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Semipermeable Membranes and Osmosis

o Semipermeable membrane is a
membrane that is permeable only
for a certain type of molecules
(solvents) and blocks other
molecules (solutes).

@ Because of the chemical
imbalance, the solvent flows
through the membrane from the
region of smaller concentration of
solute to the region of higher
concentation (osmotic pressure).

Picture Source: Wikipedia

@ The flow occurs in one direction. The flow continues until a sufficient
pressure builds up on the other side of the membrane (to compensate for
osmotic pressure), which then shuts the flow. This process is known as
0Smosis.
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Mathematical Formulation: Unilateral Problem

o Given open Q) c R”
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o Given open Q) c R”

@ I c dQ) semipermeable part of the
boundary Q
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Mathematical Formulation: Unilateral Problem

o Given open Q) c R”

@ I c dQ) semipermeable part of the
boundary . Q

@ ¢: My :=Mx(0,T] - R osmotic pressure
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Mathematical Formulation: Unilateral Problem

o Given open Q) c R”

@ I c dQ) semipermeable part of the
boundary

[0) Q
@ ¢: My :=Mx(0,T] - R osmotic pressure
o u:Qr:=Qx(0,T] - R the pressure of i
the chemical solution, that satisfies a (A-0)u=0
diffusion equation (slightly compressible
Sfluid)

Au-0u=0 inQr
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Mathematical Formulation: Unilateral Problem

o Given open Q) c R”

@ I c dQ) semipermeable part of the
boundary

@ ¢: My :=Mx(0,T] - R osmotic pressure

o u:Qr:=Qx(0,T] - R the pressure of
the chemical solution, that satisfies a (A-9)u=0
diffusion equation (slightly compressible

Sfluid)
Au-0u=0 inQr

@ On Jl7 we have the following boundary conditions (finite permeability)

u>¢ = ou=0 (no flow)

u<e = ou=AMu-9) (flow)
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Mathematical Formulation: Unilateral Problem

o Given open Q) c R”

@ I c dQ) semipermeable part of the
boundary

e ¢: My :=Mx (0, T] > R osmotic pressure

o u:Qr:=Qx(0,T] - R the pressure of
the chemical solution, that satisfies a
diffusion equation (slightly compressible

fluid)

Au-0iu=0 inQrp

@ On Ly we have the following boundary conditions (finite permeability)

u>¢ = 0du=0 (no flow)
u<ge = ou=AMu-9) (flow)

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 3/31



Parabolic Signorini Problem

@ Letting A — oo we obtain the following
conditions on Jl (infinite permeability)

uze
dyu>0
(u—¢)oyu=0
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Parabolic Signorini Problem

@ Letting A — oo we obtain the following
conditions on Jl (infinite permeability)

uze
dyu>0
(u—¢)oyu=0

o These are known as the Signorini
boundary conditions
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Parabolic Signorini Problem

@ Letting A — oo we obtain the following
conditions on Jl (infinite permeability)

uze
dyu>0
(u—¢)oyu=0

o These are known as the Signorini
boundary conditions

@ Since u should stay above ¢ on (L7, ¢ is
known as the thin obstacle. The problem
is known as Parabolic Signorini Problem
or Parabolic Thin Obstacle Problem.
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Parabolic Signorini Problem

o The function u(x, t) the solves the
following variational inequality:

fQVu-V(u—v)+atu(u—v)20

ueR, oJumel*(Q)

forallve 8
where

A={ve WH(Q): V|M > @, V|BQ\M =g}
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Parabolic Signorini Problem

o The function u(x, t) the solves the
following variational inequality:

fQVu-V(u—v)+atu(u—v)20

ueRr,
where

ou € L*(Q)
forallve &
R={ve W (Q):v| 29, V] = g}

@ Then for any (reasonable) initial condition

u:goo

Arshak Petrosyan (Purdue)

on QO = x {0}
the solution exist and unique. See [DuvauT-LIoNs 1986].
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Free Boundary Problem

@ The parabolic Signorini problem is a free
boundary problem.
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Free Boundary Problem

@ The parabolic Signorini problem is a free
boundary problem.

@ Let A:={(x,t) e My :u=¢}bethe
so-called coincidence set. Then

I:= aMA

is the free boundary.
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Free Boundary Problem

@ The parabolic Signorini problem is a free
boundary problem.

@ Let A:={(x,t) e My :u=¢}bethe
so-called coincidence set. Then

I:=o0 MA
is the free boundary.

@ One then interested in the structure,

geometric properties and the regularity of
the free boundary.
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Free Boundary Problem

@ The parabolic Signorini problem is a free
boundary problem.

@ Let A:={(x,t) e My :u=¢}bethe
so-called coincidence set. Then

I:= aMA
is the free boundary.

@ One then interested in the structure,

geometric properties and the regularity of
the free boundary.

in Q7 up to Mr.

