\mathcal{M} = \mathbb{R}^{n-1} \times \{0\}, \varphi = 0$

- Assume \mathcal{M} is flat: $\mathcal{M} = \mathbb{R}^{n-1} \times \{0\}, \varphi = 0$
- If *u* solves Signorini problem, after translation, rotation, and scaling, we may normalize *u* as follows:

<ロト <回ト < 回ト < 回ト = 三日

- Assume \mathcal{M} is flat: $\mathcal{M} = \mathbb{R}^{n-1} \times \{0\}, \varphi = 0$
- If *u* solves Signorini problem, after translation, rotation, and scaling, we may normalize *u* as follows:

Definition (Class S)

We say *u* is a **normalized solution** of Signorini problem iff

$$\Delta u = 0 \quad \text{in } B_1^+$$

$$u \ge 0, \quad -\partial_{x_n} u \ge 0, \quad u \, \partial_{x_n} u = 0 \quad \text{on } B_1'$$

$$0 \in \Gamma(u) = \partial \Lambda(u) = \partial \{u = 0\}.$$

We denote the class of normalized solutions by \mathfrak{S} .

Arshak Petrosyan	(Purdue)
------------------	----------

イロト イポト イヨト イヨト

- Assume \mathcal{M} is flat: $\mathcal{M} = \mathbb{R}^{n-1} \times \{0\}, \varphi = 0$
- If *u* solves Signorini problem, after translation, rotation, and scaling, we may normalize *u* as follows:

Definition (Class S)

We say *u* is a **normalized solution** of Signorini problem iff

$$\Delta u = 0 \quad \text{in } B_1^+$$

$$u \ge 0, \quad -\partial_{x_n} u \ge 0, \quad u \, \partial_{x_n} u = 0 \quad \text{on } B_1'$$

$$0 \in \Gamma(u) = \partial \Lambda(u) = \partial \{u = 0\}.$$

We denote the class of normalized solutions by S.

• *Notation*: $\mathbb{R}^{n}_{+} = \mathbb{R}^{n-1} \times (0, +\infty), \quad B^{+}_{1} := B_{1} \cap \mathbb{R}^{n}_{+}, \quad B'_{1} := B_{1} \cap (\mathbb{R}^{n-1} \times \{0\})$

Arshak Petrosyan (Purdue)
Zero Obstacle φ : Normalization

• Every $u \in \mathfrak{S}$ can be extended from B_1^+ to B_1 by even symmetry

$$u(x',-x_n) \coloneqq u(x',x_n).$$

3

イロト イボト イヨト イヨト

Zero Obstacle φ : Normalization

• Every $u \in \mathfrak{S}$ can be extended from B_1^+ to B_1 by even symmetry

$$u(x',-x_n) \coloneqq u(x',x_n).$$

• The resulting function will satisfy

 $\Delta u \leq 0 \quad \text{in } B_1$ $\Delta u = 0 \quad \text{in } B_1 \smallsetminus \Lambda(u)$ $u \Delta u = 0 \quad \text{in } B_1.$

Here $\Lambda(u) = \{u = 0\} \subset B'_1$.

Zero Obstacle φ : Normalization

• Every $u \in \mathfrak{S}$ can be extended from B_1^+ to B_1 by even symmetry

$$u(x',-x_n) \coloneqq u(x',x_n).$$

• The resulting function will satisfy

$$\Delta u \leq 0 \quad \text{in } B_1$$

$$\Delta u = 0 \quad \text{in } B_1 \smallsetminus \Lambda(u)$$

$$u \Delta u = 0 \quad \text{in } B_1.$$

- Here $\Lambda(u) = \{u = 0\} \subset B'_1$.
- More specifically:

$$\Delta u = 2(\partial_{x_n} u) \mathcal{H}^{n-1}|_{\Lambda(u)} \quad \text{in } \mathfrak{D}'(B_1).$$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Almgren's Frequency Function

Theorem (Monotonicity of the frequency)

Let $u \in \mathfrak{S}$ *. Then the* **frequency function**

$$r \mapsto N(r, u) \coloneqq \frac{r \int_{B_r} |\nabla u|^2}{\int_{\partial B_r} u^2} \nearrow \quad for \quad 0 < r < 1.$$

Moreover, $N(r, u) \equiv \kappa \iff x \cdot \nabla u - \kappa u = 0$ in B_1 , i.e. u is homogeneous of degree κ in B_1 .

• [Almgren 1979] for harmonic *u*

(4 回) (4 回) (4 回)

Almgren's Frequency Function

Theorem (Monotonicity of the frequency)

Let $u \in \mathfrak{S}$ *. Then the* **frequency function**

$$r \mapsto N(r, u) \coloneqq \frac{r \int_{B_r} |\nabla u|^2}{\int_{\partial B_r} u^2} \nearrow \quad for \quad 0 < r < 1.$$

Moreover, $N(r, u) \equiv \kappa \iff x \cdot \nabla u - \kappa u = 0$ in B_1 , i.e. u is homogeneous of degree κ in B_1 .

