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Classical obstacle problem

Given D ⊂ Rn, f : D → R, 0 < a < f(x) < b

We say that u : D → R solves the classical obstacle

problem if

u ≥ 0, ∆u = fχ{u>0} in D.

u can be obtained as the minimizer of the energy

E(v) =
∫
D
|∇v|2 + 2f(x)v

over K = {v ∈ W 1,2(D) : v ≥ 0, v
∣∣
∂D = u

∣∣
∂D}.

u = |∇u| = 0 u > 0

∆u = f

Γ
Λ

Main objects of study

Coincidence set : Λ(u) := {x ∈ D : u = 0}
Free Boundary : Γ(u) := ∂Λ(u)
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Classical obstacle problem

Known results:

If f is smooth (enough), then u ∈ C1,1
loc (D) [Frehse’79], see also [Caffarelli’98]

The free boundary is decomposed into union

Γ = R∪ Σ,

where R is the so-called regular set, and Σ is the singular set.

For x0 ∈ R, the quadratic rescalings converge to halfspace solutions:

ux0 ,r (x) := u(x0 + rx)
r 2

→ ux0(x) = Cx0((x · e)+)2

over r = rj → 0+, where |e| = 1. Here Cx0 = f(x0)/2.

For x0 ∈ Σ, the rescalings converge to polynomial solutions

ux0 ,r (x)→ px0(x) = x ·Ax0x

over r = rj → 0+, where Ax0 is a positive matrix with tr(Ax0) = Cx0 .
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Classical obstacle problem

Theorem (Regularity of the regular set)

R is C∞ if f ∈ C∞.

(R is Cω if f ∈ Cω.)

Main steps of the proof:

Step 1: R is Lipschitz, by showing that ∂eu ≥ 0 in a cone of directions e.
[Caffarelli’98]

Step 2: Lipschitz ⇒ C1,α, by applying the boundary Harnack principle to the pairs

of directional derivatives ∂eu, ∂e′u with |e− e′| < ε small.

[Athanasopoulos-Caffarelli’85]

Step 3: C1,α ⇒ C∞ (Cω) by partial hodograph-Legendre transform, [Isakov’76],

[Kinderlehrer-Nirenberg’77].

Theorem (Structure of singular set)

Σ is contained in a countable union of C1 manifolds.

Follows from continuous dependence of blowups on x0 ∈ Σ and Whitney’s

extension theorem [Caffarelli’98]
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Higher regularity of R

u = 0

Γ

u > 0

∆u = f

T
yi=xi
yn=uxn

))

Suppose Γ ∩ B1 = R∩ B1 (all free boundary points are regular)

Normal to Γ at the origin ν0 = en
Partial hodograph transform:

T : x = (x′, xn), (x′, uxn) = y

T({u > 0}) ⊂ {yn > 0}, T(Γ) ⊂ {yn = 0} (straightens the free boundary)

T is invertible near the origin.
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Higher regularity of R

u = 0

Γ

u > 0

∆u = f

T
yi=xi
yn=uxn

))

T−1

xi=yi
xn=−vynii

Partial Legendre transform:

v(y) = u(x)− xnyn.

Simple computation shows that vyn = −xn, vyj = uxj . Hence, T−1 is given by

T−1 : (y ′, yn), (y ′,−vyn).

Thus Γ : xn = −vyn(x′,0) and the regularity of Γ is related to that of v .
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Higher regularity of R

u = 0

Γ

u > 0

∆u = f

T
yi=xi
yn=uxn

))

T−1

xi=yi
xn=−vynii

v = 0

F(D2v) = f

By direct computation, for j, k = 1, . . . , n− 1

uxnxn = −
1

vynyn
, uxnxj = −

vynyj
vynyn

, uxjxk = vyjyk −
vynyjvynyk
vynyn

v will satisfy fully nonlinear elliptic equation

F(D2v) =:
n−1∑
i=1

vyiyi −
1

vynyn
− 1
vynyn

n−1∑
i=1

v2
ynyi = f(y

′,−vyn)

in Bδ ∩ {yn > 0}
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Higher regularity of R

u = 0

Γ

u > 0

∆u = f

T
yi=xi
yn=uxn

))
v = 0

F(D2v) = f

T−1

xi=yi
xn=−vynii

F is uniformly elliptic near the origin (by considering the linearization of F near

the origin)

Using [Agmon-Douglis-Nirenberg’59] one can show that v is C∞ up to {yn = 0}, if f is.

Using [Morrey’66], v is real analytic, if f is.