@ In order to do so one has to know the optimal regularity of the solution u
Arshak Petrosyan (Purdue)
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Parabolic Signorini Problem: Known Results

Theorem (“Ch%-regularity” [UraL'tseva 1985])

Let u be a solution of the Parabolic Signorini Problem with ¢ € C2' n C¥'(Aly),

@0 € Lip(Qo), and g € L*(¥1). Then Vu € Cj”f‘/z(K)for any K € Qr UMy
and

[Vull oo gy < Cr(l@llcttncor gy *+ I90luipeas) + 1902297))
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Parabolic Signorini Problem: Known Results

Theorem (“Ch%-regularity” [Urar'tseva 1985])

Let u be a solution of the Parabolic Signorini Problem with ¢ € C2' n C¥'(Aly),

@0 € Lip(Qo), and g € L*(¥1). Then Vu € Cj”f‘/z(K)for any K € Qr UMy
and

”V””cg’;*/z(m < CK(H?Hc}glncfvl(MT) + H(P()”Lip(ﬂo) + ”g”LZ(Sf’T))

o In the elliptic case a similar result has been proved by [CAFFARELLI 1979]
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Parabolic Signorini Problem: Known Results

Theorem (“Ch%-regularity” [Urar'tseva 1985])

Let u be a solution of the Parabolic Signorini Problem with ¢ € C2' n C¥'(Aly),

@0 € Lip(Qo), and g € L*(¥1). Then Vu € Cj:f/z(K)for any K € Qr UMy
and

[Vull oo gy < Cr(l@llcttncor gy *+ I90luipeas) + 1902297))

o In the elliptic case a similar result has been proved by [CAFFARELLI 1979]

@ Proofin [Urar’tseva 1985] in the elliptic case worked also for
nonhomogeneous equation Au = f, f € L*(Q), with Signorini boundary
conditions. That fact then implies the regularity in the parabolic case.
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Parabolic Signorini Problem: Known Results

Theorem (“Ch%-regularity” [Urar'tseva 1985])

Let u be a solution of the Parabolic Signorini Problem with ¢ € C2' n C¥'(Aly),

@0 € Lip(Qo), and g € L*(¥1). Then Vu € Cj:f/z(K)for any K € Qr UMy
and

[Vull oo gy < Cr(l@llcttncor gy *+ I90luipeas) + 1902297))

o In the elliptic case a similar result has been proved by [CAFFARELLI 1979]

@ Proofin [Urar’tseva 1985] in the elliptic case worked also for
nonhomogeneous equation Au = f, f € L*(Q), with Signorini boundary
conditions. That fact then implies the regularity in the parabolic case.

@ Except some specific cases, no general results have been known for the
free boundary.
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Parabolic Signorini Problem: Optimal Regularity

In the case when . is flat, we have the following theorem.
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Parabolic Signorini Problem: Optimal Regularity

In the case when . is flat, we have the following theorem.

Theorem (“CV'/2-regularity” [DanterL-Garoraro-%.-To 2011])

Let u be a solution of the Parabolic Signorini Problem with flat Ml and

peChln C?’I(MT), @0 € Lip(Q), and g € L*(¥1). Then Vu € Ci/’f’l/4(K)for
any K € Qp u My and

[Vl o gy < Crll@llctncosqanry + [90luipan) +19122¢9r))
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Parabolic Signorini Problem: Optimal Regularity

In the case when . is flat, we have the following theorem.

Theorem (“CV'/2-regularity” [DanterL-Garoraro-%.-To 2011])

Let u be a solution of the Parabolic Signorini Problem with flat Ml and

peChln C?’I(MT), @0 € Lip(Q), and g € L*(¥1). Then Vu € Ci/’f’l/4(K)for
any K € Qp u My and

[Vl o gy < Crll@llctncosqanry + [90luipan) +19122¢9r))

@ This theorem is precise in the sense that it gives the best regularity
possible, even in time-independet case:

u(x, t) = Re(x + ixy)>/?
solves the Signorini problem in R” x R with .l = R".
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o Given Q c R", M c 0Q

«gr «Fr o« > < ) o



Elliptic Case: Thin Obstacle Problem

@ Given Q c R", M c 9Q)

@ ¢ : .l — R (thin obstacle)
g:0QNM—-R,g>¢ondnoQ.

Arshak Petrosyan (Purdue) Parabolic Signorini Problem

FBP in Biology, MBI, Nov 2011

9/31



Elliptic Case: Thin Obstacle Problem

@ Given Q c R", M c 9Q)

@ ¢ : .l — R (thin obstacle)
g:0QNM—-R,g>¢ondnoQ.