- [Almgren 1979] for harmonic *u*
- [GAROFALO-LIN 1986-87] for divergence form elliptic operators

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Almgren's Frequency Function

Theorem (Monotonicity of the frequency)

Let $u \in \mathfrak{S}$ *. Then the* **frequency function**

$$r \mapsto N(r, u) \coloneqq \frac{r \int_{B_r} |\nabla u|^2}{\int_{\partial B_r} u^2} \nearrow \quad for \quad 0 < r < 1.$$

Moreover, $N(r, u) \equiv \kappa \iff x \cdot \nabla u - \kappa u = 0$ in B_1 , i.e. u is homogeneous of degree κ in B_1 .

- [Almgren 1979] for harmonic *u*
- [GAROFALO-LIN 1986-87] for divergence form elliptic operators
- [ATHANASOPOULOS-CAFFARELLI-SALSA 2007] for thin obstacle problem

イロト イポト イヨト イヨト

Figure: Solution of the thin obstacle problem $\operatorname{Re}(x_1 + i|x_2|)^{3/2}$

Arshak Petrosyan (Purdue)

Parabolic Signorini Problem

FBP in Biology, MBI, Nov 2011 14 / 31

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Figure: Multi-valued harmonic function $\text{Re}(x_1 + ix_2)^{3/2}$

Arshak Petrosyan (Purdue)

Parabolic Signorini Problem

FBP in Biology, MBI, Nov 2011 15 / 31

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ >

• For a solution $u \in \mathfrak{S}$ and r > 0 consider **rescalings**

$$u_r(x) \coloneqq \frac{u(rx)}{\left(\frac{1}{r^{n-1}}\int_{\partial B_r} u^2\right)^{\frac{1}{2}}}.$$

크

イロト イボト イヨト イヨト

• For a solution $u \in \mathfrak{S}$ and r > 0 consider **rescalings**

$$u_r(x) \coloneqq \frac{u(rx)}{\left(\frac{1}{r^{n-1}}\int_{\partial B_r} u^2\right)^{\frac{1}{2}}}.$$

• The rescaling is normalized so that

$$\|u_r\|_{L^2(\partial B_1)}=1.$$

イロト イポト イヨト イヨト

• For a solution $u \in \mathfrak{S}$ and r > 0 consider **rescalings**

$$u_r(x) \coloneqq \frac{u(rx)}{\left(\frac{1}{r^{n-1}}\int_{\partial B_r} u^2\right)^{\frac{1}{2}}}.$$

• The rescaling is normalized so that

$$\|u_r\|_{L^2(\partial B_1)}=1.$$

• Limits of subsequences $\{u_{r_i}\}$ for some $r_j \rightarrow 0+$ are known as blowups.

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

• For a solution $u \in \mathfrak{S}$ and r > 0 consider **rescalings**

$$u_r(x) \coloneqq \frac{u(rx)}{\left(\frac{1}{r^{n-1}}\int_{\partial B_r} u^2\right)^{\frac{1}{2}}}.$$

• The rescaling is normalized so that

$$\|u_r\|_{L^2(\partial B_1)}=1.$$

- Limits of subsequences $\{u_{r_i}\}$ for some $r_j \rightarrow 0+$ are known as blowups.
- Generally the blowups may be different over different subsequences $r = r_j \rightarrow 0+$.

• Uniform estimates on rescalings {*u_r*}:

$$\int_{B_1} |\nabla u_r|^2 = N(1, u_r) = N(r, u) \le N(1, u).$$

• Uniform estimates on rescalings {*u_r*}:

$$\int_{B_1} |\nabla u_r|^2 = N(1, u_r) = N(r, u) \le N(1, u).$$

• Hence, \exists blowup u_0 over a sequence $r_j \rightarrow 0+$

$$u_{r_i} \to u_0 \quad \text{in } W^{1,2}(B_1)$$

• Uniform estimates on rescalings {*u_r*}:

$$\int_{B_1} |\nabla u_r|^2 = N(1, u_r) = N(r, u) \le N(1, u).$$

• Hence, \exists blowup u_0 over a sequence $r_j \rightarrow 0+$

$$u_{r_i} \to u_0 \quad \text{in } L^2(\partial B_1)$$

• Uniform estimates on rescalings {*u_r*}:

$$\int_{B_1} |\nabla u_r|^2 = N(1, u_r) = N(r, u) \le N(1, u).$$

• Hence, \exists blowup u_0 over a sequence $r_j \rightarrow 0+$

$$u_{r_j} \rightarrow u_0 \quad \text{in } C^1_{\text{loc}}(B'_1 \cup B^{\pm}_1)$$

• Uniform estimates on rescalings {*u_r*}:

$$\int_{B_1} |\nabla u_r|^2 = N(1, u_r) = N(r, u) \le N(1, u).$$

• Hence, \exists blowup u_0 over a sequence $r_j \rightarrow 0+$

$$u_{r_j} \to u_0 \quad \text{in } C^1_{\text{loc}}(B'_1 \cup B^{\pm}_1)$$

Proposition (Homogeneity of blowups)

Let $u \in \mathfrak{S}$ and the blowup u_0 be as above. Then, u_0 is homogeneous of degree $\kappa = N(0+, u)$.