Recalling that Γ is parametrized by

Γ : xn = −vyn(x′,0)

we obtain that Γ is real analytic.
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Thin obstacle (Signorini) problem

Given D ⊂ Rn, symmetric in xn-variable,

φ : D′ = D ∩ {xn = 0} → R (thin obstacle)

u solves the thin obstacle (Signorini) problem if

∆u = 0 in D± = D ∩ {±xn > 0}
u ≥ φ, −∂xnu ≥ 0, (u−φ)∂xnu = 0 on D′

u can be obtained as the minimizer of the energy

E(v) =
∫
D
|∇v|2

over K = {v ∈ W 1,2(D) : v
∣∣
D′ ≥ φ,v

∣∣
∂D = u

∣∣
∂D}.

∂xnu = 0

u = φ

∆u = 0

Γ

Λ

Main objects of study

Coincidence set : Λ(u) := {x ∈ D : u = φ}
Free Boundary : Γ(u) := ∂D′Λ(u) (thin free boundary)
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Thin obstacle (Signorini) problem

Known results: We will assume φ = 0.

u ∈ C1,α(D± ∪D′) [Caffarelli’79], see also [Uraltseva’87]

Optimal regularity: u ∈ C1,1/2(D± ∪D′) [Athanasopoulos-Caffarelli’04]

Classification of free boundary points: [Athanasopoulos-Caffarelli-Salsa’08],

[Garofalo-P’09]

Γ =
⋃

κ=3/2, κ≥2

Γκ , Γκ = {x0 ∈ Γ : Nx0(0+) = κ}.

Here

Nx0(r) =
r
∫
Br (x0) |∇u|2∫
∂Br (x0)u2

is Almgren’s frequency formula, which is monotone increasing in r [Almgren’00]

x0 ∈ Γκ ⇐⇒ blowups at x0 are homogeneous of degree κ

ux0 ,r (x) =
u(rx)(

1
rn−1

∫
∂Br (x)u2

)1/2 → u0(x), u0(λx) = λκu0(x).

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola’s 50+10 10 / 25



Thin obstacle (Signorini) problem

Known results: We will assume φ = 0.

u ∈ C1,α(D± ∪D′) [Caffarelli’79], see also [Uraltseva’87]

Optimal regularity: u ∈ C1,1/2(D± ∪D′) [Athanasopoulos-Caffarelli’04]

Classification of free boundary points: [Athanasopoulos-Caffarelli-Salsa’08],

[Garofalo-P’09]

Γ =
⋃

κ=3/2, κ≥2

Γκ , Γκ = {x0 ∈ Γ : Nx0(0+) = κ}.

Here

Nx0(r) =
r
∫
Br (x0) |∇u|2∫
∂Br (x0)u2

is Almgren’s frequency formula, which is monotone increasing in r [Almgren’00]

x0 ∈ Γκ ⇐⇒ blowups at x0 are homogeneous of degree κ

ux0 ,r (x) =
u(rx)(

1
rn−1

∫
∂Br (x)u2

)1/2 → u0(x), u0(λx) = λκu0(x).

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola’s 50+10 10 / 25



Thin obstacle (Signorini) problem

Known results: We will assume φ = 0.

u ∈ C1,α(D± ∪D′) [Caffarelli’79], see also [Uraltseva’87]

Optimal regularity: u ∈ C1,1/2(D± ∪D′) [Athanasopoulos-Caffarelli’04]

Classification of free boundary points: [Athanasopoulos-Caffarelli-Salsa’08],

[Garofalo-P’09]

Γ =
⋃

κ=3/2, κ≥2

Γκ , Γκ = {x0 ∈ Γ : Nx0(0+) = κ}.

Here

Nx0(r) =
r
∫
Br (x0) |∇u|2∫
∂Br (x0)u2

is Almgren’s frequency formula, which is monotone increasing in r [Almgren’00]

x0 ∈ Γκ ⇐⇒ blowups at x0 are homogeneous of degree κ

ux0 ,r (x) =
u(rx)(

1
rn−1

∫
∂Br (x)u2

)1/2 → u0(x), u0(λx) = λκu0(x).

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola’s 50+10 10 / 25



Thin obstacle (Signorini) problem

Known results: We will assume φ = 0.

u ∈ C1,α(D± ∪D′) [Caffarelli’79], see also [Uraltseva’87]

Optimal regularity: u ∈ C1,1/2(D± ∪D′) [Athanasopoulos-Caffarelli’04]

Classification of free boundary points: [Athanasopoulos-Caffarelli-Salsa’08],

[Garofalo-P’09]

Γ =
⋃

κ=3/2, κ≥2

Γκ , Γκ = {x0 ∈ Γ : Nx0(0+) = κ}.