@ Minimize the Dirichlet integral

DQ(u)=fQ|Vu|2dx

on the closed convex set

R={ueW(Q)|u|, 29, u,, =9
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Elliptic Case: Thin Obstacle Problem

@ Given Q c R", M c 9Q)

@ ¢ : .l — R (thin obstacle) \ // \
g: 0O\ M- R, g>¢pondndQ. /\;/
T \\\

@ Minimize the Dirichlet integral (

L
u

__

DQ(u)=fQ|Vu|2dx

on the closed convex set

R={ueW(Q)|u|, 29, u,, =9

o The minimizer u satisfies

Au=0 inQ
u>¢, oux0, (u—¢)o,u=0 on.l

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 9/31



Elliptic Case: Optimal Regularity

o The progress in parabolic case was motivated by the breakthrough result
of [ATHANASOPOULOS-CAFFARELLI 2000)] establishing the C'/? regularity
in the elliptic thin obstacle problem.

Theorem

Let u be a solution of the thin obstacle problem for flat M, with ¢ € C*'(M) and
g € L2(dQ \ M). Then u € C*V2(K) for any K € Q U M and

lul iy < Cx (lolcriay + 1gl2) -
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Elliptic Case: Optimal Regularity

o The progress in parabolic case was motivated by the breakthrough result
of [ATHANASOPOULOS-CAFFARELLI 2000)] establishing the C'/? regularity
in the elliptic thin obstacle problem.

Theorem

Let u be a solution of the thin obstacle problem for flat M, with ¢ € C*'(M) and
g € L2(dQ \ M). Then u € C*V2(K) for any K € Q U M and

lul iy < Cx (lolcriay + 1gl2) -

@ ¢ = 0: [ATHANASOPOULOS-CAFFARELLI 2000]
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Elliptic Case: Optimal Regularity

o The progress in parabolic case was motivated by the breakthrough result
of [ATHANASOPOULOS-CAFFARELLI 2000)] establishing the C'/? regularity
in the elliptic thin obstacle problem.

Theorem

Let u be a solution of the thin obstacle problem for flat M, with ¢ € C*'(M) and
g € L2(dQ \ M). Then u € C*V2(K) for any K € Q U M and

lul iy < Cx (lolcriay + 1gl2) -

@ ¢ = 0: [ATHANASOPOULOS-CAFFARELLI 2000]

@ ¢g¢ c>l [ATHANASOPOULOS-CAFFARELLI-SALSA 2007]
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Elliptic Case: Optimal Regularity

o The progress in parabolic case was motivated by the breakthrough result
of [ATHANASOPOULOS-CAFFARELLI 2000)] establishing the C'/? regularity
in the elliptic thin obstacle problem.

Theorem

Let u be a solution of the thin obstacle problem for flat M, with ¢ € C*'(M) and
g € L2(dQ \ M). Then u € C*V2(K) for any K € Q U M and

lul iy < Cx (lolcriay + 1gl2) -

@ ¢ = 0: [ATHANASOPOULOS-CAFFARELLI 2000]
@ ¢g¢ c>l [ATHANASOPOULOS-CAFFARELLI-SALSA 2007]

e ¢ ¢ C": [#-To 2010]
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Zero Obstacle ¢: Normalization

o Assume /L is flat: M = R" x {0}, 9 = 0
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Zero Obstacle ¢: Normalization
o Assume /L is flat: M = R" x {0}, 9 = 0

o If u solves Signorini problem, after translation, rotation, and scaling, we
may normalize u as follows:
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Zero Obstacle ¢: Normalization

o Assume /L is flat: M = R" x {0}, 9 = 0

o If u solves Signorini problem, after translation, rotation, and scaling, we

may normalize u as follows:

Definition (Class &)

We say u is a normalized solution of Signorini problem iff

Au=0 inB}
u>0, -0,u>0, udy,u=0 onB
0eT(u)=0A(u)=0{u=0}.

We denote the class of normalized solutions by &.
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Zero Obstacle ¢: Normalization

o Assume /L is flat: M = R" x {0}, 9 = 0
o If u solves Signorini problem, after translation, rotation, and scaling, we
may normalize u as follows:

Definition (Class &)

We say u is a normalized solution of Signorini problem iff

Au=0 inB}
u>0, -0,u>0, udy,u=0 onB
0eT(u)=0A(u)=0{u=0}.

We denote the class of normalized solutions by &.

e Notation: R" = R"'x (0,+00), B :=B;nR", B|:=B;n(R"'x{0})
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Zero Obstacle ¢: Normalization

@ Every u € G can be extended from B; to B; by even symmetry

u(x',—xp) = u(x', x,).
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Zero Obstacle ¢: Normalization
@ Every u € G can be extended from B; to B; by even symmetry
u(x',—xp) = u(x', x,).

o The resulting function will satisfy

Au<0 inB,
Au=0 in B~ A(u)
uAu=0 in B;.

Here A(u) = {u =0} c B].
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Zero Obstacle ¢: Normalization
@ Every u € G can be extended from B; to B; by even symmetry
u(x',—xp) = u(x', x,).

o The resulting function will satisfy

Au<0 inB,
Au=0 in B~ A(u)
uAu=0 in B;.