• Uniform estimates on rescalings {*u_r*}:

$$\int_{B_1} |\nabla u_r|^2 = N(1, u_r) = N(r, u) \le N(1, u).$$

• Hence, \exists blowup u_0 over a sequence $r_j \rightarrow 0+$

$$u_{r_j} \rightarrow u_0 \quad \text{in } C^1_{\text{loc}}(B'_1 \cup B^{\pm}_1)$$

Proposition (Homogeneity of blowups)

Let $u \in \mathfrak{S}$ and the blowup u_0 be as above. Then, u_0 is homogeneous of degree $\kappa = N(0+, u)$.

Proof.

$$N(r, u_0) = \lim_{r_j \to 0+} N(r, u_{r_j}) = \lim_{r_j \to 0+} N(rr_j, u) = N(0+, u)$$

Arshak Petrosyan (Purdue)

Proof of $C^{1,1/2}$ regularity

Lemma ([Athanasopoulos-Caffarelli 2000])

Let u_0 be a homogeneous global solution of the thin obstacle problem with homogeneity κ . Then $\kappa \ge 3/2$.

• Explicit solution for which $\kappa = 3/2$ is achieved is $\text{Re}(x_1 + i|x_n|)^{3/2}$

(4 回) (4 回) (4 回)

Proof of $C^{1,1/2}$ regularity

Lemma ([Athanasopoulos-Caffarelli 2000])

Let u_0 *be a homogeneous global solution of the thin obstacle problem with homogeneity* κ *. Then* $\kappa \ge 3/2$ *.*

- Explicit solution for which $\kappa = 3/2$ is achieved is $\text{Re}(x_1 + i|x_n|)^{3/2}$
- From Lemma we obtain that $N(0+, u) = \kappa \ge 3/2$ for any $u \in \mathfrak{S}$.

A (1) × (2) × (3) ×

Proof of $C^{1,1/2}$ regularity

Lemma ([Athanasopoulos-Caffarelli 2000])

Let u_0 *be a homogeneous global solution of the thin obstacle problem with homogeneity* κ *. Then* $\kappa \ge 3/2$ *.*

- Explicit solution for which $\kappa = 3/2$ is achieved is $\text{Re}(x_1 + i|x_n|)^{3/2}$
- From Lemma we obtain that $N(0+, u) = \kappa \ge 3/2$ for any $u \in \mathfrak{S}$.
- From here one can show that

$$\int_{\partial B_r} u^2 \le Cr^{n+2}, \quad 0 < r < 1$$

and consequently that

$$u \in C^{1,1/2}(B_{1/2}^{\pm} \cup B_{1/2}').$$

Nonzero Obstacle φ : Normalization

• Let now *u* solve the thin obstacle problem with nonzero obstacle $\varphi \in C^{1,1}$:

$$\Delta u = 0 \quad \text{in } B_1^+$$
$$u \ge \varphi, \quad -\partial_{x_n} u \ge 0, \quad (u - \varphi) \, \partial_{x_n} u = 0 \quad \text{on } B_1'.$$

Nonzero Obstacle φ : Normalization

• Let now *u* solve the thin obstacle problem with nonzero obstacle $\varphi \in C^{1,1}$:

$$\Delta u = 0 \quad \text{in } B_1^+$$
$$u \ge \varphi, \quad -\partial_{x_n} u \ge 0, \quad (u - \varphi) \, \partial_{x_n} u = 0 \quad \text{on } B_1'.$$

• Consider the difference

$$v(x) = u(x) - \varphi(x').$$

イロト イポト イヨト イヨト

Nonzero Obstacle φ : Normalization

• Let now *u* solve the thin obstacle problem with nonzero obstacle $\varphi \in C^{1,1}$:

$$\Delta u = 0 \quad \text{in } B_1^+$$
$$u \ge \varphi, \quad -\partial_{x_n} u \ge 0, \quad (u - \varphi) \, \partial_{x_n} u = 0 \quad \text{on } B_1'.$$

• Consider the difference

$$v(x) = u(x) - \varphi(x').$$

• Then it will be the class \mathfrak{S}^f with $f = \Delta' \varphi \in L^{\infty}(B_1^+)$.

Definition (Class \mathfrak{S}^f)

We say that $v \in \mathfrak{S}^f$ for some $f \in L^{\infty}(B_1^+)$ if

$$\Delta v = f \quad \text{in } B_1^+$$
$$v \ge 0, \quad -\partial_{x_n} v \ge 0, \quad v \ \partial_{x_n} v = 0 \quad \text{on } B_1'.$$

Arshak Petrosyan (Purdue)

Theorem (Monotonicity of truncated frequency)

Let $v \in \mathfrak{S}^{f}$. Then for any $\delta > 0$ there exists $C = C(||f||_{L^{\infty}}, \delta) > 0$ such that

$$r \mapsto \Phi(r, v) = r e^{Cr^{\delta}} \frac{d}{dr} \log \max\left\{ \int_{\partial B_r} v^2, r^{n+3-2\delta} \right\} + 3(e^{Cr^{\delta}} - 1) \mathcal{N}$$

for 0 < r < 1.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem (Monotonicity of truncated frequency)

Let $v \in \mathfrak{S}^{f}$. Then for any $\delta > 0$ there exists $C = C(||f||_{L^{\infty}}, \delta) > 0$ such that

$$r \mapsto \Phi(r, v) = r e^{Cr^{\delta}} \frac{d}{dr} \log \max\left\{ \int_{\partial B_r} v^2, r^{n+3-2\delta} \right\} + 3(e^{Cr^{\delta}} - 1) \mathcal{N}$$

for 0 < r < 1.

• Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the thin obstacle problem, under the additional assumption $|f(x)| \le C|x'|$.

(4 冊) (4 回) (4 回)

Theorem (Monotonicity of truncated frequency)

Let $v \in \mathfrak{S}^{f}$. Then for any $\delta > 0$ there exists $C = C(||f||_{L^{\infty}}, \delta) > 0$ such that

$$r \mapsto \Phi(r, v) = r e^{Cr^{\delta}} \frac{d}{dr} \log \max\left\{ \int_{\partial B_r} v^2, r^{n+3-2\delta} \right\} + 3(e^{Cr^{\delta}} - 1) \mathcal{N}$$

for 0 < r < 1.

- Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the thin obstacle problem, under the additional assumption $|f(x)| \le C|x'|$.
- In this form, essentially in [P.-To 2010].

(4 回) (4 回) (4 回)

Theorem (Monotonicity of truncated frequency)

Let $v \in \mathfrak{S}^{f}$. Then for any $\delta > 0$ there exists $C = C(||f||_{L^{\infty}}, \delta) > 0$ such that

$$r \mapsto \Phi(r, v) = r e^{Cr^{\delta}} \frac{d}{dr} \log \max\left\{ \int_{\partial B_r} v^2, r^{n+3-2\delta} \right\} + 3(e^{Cr^{\delta}} - 1) \mathcal{N}$$

for 0 < r < 1.

- Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the thin obstacle problem, under the additional assumption $|f(x)| \le C|x'|$.
- In this form, essentially in [*P*.-To 2010].
- Proof consists in estimating the error terms. The truncation of the growth is needed to absorb those terms.

Parabolic Case: Poon's Monotonicity Formula

• The optimal regularity in the elliptic case was obtained with the help of Almgren's Frequency Function. So we need a parabolic analogue of the frequency.

Parabolic Case: Poon's Monotonicity Formula

• The optimal regularity in the elliptic case was obtained with the help of Almgren's Frequency Function. So we need a parabolic analogue of the frequency.

Theorem ([POON 1996])

Let u be a caloric function (solution of the heat equation) in the strip $S_R = \mathbb{R}^n \times (-R^2, 0]$. *Then*

$$N(r, u) = \frac{r^2 \int_{t=-r^2} |\nabla u|^2 G(x, r^2) dx}{\int_{t=-r^2} u^2 G(x, r^2) dx} \quad \not \land \quad \text{for } 0 < r < R.$$

Moreover, $N(r, u) \equiv \kappa \iff u$ is parabolically homogeneous of degree κ , i.e. $u(\lambda x, \lambda^2 t) = \lambda^{\kappa} u(x, t)$.

Parabolic Case: Poon's Monotonicity Formula

• The optimal regularity in the elliptic case was obtained with the help of Almgren's Frequency Function. So we need a parabolic analogue of the frequency.

Theorem ([POON 1996])

Let u be a caloric function (solution of the heat equation) in the strip $S_R = \mathbb{R}^n \times (-R^2, 0]$. *Then*

$$N(r, u) = \frac{r^2 \int_{t=-r^2} |\nabla u|^2 G(x, r^2) dx}{\int_{t=-r^2} u^2 G(x, r^2) dx} \quad \not \land \quad \text{for } 0 < r < R.$$

Moreover, $N(r, u) \equiv \kappa \iff u$ is parabolically homogeneous of degree κ , i.e. $u(\lambda x, \lambda^2 t) = \lambda^{\kappa} u(x, t)$.

• Here $G(x, t) = (4\pi t)^{-n/2} e^{-|x|^2/4t}$, t > 0 is the heat (Gaussian) kernel.

Arshak Petrosyan (Purdue)

• Suppose now *u* solves the Parabolic Signorini Problem in $Q_1^+ = B_1^+ \times (-1, 0]$ with $\mathcal{M} = B_1'$ and $\varphi \in C_x^{1,1} \cap C_t^{0,1}$.

- ロ ト - (四 ト - (三 ト - (三 ト -)))

- Suppose now *u* solves the Parabolic Signorini Problem in $Q_1^+ = B_1^+ \times (-1, 0]$ with $\mathcal{M} = B_1'$ and $\varphi \in C_x^{1,1} \cap C_t^{0,1}$.
- We want to "extend" *v* to the half-strip S₁⁺ = ℝⁿ₊ × (−1, 0] in the following way.