Here

Nx0(r) =
r
∫
Br (x0) |∇u|2∫
∂Br (x0)u2

is Almgren’s frequency formula, which is monotone increasing in r [Almgren’00]

x0 ∈ Γκ ⇐⇒ blowups at x0 are homogeneous of degree κ

ux0 ,r (x) =
u(rx)(

1
rn−1

∫
∂Br (x)u2

)1/2 → u0(x), u0(λx) = λκu0(x).

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola’s 50+10 10 / 25



Thin obstacle (Signorini) problem

Known results: We will assume φ = 0.

u ∈ C1,α(D± ∪D′) [Caffarelli’79], see also [Uraltseva’87]

Optimal regularity: u ∈ C1,1/2(D± ∪D′) [Athanasopoulos-Caffarelli’04]

Classification of free boundary points: [Athanasopoulos-Caffarelli-Salsa’08],

[Garofalo-P’09]

Γ =
⋃

κ=3/2, κ≥2

Γκ , Γκ = {x0 ∈ Γ : Nx0(0+) = κ}.

Here

Nx0(r) =
r
∫
Br (x0) |∇u|2∫
∂Br (x0)u2

is Almgren’s frequency formula, which is monotone increasing in r [Almgren’00]

x0 ∈ Γκ ⇐⇒ blowups at x0 are homogeneous of degree κ

ux0 ,r (x) =
u(rx)(

1
rn−1

∫
∂Br (x)u2

)1/2 → u0(x), u0(λx) = λκu0(x).

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola’s 50+10 10 / 25



Thin obstacle (Signorini) problem

Figure: Graphs of Re(x1 + i |x2|)3/2 and Re(x1 + i |x2|)6

When κ = 3/2, the only blowups are u0(x) = Cn Re(x′ · e′ + i|xn|)3/2, for |e′| = 1.

When κ = 2m, then the only blowups are polynomials

For other values of κ, the blowups are not classified, except when n = 2 (simple

exercise).

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola’s 50+10 11 / 25



Thin obstacle (Signorini) problem

Figure: Graphs of Re(x1 + i |x2|)3/2 and Re(x1 + i |x2|)6

When κ = 3/2, the only blowups are u0(x) = Cn Re(x′ · e′ + i|xn|)3/2, for |e′| = 1.

When κ = 2m, then the only blowups are polynomials

For other values of κ, the blowups are not classified, except when n = 2 (simple

exercise).

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola’s 50+10 11 / 25



Thin obstacle (Signorini) problem

Figure: Graphs of Re(x1 + i |x2|)3/2 and Re(x1 + i |x2|)6

When κ = 3/2, the only blowups are u0(x) = Cn Re(x′ · e′ + i|xn|)3/2, for |e′| = 1.

When κ = 2m, then the only blowups are polynomials

For other values of κ, the blowups are not classified, except when n = 2 (simple

exercise).

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola’s 50+10 11 / 25



Thin obstacle (Signorini) problem

The set Γ3/2 is also called regular set and denoted R

Theorem (Regularity of R [Athanasopoulos-Caffarelli-Salsa’08])

R is an (n− 2)-dimensional C1,α manifold.

Step 1: R is Lipschitz, by showing ∂eu ≥ 0 in a ‘‘thin” cone of directions e ∈ Rn−1

Step 2: Lipschitz ⇒ C1,α, by applying boundary Harnack principle in B1 \Λ

Question

Higher regularity of R? Does the hodograph-Legendre transform work?

Other free boundary points? Only Γκ with κ = 2m, m ∈ N were studied.

x0 ∈ Γ is called singular if Λ has zero Hn−1 density at x0. Let Σ be the set of

singular points.

Theorem (Structure of Σ [Garofalo-P’09])

Σ =
⋃
m∈N Γ2m. Moreover, Σ is contained in a countable union of C1 manifolds.
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Partial hodograph transform

u = 0

Λ

Γ

∆u = 0

T
yj=xj

yn−1=uxn−1
yn=uxn

))

Suppose Γ ∩ B1 = R∩ B1 (all free boundary points are regular)

Normal to Γ at the origin ν0 = en−1

Partial hodograph transform in two variables needed to straighten Γ , as it is of

co-dimension two

T : (x′′, xn−1, xn), (x′′, uxn−1 , uxn)

T(B1 \Λ) ⊂ {yn−1 > 0}, T(Λ±) ⊂ {yn−1 = 0}, T(Γ) ⊂ {yn−1 = 0, yn = 0}
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Partial hodograph transform

u = 0

Λ

Γ

∆u = 0

T
yj=xj

yn−1=uxn−1
yn=uxn

))