Here A(u) = {u =0} c B].
@ More specifically:

Au =2(0yx,u) %"_I‘A(u) in %' (B;).
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Almgren’s Frequency Function

Theorem (Monotonicity of the frequency)
Let u € G. Then the frequency function

”fBr [Vul?

/: 9B, u?

Moreover, N(r,u) =k <= x-Vu—«u =0in By, i.e. u is homogeneous of
degree « in Bj.

r— N(r,u):= A for 0<r<l.

@ [ALMGREN 1979] for harmonic u
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Almgren’s Frequency Function

Theorem (Monotonicity of the frequency)
Let u € G. Then the frequency function

"fBr [Vul?

/: B, u?

Moreover, N(r,u) =k <= x-Vu—«u =0in By, i.e. u is homogeneous of
degree « in Bj.

r— N(r,u):= A for 0<r<l.

@ [ALMGREN 1979] for harmonic u
°

[GaroraLo-LIN 1986-87] for divergence form elliptic operators
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Almgren’s Frequency Function

Theorem (Monotonicity of the frequency)
Let u € G. Then the frequency function

"fBr [Vul?

/: B, u?

Moreover, N(r,u) =k <= x-Vu—«u =0in By, i.e. u is homogeneous of
degree « in Bj.

r— N(r,u):= A for 0<r<l.

@ [ALMGREN 1979] for harmonic u
@ [GaroraLO-LIN 1986-87] for divergence form elliptic operators
°

[ATHANASOPOULOS-CAFFARELLI-SALSA 2007] for thin obstacle problem
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Figure: Solution of the thin obstacle problem Re(x; + i|x,|)*/?
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Figure: Multi-valued harmonic function Re(x; + ix,)*/?
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Rescalings and Blowups

@ For a solution u € & and r > 0 consider rescalings
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Rescalings and Blowups

@ For a solution u € & and r > 0 consider rescalings
u(rx)
L 2
(r”*l .[BB, u )

@ The rescaling is normalized so that

u,(x) =

D=

lurli2 o8,y = 1
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Rescalings and Blowups

@ For a solution u € & and r > 0 consider rescalings
u(rx)
L 2
(r”*l .[BB, u )

@ The rescaling is normalized so that

u,(x) =

D=

lurli2 o8,y = 1

o Limits of subsequences {u,, } for some r; — 0+ are known as blowups.
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Rescalings and Blowups

@ For a solution u € & and r > 0 consider rescalings
u(rx)
L 2
(r”*l .[BB, u )

@ The rescaling is normalized so that

u,(x) =

D=

lurli2 o8,y = 1

o Limits of subsequences {u,, } for some r; — 0+ are known as blowups.

@ Generally the blowups may be different over different subsequences
r=rj—> 0+
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Homogeneity of Blowups

@ Uniform estimates on rescalings {u, }:

Al Vi, = N, u,) = N(r,u) < N(Lu).
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Homogeneity of Blowups

@ Uniform estimates on rescalings {u, }:
f VP = N(Luy) = N(r,u) < N(1, ).
By

@ Hence, 3 blowup 1 over a sequence r; — 0+

ur; > up in Wh2(B;)
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Homogeneity of Blowups

@ Uniform estimates on rescalings {u, }:
f VP = N(Luy) = N(r,u) < N(1, ).
By

@ Hence, 3 blowup 1 over a sequence r; — 0+

ur; > up in L*(9B)

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011

17/ 31



Homogeneity of Blowups

@ Uniform estimates on rescalings {u, }:
f VP = N(Luy) = N(r,u) < N(1, ).
By

@ Hence, 3 blowup 1 over a sequence r; — 0+

ur, > o in Cj, (Bj U BY)
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Homogeneity of Blowups

@ Uniform estimates on rescalings {u, }:
f Vi, = N, u,) = N(r,u) < N(Lu).
B
@ Hence, 3 blowup 1 over a sequence r; — 0+
ur, > uo in Cj(Bju BY)

Proposition (Homogeneity of blowups)

Let u € G and the blowup ug be as above. Then, ug is homogeneous of degree
k=N(0+,u).
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Homogeneity of Blowups

@ Uniform estimates on rescalings {u, }:
f Vi, = N, u,) = N(r,u) < N(Lu).
B
@ Hence, 3 blowup 1 over a sequence r; — 0+
ur, > uo in Cj(Bju BY)

Proposition (Homogeneity of blowups)

Let u € G and the blowup ug be as above. Then, ug is homogeneous of degree
k=N(0+,u).