(4 個) (4 回) (4 回) (5 回

- Suppose now *u* solves the Parabolic Signorini Problem in $Q_1^+ = B_1^+ \times (-1, 0]$ with $\mathcal{M} = B_1'$ and $\varphi \in C_x^{1,1} \cap C_t^{0,1}$.
- We want to "extend" *v* to the half-strip S₁⁺ = ℝⁿ₊ × (−1, 0] in the following way.
- Let $\eta \in C_0^{\infty}(B_1)$ be a cutoff function such that

$$\eta = \eta(|x|), \quad 0 \le \eta \le 1, \quad \eta|_{B_{1/2}} = 1, \quad \operatorname{supp} \eta \subset B_{3/4}$$

and consider

$$v(x,t) = [u(x,t) - \varphi(x',0,t)]\eta(x).$$

- Suppose now *u* solves the Parabolic Signorini Problem in $Q_1^+ = B_1^+ \times (-1, 0]$ with $\mathcal{M} = B_1'$ and $\varphi \in C_x^{1,1} \cap C_t^{0,1}$.
- We want to "extend" *v* to the half-strip S₁⁺ = ℝⁿ₊ × (−1, 0] in the following way.
- Let $\eta \in C_0^{\infty}(B_1)$ be a cutoff function such that

$$\eta = \eta(|x|), \quad 0 \le \eta \le 1, \quad \eta|_{B_{1/2}} = 1, \quad \operatorname{supp} \eta \subset B_{3/4}$$

and consider

$$v(x,t) = [u(x,t) - \varphi(x',0,t)]\eta(x).$$

• Then *v* solves the Signorini problem in the half-strip *S*₁⁺ = ℝⁿ₊ × (−1, 0] with a nonzero right-hand side

$$\Delta v - \partial_t v = f \coloneqq \eta(x) [-\Delta' \varphi + \partial_t \varphi] + [u - \varphi(x', t)] \Delta \eta + 2 \nabla u \nabla \eta$$

Arshak Petrosyan (Purdue)

- Suppose now *u* solves the Parabolic Signorini Problem in $Q_1^+ = B_1^+ \times (-1, 0]$ with $\mathcal{M} = B_1'$ and $\varphi \in C_x^{1,1} \cap C_t^{0,1}$.
- We want to "extend" *v* to the half-strip S₁⁺ = ℝⁿ₊ × (−1, 0] in the following way.
- Let $\eta \in C_0^{\infty}(B_1)$ be a cutoff function such that

$$\eta = \eta(|x|), \quad 0 \le \eta \le 1, \quad \eta|_{B_{1/2}} = 1, \quad \operatorname{supp} \eta \subset B_{3/4}$$

and consider

$$v(x,t) = [u(x,t) - \varphi(x',0,t)]\eta(x).$$

Then *v* solves the Signorini problem in the half-strip S₁⁺ = ℝ₊ⁿ × (−1, 0] with a nonzero right-hand side

$$\Delta v - \partial_t v = f \coloneqq \eta(x) [-\Delta' \varphi + \partial_t \varphi] + [u - \varphi(x', t)] \Delta \eta + 2 \nabla u \nabla \eta$$

• Important note: the right-hand side f is nonzero even if $\varphi \equiv 0$.
• For the extended *u* define

$$h_u(t) = \int_{\mathbb{R}^n_+} u(x,t)^2 G(x,-t) dx$$

$$i_u(t) = -t \int_{\mathbb{R}^n_+} |\nabla u(x,t)|^2 G(x,-t) dx,$$

イロト イポト イヨト イヨト

- 2

• For the extended *u* define

$$h_u(t) = \int_{\mathbb{R}^n_+} u(x,t)^2 G(x,-t) dx$$

$$i_u(t) = -t \int_{\mathbb{R}^n_+} |\nabla u(x,t)|^2 G(x,-t) dx,$$

• Poon's frequency is now given by

$$N(r,u)=\frac{i_u(-r^2)}{h_u(-r^2)}.$$

伺下 イヨト イヨト

• For the extended *u* define

$$h_u(t) = \int_{\mathbb{R}^n_+} u(x,t)^2 G(x,-t) dx$$

$$i_u(t) = -t \int_{\mathbb{R}^n_+} |\nabla u(x,t)|^2 G(x,-t) dx,$$

• Poon's frequency is now given by

$$N(r,u)=\frac{i_u(-r^2)}{h_u(-r^2)}.$$

• For our generalization, however, *i_u* and *h_u* are too irregular and we have to **average** them to regain missing regularity:

$$H_{u}(r) = \frac{1}{r^{2}} \int_{-r^{2}}^{0} h_{u}(t) dt = \frac{1}{r^{2}} \int_{S_{r}^{+}}^{0} u(x,t)^{2} G(x,-t) dx dt$$
$$I_{u}(r) = \frac{1}{r^{2}} \int_{-r^{2}}^{0} i_{u}(t) dt = \frac{1}{r^{2}} \int_{S_{r}^{+}}^{0} |t| |\nabla u(x,t)|^{2} G(x,-t) dx dt$$

Arshak Petrosyan (Purdue)

イロト イポト イヨト イヨト 二日

Theorem ([DANIELLI-GAROFALO-P.-TO 2011])

Let $v \in \mathfrak{S}^{f}(S_{1}^{+})$. Then for any $\delta > 0$ there exist *C* such that

$$\Phi(r,v) = \frac{1}{2}re^{Cr^{\delta}}\frac{d}{dr}\log\max\{H_{v}(r), r^{4-2\delta}\} + \frac{3}{2}(e^{Cr^{\delta}}-1) \qquad \nearrow$$

for 0 < r < 1.