T is a singular transformation. For u = u0 = Re(xn−1 + ixn)3/2

yn−1 − iyn =
3
2
(xn−1 + ixn)1/2

To better visualize the transformation T , we compose it with

y , z : zj = yj , zn−1 + izn = (yn−1 − iyn)2
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Partial hodograph transform

u = 0

Λ

Γ

∆u = 0

Λ0

T
yj=xj

yn−1=uxn−1
yn=uxn

))

T1

**
zj=yj

zn−1+izn=(yn−1−iyn)2
tt
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Partial hodograph transform

T
$$

T−1

ee
(original T )Bδ \Λ U+δ

T
$$

T−1

ee
(odd extension)(Bδ \Λ)∗ U−δ

T
$$

T−1

ee
(glued together)Mδ Uδ
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Partial hodograph transform

Theorem (Invertibility of hodograph transform, [Koch-P-Shi’14])

There exists a δ > 0 such that T :Mδ →Uδ = T(Mδ) is invertible.

Lemma (Homogeneous blowups)

For every x0 ∈ Γ ,

ux0 ,r (x) =
u(x0 + rx)

r 3/2 → Cx0 Re(x · νx0 + ixn)3/2,

as r → 0, where νx0 is the normal to Γ at x0. Moreover, x0 , Cx0 is continuous and the

above convergence is uniform on compact subsets of Γ .

Proof uses Weiss and Monneau type monotonicity formulas, as well as a new

boundary Hopf-type principle for domains of the type B1 \Λ
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Partial Legendre transform

u = 0

Λ

Γ

∆u = 0

T
yj=xj

yn−1=uxn−1
yn=uxn

))

T−1

xj=yj
xn−1=−vxn−1
xn=−vynii

F(D2v) = 0

Assume now that T is invertible and define the partial Legendre transform

v(y) = u(x)− xn−1yn−1 − xnyn

The inverse T−1 will then be given by

T−1 : (y ′′, yn−1, yn), (y ′′,−vyn−1 ,−vyn)

Γ will be parametrized by xn−1 = −vyn−1(y ′′,0,0). So to show smoothness of Γ we

need smoothness of v up to {yn−1 = 0, yn = 0}.
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Γ
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Partial Legendre transform

By direct computation, we have the following differentiation formulas:

∂xju = ∂yjv, ∂xn−1u = −yn−1, ∂xnu = −yn

∂xixiu = ∂yiyiv − (∂yn−1yiv, ∂ynyiv)
(
∂yn−1yn−1v ∂yn−1ynv
∂yn−1ynv ∂ynynv

)−1 (
∂yiyn−1v
∂yiynv

)

(
∂xn−1xn−1u ∂xn−1xnu
∂xnxn−1u ∂xnxnu

)
= −

(
∂yn−1yn−1v ∂yn−1ynv
∂ynyn−1v ∂ynynv

)−1

.

Hence v satisfies a fully nonlinear equation

F̃(D2
yv) =

n−2∑
i=1

∂yiyiv − tr

(
∂yn−1yn−1v ∂yn−1ynv
∂yn−1ynv ∂ynynv

)−1

−
n−2∑
i=1

(∂yiyn−1v, ∂yiynv)
(
∂yn−1yn−1v ∂yn−1ynv
∂yn−1ynv ∂ynynv

)−1 (
∂yiyn−1v
∂yiynv

)
= 0.
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Partial Legendre transform

Multiplying both sides by

J(v) = det

(
∂yn−1yn−1v ∂yn−1ynv
∂yn−1ynv ∂ynynv

)
,

we can write it in the form

F(D2v) = ∂yn−1yn−1v + ∂ynynv −
n−2∑
i=1

det(V i) = 0,

where V i, i = 1, . . . , n− 2, is the 3× 3 matrix

V i =


∂yiyiv ∂yiyn−1v ∂yiynv
∂yn−1yiv ∂yn−1yn−1v ∂yn−1ynv
∂ynyiv ∂ynyn−1v ∂ynynv


3×3

The equation is degenerate, since J(v) ∼ − 64
81 (y

2
n−1 +y2

n)
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Subelliptic structure

Consider the linearization of F(D2u). Let

Fij(M) = ∂mijF(M), M = (mij)n×n

By direct computation (Fij(D2v))i,j = ABAt , where

A =



Y 0 0 · · · 0

0 Y 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · Y 0

0 0 0 · · · I2


n×2(n−1)

B = (bij) =



B0 0 0 · · · B1

0 B0 0 · · · B2

...
...