Proof.
N(r,ug) =lim; o+ N (7, ur;) = lim, 0+ N(rrj,u) = N(0+,u) O
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Proof of C'/2 regularity

Lemma ([ATHANASOPOULOS-CAFFARELLI 2000])

Let ug be a homogeneous global solution of the thin obstacle problem with
homogeneity . Then x > 3/2.

o Explicit solution for which x = 3/2 is achieved is Re(x; + i|x,|)>/?
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Proof of C'/2 regularity

Lemma ([ATHANASOPOULOS-CAFFARELLI 2000])

Let ug be a homogeneous global solution of the thin obstacle problem with
homogeneity . Then x > 3/2.

o Explicit solution for which x = 3/2 is achieved is Re(x; + i|x,|)>/?

e From Lemma we obtain that N(0+,u) =k > 3/2forany u € S.
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Proof of C'/2 regularity

Lemma ([ATHANASOPOULOS—CAFFARELLI 2000])

Let ug be a homogeneous global solution of the thin obstacle problem with
homogeneity . Then x > 3/2.

o Explicit solution for which x = 3/2 is achieved is Re(x; + i|x,|)>/?
e From Lemma we obtain that N(0+,u) =k > 3/2forany u € S.

@ From here one can show that
f w<cr? o<r<l1
9B,
and consequently that

uce Cl’l/z(Bli/2 UBj),).
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Nonzero Obstacle ¢: Normalization

@ Let now u solve the thin obstacle problem with nonzero obstacle ¢ € C':

Au=0 inBf
u>@, -0,,u>0, (u—¢)dy,u=0 onB.
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Nonzero Obstacle ¢: Normalization

@ Let now u solve the thin obstacle problem with nonzero obstacle ¢ € C':

Au=0 inBf
u>@, -0,,u>0, (u—¢)dy,u=0 onB.

@ Consider the difference

v(x) = u(x) - p(x").

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 19 /31



Nonzero Obstacle ¢: Normalization

@ Let now u solve the thin obstacle problem with nonzero obstacle ¢ € C':

Au=0 inBf
u>@, -0,,u>0, (u—¢)dy,u=0 onB.

@ Consider the difference
v(x) = u(x) - p(x).
o Then it will be the class &/ with f = A’gp € L*°(B}).

Definition (Class &)
We say that v € &/ for some f € L (BY) if

Av=f inBf

v>0, =—05,v>0, vdyv=0 onBj.
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Nonzero Obstacle ¢: Truncated Frequency Function

Theorem (Monotonicity of truncated frequency)
Let v € &/. Then for any & > 0 there exists C = C(| f|| =, 8) > 0 such that
_ Cr‘si 2 n+3-20 cr®
r— O(r,v) =re log max v r +3(e 14
dr 9B,

forO<r<L
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Nonzero Obstacle ¢: Truncated Frequency Function

Theorem (Monotonicity of truncated frequency)

Let v € &/. Then for any & > 0 there exists C = C(| f|| =, 8) > 0 such that

r—®(r,v) = recrddilogmax{/;B Vz’rn+325} + 3(308 -1/
r ,

forO<r<L

@ Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the thin obstacle
problem, under the additional assumption |f(x)| < C|x’|.
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Let v € &/. Then for any & > 0 there exists C = C(| f|| =, 8) > 0 such that

r—®(r,v) = recrddilogmax{/;B Vz’rn+325} + 3(308 -1/
r ,

forO<r<L

@ Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the thin obstacle
problem, under the additional assumption |f(x)| < C|x’|.

@ In this form, essentially in [?.-To 2010].
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Nonzero Obstacle ¢: Truncated Frequency Function

Theorem (Monotonicity of truncated frequency)

Let v € &/. Then for any & > 0 there exists C = C(| f|| =, 8) > 0 such that

r—®(r,v) = recrédilogmax{/;B Vz’rn+325} + 3(308 -1/
r ,

for0<r<L

@ Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the thin obstacle
problem, under the additional assumption |f(x)| < C|x’|.

@ In this form, essentially in [?.-To 2010].

@ Proof consists in estimating the error terms. The truncation of the growth
is needed to absorb those terms.
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Parabolic Case: Poon’s Monotonicity Formula

o The optimal regularity in the elliptic case was obtained with the help of
Almgren’s Frequency Function. So we need a parabolic analogue of the
frequency.
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Parabolic Case: Poon’s Monotonicity Formula

o The optimal regularity in the elliptic case was obtained with the help of

Almgren’s Frequency Function. So we need a parabolic analogue of the
frequency.

Theorem ([Poon 1996])

Let u be a caloric function (solution of the heat equation) in the strip
Sg = R" x (=R%,0]. Then

N(ru) = [ |VulPG(x,r*)dx
o) = Jie_ 2 u?G(x,7?)dx

/' forO<r<R.

Moreover, N(r,u) = k <= u is parabolically homogeneous of degree , i.e.
u(Ax, A%t) = \u(x, t).
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Parabolic Case: Poon’s Monotonicity Formula

o The optimal regularity in the elliptic case was obtained with the help of

Almgren’s Frequency Function. So we need a parabolic analogue of the
frequency.