Theorem ([DANIELLI-GAROFALO-P.-TO 2011])

Let $v \in \mathfrak{S}^{f}(S_{1}^{+})$. Then for any $\delta > 0$ there exist *C* such that

$$\Phi(r,v) = \frac{1}{2} r e^{Cr^{\delta}} \frac{d}{dr} \log \max\{H_{v}(r), r^{4-2\delta}\} + \frac{3}{2} (e^{Cr^{\delta}} - 1) \quad \mathcal{N}$$

for 0 < r < 1.

• Using this generalized frequency formula, as well as an estimation on parabolic homogeneity of blowups we obtain the optimal regularity.

イロト イヨト イヨト

Parabolic Rescalings and Blowups

• As in the elliptic case, we consider the rescalings

$$u_r(x,t) = \frac{u(rx,r^2t)}{H_u(r)^{1/2}}, \quad f_r(x,t) = \frac{r^2 f(rx,r^2t)}{H_u(r)^{1/2}},$$

for $(x,t) \in S_{1/r}^+ = \mathbb{R}^n_+ \times (-1/r^2, 0]$

3

ヘロン ヘヨン ヘヨン ヘヨン

Parabolic Rescalings and Blowups

• As in the elliptic case, we consider the rescalings

$$u_r(x,t) = \frac{u(rx,r^2t)}{H_u(r)^{1/2}}, \quad f_r(x,t) = \frac{r^2f(rx,r^2t)}{H_u(r)^{1/2}},$$

for $(x, t) \in S_{1/r}^+ = \mathbb{R}^n_+ \times (-1/r^2, 0]$

If Φ_u(0+) < 4 - 2δ then one can show that the family {u_r} is convergent in suitable sense on ℝⁿ₊ × (-∞, 0] to a parabolically homogeneous solution u₀ of the Parabolic Signorini Problem

$$\Delta u_0 - \partial_t u_0 = 0 \quad \text{in } \mathbb{R}^n_+ \times (-\infty, 0]$$

$$u_0 \ge 0, \quad -\partial_{x_n} u_0 \ge 0, \quad u_0 \partial_{x_n} u_0 = 0 \quad \text{on } \mathbb{R}^{n-1} \times (-\infty, 0]$$

イロト 不得 トイヨト イヨト 二日

Parabolic Rescalings and Blowups

• As in the elliptic case, we consider the rescalings

$$u_r(x,t) = \frac{u(rx,r^2t)}{H_u(r)^{1/2}}, \quad f_r(x,t) = \frac{r^2f(rx,r^2t)}{H_u(r)^{1/2}},$$

for $(x, t) \in S_{1/r}^+ = \mathbb{R}^n_+ \times (-1/r^2, 0]$

If Φ_u(0+) < 4 - 2δ then one can show that the family {u_r} is convergent in suitable sense on ℝⁿ₊ × (-∞, 0] to a parabolically homogeneous solution u₀ of the Parabolic Signorini Problem

$$\Delta u_0 - \partial_t u_0 = 0 \quad \text{in } \mathbb{R}^n_+ \times (-\infty, 0]$$
$$u_0 \ge 0, \quad -\partial_{x_n} u_0 \ge 0, \quad u_0 \partial_{x_n} u_0 = 0 \quad \text{on } \mathbb{R}^{n-1} \times (-\infty, 0]$$

• Parabolic homogeneity u_0 is $\kappa = \frac{1}{2}\Phi_0(0+) < 2 - \delta < 2$. Besides, because of $C^{1,\alpha}$ -regularity, also $\kappa \ge 1 + \alpha > 1$. Thus:

$$1 < \kappa < 2$$
.

Parabolically Homogeneous Global Solutions

Lemma ([DANIELLI-GAROFALO-P.-TO 2011])

Let u_0 be a parabolically homogeneous solution of the Parabolic Signorini Problem in $\mathbb{R}^n_+ \times (-\infty, 0]$ with homogeneity $1 < \kappa < 2$. Then necessarily $\kappa = 3/2$ and

$$u_0(x,t) = C \operatorname{Re}(x_1 + ix_n)^{3/2},$$

after a possible rotation in \mathbb{R}^{n-1} .

伺下 イヨト イヨト

Parabolically Homogeneous Global Solutions

Lemma ([DANIELLI-GAROFALO-P.-TO 2011])

Let u_0 be a parabolically homogeneous solution of the Parabolic Signorini Problem in $\mathbb{R}^n_+ \times (-\infty, 0]$ with homogeneity $1 < \kappa < 2$. Then necessarily $\kappa = 3/2$ and

$$u_0(x,t) = C \operatorname{Re}(x_1 + ix_n)^{3/2},$$

after a possible rotation in \mathbb{R}^{n-1} .

• The proof is based on a rather deep monotonicity formula of Caffarelli to reduce it to dimension n = 2 and then analysing of the principal eigenvalues of the Ornstein-Uhlenbeck operator $-\Delta + \frac{1}{2}x \cdot \nabla$ in \mathbb{R}^2 for the slit planes

$$\Omega_a \coloneqq \mathbb{R}^2 \smallsetminus ((-\infty, a] \times \{0\}).$$

イロト イボト イヨト イヨト

• From Lemma we obtain that $\Phi_u(0+) \ge 3$, if $\Phi_u(0+) < 4 - 2\delta$. Thus, always $\Phi_u(0+) \ge 3$.