. . .
. . .

...

0 0 · · · B0 Bn−2

Bt1 Bt2 · · · · · · Bn−1


2(n−1)×2(n−1)

with

Y = 8
9
(yn−1, yn), B0 =

(
b0(y) 0

0 b̃0(y)

)
, Bi =

(
bi,1(y) bi,2(y)
b̃i,1(y) b̃i,2(y)

)
.
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Subelliptic structure

Entries of the matrix B are smooth in Uδ \ {yn−1 = yn = 0} and continuous up to

{yn−1 = yn = 0}. Based on the study of blowups of v and T−1.

At y = 0 we have B(0) = I2(n−1), which makes

AB(0)At =
( 64

81 (y
2
n−1 +y2

n)In−2 0

0 I2

)

Up to a constant, this corresponds to the Baouendi-Grushin type operator:

L0 = (y2
n−1 +y2

n)
n−2∑
i=1

∂2
i,i + ∂2

n−1,n−1 + ∂2
n,n.

Thus, the linearization of F near origin is a perturbation of L0

L0 is a well-studied subelliptic operator and can be written as Hörmander type sum

of squares operator

L0 =
2(n−1)∑
k=1

Y 2
k , {Yk} = {yα∂j , ∂β}, α, β = n− 1, n, j = 1, . . . , n− 2
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Subelliptic structure

Sobolev spaces associated with vector fields {Yk}

Mm,p(Ω) = {u : Yj1Yj2 · · ·Yjsu ∈ Lp(Ω), for s ≤m}

Lemma (Lp estimates)

Let u solve L0u = f in Cr = {|y ′′| < r 2, y2
n−1 +y2

n < r 2}. Then

‖u‖M2,p(Cr/2) ≤ C
(
‖f‖Lp(Cr ) + ‖u‖Lp(Cr )

)
.

Yk, k = 1, . . . ,2(n− 1) can be lifted to left-invariant horizontal vector fields on

Heisenberg-Reiter group R2 ×R2(n−2) ×Rn−2. Then apply [Folland’75].

Estimate still holds if we replace L0 with a perturbation L given with a matrix B, if

‖B − B(0)‖ is sufficiently small.

Embedding theorems:

1 M1,p
0 ↩ Lq for 1

q +
1

2(n−1) =
1
p if p < 2(n− 1)

2 M1,p
0 ↩ L∞ if p > 2(n− 1)
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Higher regularity of R

Theorem (Smoothness of R [Koch-P-Shi’14])

R is C∞.

Idea of the proof below is given in R3.

Step 1: Consider the incremental quotient ∆h1v =
v(x + he1)− v(x)

h
, which

satisfies

Fij(τ
ij
h (D

2v))∂ij∆h1v = 0. (τijh translation operator)

By Lp estimates we obtain that ∆h1v ∈ M2,p uniformly ⇒ ∂1v ∈ M2,p .

Step 2: ∂11v ∈ M2,p :

Fij(D2v)∂ij∆h1∂1v = f , f = −∆h1 (Fij)∂ij∂1v(· + he1).

Step 3: ∂αv ∈ M2,p , for |α| = 2 with α2 +α3 ≥ 1.

Step 4: We can bootstrap it to show that in fact ∂αv ∈ M2,p for all |α| ≥ 2.

By Sobolev embedding ∂αv ∈ L∞ ⇒ v ∈ C∞ ⇒ Γ is C∞.

Recall that the latter follows from the parametrization

Γ : xn−1 = −∂n−1v(x′′,0,0), xn = 0.
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By Sobolev embedding ∂αv ∈ L∞ ⇒ v ∈ C∞ ⇒ Γ is C∞.

Recall that the latter follows from the parametrization

Γ : xn−1 = −∂n−1v(x′′,0,0), xn = 0.
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Higher regularity of R

Theorem (Real analyticity of R,[Koch-P-Shi’14])

R is real analytic.

Carefully do the estimates in the previous proof.

Show by induction that there exist universal constants R, 0 < R < 1 such that for

any k ≥ 4

1 ‖ηk−2∂2
Y ∂
k
1v‖p ≤ R−(k−4)kk−4;

2 ‖ηk−2∂2
Y ∂αv‖p ≤ R−(k−3)kk−3, ∀α with |α| = k and α2 +α3 ≥ 1.

Here η is a cutoff function [Kato’96]

This implies

sup
C1

|∂αv| ≤ R−|α||α||α|, |α| ≥ 4.

Hence v of Gevrey class 1, i.e. real analytic.

Consequently, Γ is also real analytic.
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