Theorem ([Poon 1996])

Let u be a caloric function (solution of the heat equation) in the strip
Sg = R" x (=R%,0]. Then

N(ru) = [ |VulPG(x,r*)dx
o) = Jie_ 2 u?G(x,7?)dx

/' forO<r<R.

Moreover, N(r,u) = k <= u is parabolically homogeneous of degree , i.e.
u(Ax, A%t) = \u(x, t).

@ Here G(x,t) = (4711‘)_”/26_""2/“, t > 0 is the heat (Gaussian) kernel.
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Parabolic Case: Normalization

@ Suppose now u solves the Parabolic Signorini Problem in
Q;f = Bf x (~1,0] with /L = B} and ¢ € CL' n C>,
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Parabolic Case: Normalization

@ Suppose now u solves the Parabolic Signorini Problem in
Q;f = Bf x (~1,0] with /L = B} and ¢ € CL' n C>,

@ We want to “extend” v to the half-strip S; = R x (-1, 0] in the following
way.

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 22/31



Parabolic Case: Normalization

@ Suppose now u solves the Parabolic Signorini Problem in
Q;f = Bf x (~1,0] with /L = B} and ¢ € CL' n C>,

@ We want to “extend” v to the half-strip S; = R x (-1, 0] in the following
way.

e Let 5 € C;°(B;) be a cutoft function such that

n=n(x[), 0<n<l, x|, =1, suppycBs,

B1/z

and consider

v(x,t) = [u(x, 1) - ¢(x',0,1) ] ().
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Parabolic Case: Normalization

@ Suppose now u solves the Parabolic Signorini Problem in
Q;f = Bf x (~1,0] with /L = B} and ¢ € CL' n C>,

@ We want to “extend” v to the half-strip S; = R x (-1, 0] in the following
way.

e Let 5 € C;°(B;) be a cutoft function such that

n=n(x[), 0<n<l, x|, =1, suppycBs,

B1/z

and consider
v(x,t) = [u(x, t) - 9(x,0,£) ] (x).
@ Then v solves the Signorini problem in the half-strip S;” = R” x (-1, 0]
with a nonzero right-hand side

Av -0 = fi=nq(x)[-A¢+0:9] +[u—-o(x',t)]An +2Vuvy
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Parabolic Case: Normalization

@ Suppose now u solves the Parabolic Signorini Problem in
Q;f = Bf x (~1,0] with /L = B} and ¢ € CL' n C>,

@ We want to “extend” v to the half-strip S; = R x (-1, 0] in the following
way.

e Let 5 € C;°(B;) be a cutoft function such that

n=n(x[), 0<n<l, x|, =1, suppycBs,

B1/z

and consider
v(x,t) = [u(x, t) - 9(x,0,£) ] (x).
@ Then v solves the Signorini problem in the half-strip S;” = R” x (-1, 0]
with a nonzero right-hand side

Av -0 = fi=nq(x)[-A¢+0:9] +[u—-o(x',t)]An +2Vuvy

o Important note: the right-hand side f is nonzero even if ¢ = 0.
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Averaged and Truncated Poon’s Formula

@ For the extended u define

ha(£) = fR u(x, 1)2G(x, —t)dx

u(t) = —tfw Vu(x, £)2G(x, —t)dx,
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Averaged and Truncated Poon’s Formula

@ For the extended u define
ha(t) = fR u(x, 1)2G(x, —t)dx
u(t) = —tfw Vu(x, £)2G(x, —t)dx,

e Poon’s frequency is now given by

_ iu(_rz)

N(r,u) = B (o)
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Averaged and Truncated Poon’s Formula

@ For the extended u define

ha(£) = fR u(x, 1)2G(x, —t)dx
u(t) = —tfw Vu(x, £)2G(x, —t)dx,

e Poon’s frequency is now given by
(2
iu(-17)
hu (_ r2) .
o For our generalization, however, i, and h,, are too irregular and we have
to average them to regain missing regularity:

H,(r) = % [0 h,(t)dt = lz f+ u(x, t)*G(x, —t)dxdt

r

I,(r) :%Ir i,(t)d f |t|Vu(x, £)[*G(x, —t)dxdt

N(r,u) =
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Averaged and Truncated Poon’s Formula

Theorem ([DaNiELLI-GAROFALO-P.-To 2011])

Letv e &/ (S;). Then for any & > 0 there exist C such that
1 d 3
D(r,v) = Erecrad—logmaX{Hv(r), ri20) 4 E(ecﬂ? -1)
r

forO<r<L
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Averaged and Truncated Poon’s Formula

Theorem ([DaNIELLI-GAROFALO-P.-To 2011])