<ロト <回ト < 回ト < 回ト = 三日

- From Lemma we obtain that $\Phi_u(0+) \ge 3$, if $\Phi_u(0+) < 4 2\delta$. Thus, always $\Phi_u(0+) \ge 3$.
- This implies $H_u(r) = \int_{\mathbb{R}^n_+} u^2 G(x, -t) dx dt \le Cr^3$

- From Lemma we obtain that $\Phi_u(0+) \ge 3$, if $\Phi_u(0+) < 4 2\delta$. Thus, always $\Phi_u(0+) \ge 3$.
- This implies $H_u(r) = \int_{\mathbb{R}^n_+} u^2 G(x, -t) dx dt \le Cr^3$
- This further implies that

$$\sup_{Q_{r/2}^+(x_0,t_0)} |u| \le Cr^{3/2}$$

for any $(x_0, t_0) \in Q'_{1/2}$ such that $u(x_0, t_0) = 0$.

<ロト <回ト < 回ト < 回ト = 三日

- From Lemma we obtain that $\Phi_u(0+) \ge 3$, if $\Phi_u(0+) < 4 2\delta$. Thus, always $\Phi_u(0+) \ge 3$.
- This implies $H_u(r) = \int_{\mathbb{R}^n_+} u^2 G(x, -t) dx dt \le Cr^3$
- This further implies that

$$\sup_{\substack{Q_{r/2}^+(x_0,t_0)}} |u| \le Cr^{3/2}$$

for any $(x_0, t_0) \in Q'_{1/2}$ such that $u(x_0, t_0) = 0$.

• Using interior parabolic estimates one then obtains

$$\nabla u \in C_{x,t}^{1/2,1/4}(Q_{1/4}^+).$$

Arshak Petrosyan (Purdue)

• Assume now φ is in parabolic Hölder class $H_{x',t}^{\ell,\ell/2}(B'_1)$, with $\ell = k + \gamma \ge 2$, $k \in \mathbb{N}, 0 < \gamma \le 1$.

- Assume now φ is in parabolic Hölder class $H_{x',t}^{\ell,\ell/2}(B_1')$, with $\ell = k + \gamma \ge 2$, $k \in \mathbb{N}, 0 < \gamma \le 1$.
- Then the parabolic Taylor polynomial $q_k(x', t)$ of degree k satisfies

 $|\varphi(x',t)-q_k(x',t)| \leq C(|x'|^2+t)^{\ell/2}.$

(4 個) (4 日) (4 日) (5 日

- Assume now φ is in parabolic Hölder class $H_{x',t}^{\ell,\ell/2}(B'_1)$, with $\ell = k + \gamma \ge 2$, $k \in \mathbb{N}, 0 < \gamma \le 1$.
- Then the parabolic Taylor polynomial $q_k(x', t)$ of degree k satisfies

$$|\varphi(x',t)-q_k(x',t)| \leq C(|x'|^2+t)^{\ell/2}.$$

• Extend q_k from $\mathbb{R}^{n-1} \times \mathbb{R}$ to a caloric polynomial $Q_k(x, t)$ on $\mathbb{R}^n \times \mathbb{R}$:

$$\Delta Q_k - \partial_t Q_k = 0, \quad Q_k(x', 0, t) = q_k(x', t).$$

イロト 不得 トイヨト イヨト 二日

- Assume now φ is in parabolic Hölder class $H_{x',t}^{\ell,\ell/2}(B_1')$, with $\ell = k + \gamma \ge 2$, $k \in \mathbb{N}, 0 < \gamma \le 1$.
- Then the parabolic Taylor polynomial $q_k(x', t)$ of degree k satisfies

$$|\varphi(x',t)-q_k(x',t)| \leq C(|x'|^2+t)^{\ell/2}.$$

• Extend q_k from $\mathbb{R}^{n-1} \times \mathbb{R}$ to a caloric polynomial $Q_k(x, t)$ on $\mathbb{R}^n \times \mathbb{R}$:

$$\Delta Q_k - \partial_t Q_k = 0, \quad Q_k(x', 0, t) = q_k(x', t).$$

• Consider then

$$v_k(x,t) = [u(x,t) - Q_k(x,t) - \varphi(x',t) - q_k(x',t)]\eta(x)$$

with a cutoff function $\eta(x)$.

Arshak Petrosyan (Purdue)

• Then v_k solves the Signorini problem in \mathfrak{S}_1^+ with nonzero right-hand-side

$$\Delta v_k - \partial_t v_k = f_k \quad \text{in } S_1^+$$

with

$$|f_k(x,t)| \le C(|x|^2 + |t|)^{(\ell-2)/2}.$$

イロト イポト イヨト イヨト

• Then v_k solves the Signorini problem in \mathfrak{S}_1^+ with nonzero right-hand-side

$$\Delta v_k - \partial_t v_k = f_k \quad \text{in } S_1^+$$

with

$$|f_k(x,t)| \leq C(|x|^2 + |t|)^{(\ell-2)/2}.$$

Theorem (Better Truncated Monotonicity Formula, [D-G- \mathscr{P} -T 2011]) For v_k as above and $\delta < \gamma$ there exist $C = C_{\delta}$ such that

$$\Phi^{(\ell)}(r, v_k) = \frac{1}{2} r e^{Cr^{\delta}} \frac{d}{dr} \log \max\{H_{v_k}(r), r^{2\ell - 2\delta}\} + \frac{3}{2} (e^{Cr^{\delta}} - 1) \quad \nearrow$$

for 0 < r < 1.