Letv e &/ (S;). Then for any & > 0 there exist C such that

1 d 3
D(r,v) = ErecraalogmaX{Hv(r), ri20) 4 E(ecﬂ? -1)

forO<r<L

@ Using this generalized frequency formula, as well as an estimation on
parabolic homogeneity of blowups we obtain the optimal regularity.
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Parabolic Rescalings and Blowups

@ Asin the elliptic case, we consider the rescalings

~ u(rx, r’t) ~ 2 f(rx, r’t)
ur(x,t) = Ho ()2 fr(x,t) = THL ()2
for (x,t) € Sf’/r =R” x (=1/r2,0]
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Parabolic Rescalings and Blowups

@ Asin the elliptic case, we consider the rescalings

~ rzf(rx, rzt)

fle) =

u(rx, rzt)

Hu(,,)l/z ’
for (x,t) € Sf’/r =R” x (=1/r2,0]

o If®,(0+) < 4 — 24 then one can show that the family {u,} is convergent

in suitable sense on RY} x (—o00,0] to a parabolically homogeneous
solution u of the Parabolic Signorini Problem

ur(x,t) =

Aug — ;g =0 inR” x (—00,0]

up 20, =0y, up20, Uudx,up=0 onR" " x (~00,0]
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Parabolic Rescalings and Blowups

@ Asin the elliptic case, we consider the rescalings

~ rzf(rx, r2t)

fle) =

u(rx, rzt)

Hu(,,)l/z ’
for (x,t) € Sf’/r =R" x (-1/r%,0]

o If®,(0+) < 4 — 24 then one can show that the family {u,} is convergent

in suitable sense on RY} x (—o00,0] to a parabolically homogeneous
solution u of the Parabolic Signorini Problem

ur(x,t) =

Aug — ;g =0 inR” x (—00,0]
up 20, —0y,up20, Uy, tg=0 onR" ! x(-00,0]

e Parabolic homogeneity ug is k = 30 (0+) < 2 - & < 2. Besides, because of
C"*-regularity, also x > 1 + a > 1. Thus:

1<k<2.
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Parabolically Homogeneous Global Solutions

Lemma ([DANIELLI-GAROFALO-P.-To 2011])

Let ug be a parabolically homogeneous solution of the Parabolic Signorini

Problem in R’ x (—o0, 0] with homogeneity 1 < k < 2. Then necessarily k = 3/2
and

uo(x, t) = CRe(xy + ix,)*2,

after a possible rotation in R"™,
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Parabolically Homogeneous Global Solutions

Lemma ([DANIELLI-GAROFALO-P.-To 2011])

Let ug be a parabolically homogeneous solution of the Parabolic Signorini

Problem in R’ x (—o0, 0] with homogeneity 1 < k < 2. Then necessarily k = 3/2
and

uo(x, t) = CRe(xy + ix,)*2,

after a possible rotation in R"™,

@ The proof is based on a rather deep monotonicity formula of Caffarelli to
reduce it to dimension n = 2 and then analysing of the principal
eigenvalues of the Ornstein-Uhlenbeck operator —A + %x -V in R? for the
slit planes

Q, = R>~ ((—o0,a] x {0}).
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Proof of Optimal Regularity

o From Lemma we obtain that ®,(0+) > 3, if ®,(0+) < 4 — 24. Thus,
always @, (0+) > 3.
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Proof of Optimal Regularity
o From Lemma we obtain that ®,(0+) > 3, if ®,(0+) < 4 — 24. Thus,

always @, (0+) > 3.
@ This implies H,(r) = fRi u’G(x,~t)dxdt < Cr’

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 27/ 31



Proof of Optimal Regularity

o From Lemma we obtain that ®,(0+) > 3, if ®,(0+) < 4 — 24. Thus,
always @, (0+) > 3.

o This implies H,(r) = fRi u’G(x,~t)dxdt < Cr’
o This further implies that

sup  |u| < Cr3?
Q) (x0.t0)

for any (xo, fo) € Ql'/2 such that u(xo, tp) = 0.
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Proof of Optimal Regularity

o From Lemma we obtain that ®,(0+) > 3, if ®,(0+) < 4 — 24. Thus,
always @, (0+) > 3.

o This implies H,(r) = fRi u’G(x,~t)dxdt < Cr’
o This further implies that

sup  |u| < Cr3?

Q:—/Z(XOJO)
for any ('an tO) € Qll/z SUCh that M(XO, to) =0.

@ Using interior parabolic estimates one then obtains

1/2 1/4

Vu € (Q1/4)
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Finer Study of the Free Boundary

@ Assume now ¢ is in parabolic Holder class H bt *(B), with =k +y>2,

x/t
keN,0<y<L
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Finer Study of the Free Boundary

@ Assume now ¢ is in parabolic Holder class H bt *(B), with =k +y>2,

x',t
keN,0<y<L
@ Then the parabolic Taylor polynomial g (x’, t) of degree k satisfies

lp(x', 1) = qi(x', 1)) < C(Ix']* + ).
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Finer Study of the Free Boundary

@ Assume now ¢ is in parabolic Holder class Hﬁ’f{z
keN,0<y<L

@ Then the parabolic Taylor polynomial g (x’, t) of degree k satisfies

(B),with=k+y>2,

lp(x', £) = qi(x, )] < C(Ix[* + )2,
e Extend g from R"™ x R to a caloric polynomial Qi (x,t) on R” x R:

AQr-9,Qr =0, Qi(x',0,t) = qx(x,1).
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Finer Study of the Free Boundary

@ Assume now ¢ is in parabolic Holder class H bt *(B), with =k +y>2,

x',t
keN,0<y<L
@ Then the parabolic Taylor polynomial g (x’, t) of degree k satisfies

(', 1) = g’ )] < C(W'P + ).
e Extend g from R"™ x R to a caloric polynomial Qi (x,t) on R” x R:
AQr—9:Qr=0, Qu(x,0,) = qi(x', 1).
@ Consider then
vi(x,t) = [u(x, ) = Qe(x, 1) = p(x, £) = qi(x', 1) I (x)

with a cutoff function #(x).
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Finer Study of the Free Boundary
@ Then vy solves the Signorini problem in &} with nonzero right-hand-side
AVk - atvk = fk in Sl+

with
|fie(e, )] < C(|x* + [¢]) 272,
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Finer Study of the Free Boundary
@ Then vy solves the Signorini problem in &} with nonzero right-hand-side
AVk - atvk = fk in Sl+

with
|fie(e, )] < C(|x* + [¢]) 272,

Theorem (Better Truncated Monotonicity Formula,[D-G-2-T 2011])
For vy as above and § < y there exist C = Cs such that

1 d 3
OO (r,v;) = ErecraalogmaX{Hvk(r),r”‘”} . z(ec,s ) A

foro<r<L
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Classification of Free Boundary Points

Definition

We say (0,0) e I iff ©(©) (0+, v;) = .

@ One can show that 3/2 < k < ¢ and therefore we have a foliation

r= J ¥

3/2<Kk<t
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Classification of Free Boundary Points

Definition

We say (0,0) e I iff ©(©) (0+, v;) = .

@ One can show that 3/2 < k < ¢ and therefore we have a foliation

r= J ¥

3/2<Kk<t

@ The more regular is the thin obstacle ¢, the larger is ¢, the finer we can
classify free boundary points.
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Classification of Free Boundary Points

Definition

We say (0,0) e I iff ©(©) (0+, v;) = .

@ One can show that 3/2 < k < ¢ and therefore we have a foliation

r= J ¥

3/2<Kk<t

@ The more regular is the thin obstacle ¢, the larger is ¢, the finer we can
classify free boundary points.

@ Itis conjectured that x can take only discrete values
K=3/2,7/2,....2m-1/2,....

Arshak Petrosyan (Purdue) Parabolic Signorini Problem FBP in Biology, MBI, Nov 2011 30/31



Classification of Free Boundary Points

Definition

We say (0,0) e I iff ©(©) (0+, v;) = .

@ One can show that 3/2 < k < ¢ and therefore we have a foliation

r= J ¥

3/2<Kk<t

@ The more regular is the thin obstacle ¢, the larger is ¢, the finer we can
classify free boundary points.

@ Itis conjectured that x can take only discrete values
K=3/2,7/2,....2m-1/2,....

@ As of now it is known only that there is no x in (3/2,2), so k = 3/2 is
isolated.
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Regularity of the Free Boundary

o The set I3/, is known as the Regular Set.

Theorem ([DANIELLI-GAROFALO-P-To 2011])

Let 9 e H¥2(Q!). If (0,0) € T3/, then there
exists 8 > 0 such that

InQs=Ts,nQs = {xp1=g(x",£)} nQs,

a0 )2
.X”

where g is such that Vg € C ;
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Regularity of the Free Boundary

o The set I3/, is known as the Regular Set.

Theorem ([DANIELLI-GAROFALO-P-To 2011])

Let 9 e H¥2(Q!). If (0,0) € T3/, then there
exists 8 > 0 such that

InQs=Ts,nQs = {xp1=g(x",£)} nQs,

a0 )2
.X”

where g is such that Vg € C ;

@ One first shows that g € Lip(1,1/2)
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Regularity of the Free Boundary

o The set I3/, is known as the Regular Set.

! ‘
Theorem ([DANIELLI-GAROFALO-P-To 2011]) o8 !

Let 9 e H¥2(Q!). If (0,0) € T3/, then there

exists & > 0 such that x>1 =g(x",t)

InQs=Ts,nQs = {xp1=g(x",£)} nQs,

a0 )2
.X”

where g is such that Vg € C;

@ One first shows that g € Lip(1,1/2)
e Lip = C* follows from a special version of the Parabolic Boundary
Harnack Principle by [Su1 2011].
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