Arshak Petrosyan (Purdue)

(日)

Definition

We say $(0,0) \in \Gamma_{\kappa}^{(\ell)}$ iff $\Phi^{(\ell)}(0+,\nu_k) = \kappa$.

• One can show that $3/2 \le \kappa \le \ell$ and therefore we have a foliation

$$\Gamma = \bigcup_{3/2 \le \kappa \le \ell} \Gamma_{\kappa}^{(\ell)}$$

Definition

We say $(0,0) \in \Gamma_{\kappa}^{(\ell)}$ iff $\Phi^{(\ell)}(0+,v_k) = \kappa$.

• One can show that $3/2 \le \kappa \le \ell$ and therefore we have a foliation

$$\Gamma = \bigcup_{3/2 \le \kappa \le \ell} \Gamma_{\kappa}^{(\ell)}$$

• The more regular is the thin obstacle φ , the larger is ℓ , the finer we can classify free boundary points.

Definition

We say $(0,0) \in \Gamma_{\kappa}^{(\ell)}$ iff $\Phi^{(\ell)}(0+,\nu_k) = \kappa$.

• One can show that $3/2 \le \kappa \le \ell$ and therefore we have a foliation

$$\Gamma = \bigcup_{3/2 \le \kappa \le \ell} \Gamma_{\kappa}^{(\ell)}$$

- The more regular is the thin obstacle φ , the larger is ℓ , the finer we can classify free boundary points.
- It is conjectured that κ can take only discrete values $\kappa = 3/2, 7/2, \dots, 2m 1/2, \dots$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Definition

We say $(0,0) \in \Gamma_{\kappa}^{(\ell)}$ iff $\Phi^{(\ell)}(0+,v_k) = \kappa$.

• One can show that $3/2 \le \kappa \le \ell$ and therefore we have a foliation

$$\Gamma = \bigcup_{3/2 \le \kappa \le \ell} \Gamma_{\kappa}^{(\ell)}$$

- The more regular is the thin obstacle φ , the larger is ℓ , the finer we can classify free boundary points.
- It is conjectured that κ can take only discrete values $\kappa = 3/2, 7/2, \dots, 2m 1/2, \dots$
- As of now it is known only that there is no κ in (3/2, 2), so $\kappa = 3/2$ is isolated.

Arshak Petrosyan (Purdue)

イロト イポト イヨト イヨト

Regularity of the Free Boundary

• The set $\Gamma_{3/2}$ is known as the *Regular Set*.

Theorem ([DANIELLI-GAROFALO-𝒫-TO 2011]) Let $φ ∈ H^{3,3/2}(Q'_1)$. If (0,0) ∈ Γ_{3/2} then there exists δ > 0 such that

$$\Gamma \cap Q_{\delta} = \Gamma_{3/2} \cap Q_{\delta} = \{x_{n-1} = g(x'', t)\} \cap Q_{\delta},$$

where *g* is such that $\nabla g \in C_{x'',t}^{\alpha,\alpha/2}$.

伺下 イヨト イヨト

Regularity of the Free Boundary

• The set $\Gamma_{3/2}$ is known as the *Regular Set*.

Theorem ([DANIELLI-GAROFALO-P-TO 2011]) Let $\varphi \in H^{3,3/2}(Q'_1)$. If $(0,0) \in \Gamma_{3/2}$ then there exists $\delta > 0$ such that

$$\Gamma \cap Q_{\delta} = \Gamma_{3/2} \cap Q_{\delta} = \{x_{n-1} = g(x'', t)\} \cap Q_{\delta},$$

where *g* is such that $\nabla g \in C_{x'',t}^{\alpha,\alpha/2}$.

• One first shows that $g \in \text{Lip}(1, 1/2)$

(4 回) (4 回) (4 回)

Regularity of the Free Boundary

• The set $\Gamma_{3/2}$ is known as the *Regular Set*.

Theorem ([DANIELLI-GAROFALO-P-TO 2011]) Let $\varphi \in H^{3,3/2}(Q'_1)$. If $(0,0) \in \Gamma_{3/2}$ then there exists $\delta > 0$ such that

$$\Gamma \cap Q_{\delta} = \Gamma_{3/2} \cap Q_{\delta} = \{x_{n-1} = g(x'', t)\} \cap Q_{\delta},$$

where *g* is such that $\nabla g \in C_{x'',t}^{\alpha,\alpha/2}$.

- One first shows that $g \in \text{Lip}(1, 1/2)$
- Lip $\Rightarrow C^{1,\alpha}$ follows from a special version of the Parabolic Boundary Harnack Principle by [Shi 2011].

イロト イポト イヨト イヨト