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@ GivenD CR", f:D—-R,0<a< f(x)<b
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@ u can be obtained as the minimizer of the energy
E() = J [Vv|? +2f(x)v
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Classical obstacle problem

@ GivenDCcR"™, f:D—-R,0<a< f(x)<b
@ We say that u : D — R solves the classical obstacle
problem if

u>0, Au=fxmuso; inD.

@ u can be obtained as the minimizer of the energy
E() = J [Vv|? +2f(x)v
D

over & ={v e Wh3(D):v > 0,v|,p = u|zp}-

@ Main objects of study

Coincidence set: A(u):={xe€D:u =0}

Free Boundary: I'(u):=0A(u)
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Classical obstacle problem

Known results:

o If f is smooth (enough), then u € Cllo’cl (D) [FrEHSE'79], See alSO [CAFFARELLI'98]
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Classical obstacle problem

Known results:
o If f is smooth (enough), then u € Cllo’cl (D) [FrEHSE'79], See alSO [CAFFARELLI'98]

@ The free boundary is decomposed into union
I'=RuU3Z

where R is the so-called regular set, and X is the singular set.
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Classical obstacle problem

Known results:
o If f is smooth (enough), then u € Cllo’cl (D) [FrEHSE'79], See alSO [CAFFARELLI'98]

@ The free boundary is decomposed into union
I'=RuU3Z

where R is the so-called regular set, and X is the singular set.

@ For xop € R, the quadratic rescalings converge to halfspace solutions:

u(xg +rx)
72

2

Uy (X) 1= = Uxy (X) = Cx, ((x - €)F)

over v = r; — 0%, where |e| = 1. Here Cy, = f(x0)/2.
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Classical obstacle problem

Known results:
o If f is smooth (enough), then u € Cllo’cl (D) [FrEHSE'79], See alSO [CAFFARELLI'98]

@ The free boundary is decomposed into union
I'=RuU3Z

where R is the so-called regular set, and X is the singular set.

For x¢ € R, the quadratic rescalings converge to halfspace solutions:

u(xg +rx)
72

2

Uy (X) 1= = Uxy (X) = Cx, ((x - €)F)

over v = r; — 0%, where |e| = 1. Here Cy, = f(x0)/2.

For x( € 3, the rescalings converge to polynomial solutions
qu,V(x) — Pxq (x)=x- Ay X

over v = t; — 0%, where Ay, is a positive matrix with tr(Ay,) = Cx,.
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Classical obstacle problem

Theorem (Regularity of the regular set)
RisC®if f € C®. (R isC® if f € C®.) J
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Theorem (Regularity of the regular set)
RisC®if f € C®. (R isC® if f € C®.) J

Main steps of the proof:

@ Step 1: R is Lipschitz, by showing that d,u > 0 in a cone of directions e.
[CAFFARELLI'98]
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Theorem (Regularity of the regular set)
RisC®if f € C®. (R isC® if f € C®.) J

Main steps of the proof:

@ Step 1: R is Lipschitz, by showing that d,u > 0 in a cone of directions e.
[CAFFARELLI'98]

@ Step 2: Lipschitz = C!¢%, by applying the boundary Harnack principle to the pairs
of directional derivatives d,u, 0,1 with |e — e’| < € small.
[ATHANASOPOULOS-CAFFARELLI'85]
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Theorem (Regularity of the regular set)
RisC® if f € C®. (R isC® if f € C®.) J

Main steps of the proof:

@ Step 1: R is Lipschitz, by showing that d,u > 0 in a cone of directions e.
[CAFFARELLI'98]

@ Step 2: Lipschitz = C!¢%, by applying the boundary Harnack principle to the pairs
of directional derivatives d,u, 0,1 with |e — e’| < € small.
[ATHANASOPOULOS-CAFFARELLI'85]

@ Step 3: CH* = C* (C®) by partial hodograph-Legendre transform, [Isakov'76],
[KINDERLEHRER-NIRENBERG'77].
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Classical obstacle problem

Theorem (Regularity of the regular set)
RisC® if f € C®. (R isC® if f € C®.) J

Main steps of the proof:
@ Step 1: R is Lipschitz, by showing that d,u > 0 in a cone of directions e.

[CAFFARELLI'98]

@ Step 2: Lipschitz = C!¢%, by applying the boundary Harnack principle to the pairs
of directional derivatives d,u, 0,1 with |e — e’| < € small.
[ATHANASOPOULOS-CAFFARELLI'85]

@ Step 3: CH* = C* (C®) by partial hodograph-Legendre transform, [Isakov'76],
[KINDERLEHRER-NIRENBERG'77].

Theorem (Structure of singular set)
3 is contained in a countable union of C' manifolds. J

@ Follows from continuous dependence of blowups on xy € 3 and Whitney’s
extension theorem [CAFFARELLI'8]
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Higher regularity of R

@ SupposeI' n B; = R n B; (all free boundary points are regular)
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@ SupposeI' n B; = R n B; (all free boundary points are regular)

@ Normal to I at the origin vy = e,
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Higher regularity of R

T
— yi=x; T

Yn=Uxp

@ SupposeI' n B; = R n B; (all free boundary points are regular)
@ Normal to I at the origin vy = e,

@ Partial hodograph transform:

T:x=(x',xn) ~ (x,Ux,) =y
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Higher regularity of R

T
— yi=x; T

Yn=Uxp

Suppose I' N B; = R n By (all free boundary points are regular)

@ Normal to I at the origin vy = e,

@ Partial hodograph transform:
T:x=(x',xn)~ (X, Ux,) =¥
o T({u>0}) c {y, >0}, T() C {y, = 0} (straightens the free boundary)
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Higher regularity of R

T
— yi=x; T

Yn=Uxp

Suppose I' N B; = R n By (all free boundary points are regular)

@ Normal to I at the origin vy = e,

@ Partial hodograph transform:
T:x=(x',xn)~ (X, Ux,) =¥
o T({u>0}) c {y, >0}, T() C {y, = 0} (straightens the free boundary)

@ T is invertible near the origin.
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Higher regularity of R

T
— yi=xi XM

Yn=Uxp

@ Partial Legendre transform:

v(y) = ulx) — Xpnyn.

Arshak Petrosyan (Purdue) Thin Obstacle Problem Nicola's 50+10 6/25



Higher regularity of R

— yi=xi XM

Yn=Uxp

Xi=Yi
Xn="Vyn

~_

@ Partial Legendre transform:
v(y) = ulx) — Xnn.
@ Simple computation shows that v,, = —-x,, v,, = Uy,. Hence, T-!is given by

T vn) = (), —y,).
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Higher regularity of R

— yi=xi XM

Yn=Uxp

Xi=Yi
Xn="Vyn

~_

@ Partial Legendre transform:
v(y) = u(x) = Xn¥n.
@ Simple computation shows that v,, = —-x,, v,, = Uy,. Hence, T-!is given by
T () = (¥, =vy,).

e ThusT:x, = -v,,(x’,0) and the regularity of I is related to that of v.
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Higher regularity of R

— yi=xi XM

Yn=Uxp

Xi=Yi
Xn="Vyn

~_
T-1

@ By direct computation, for j,k=1,...,n—1

1 _ Vyny,

Uy, x; =
, XnX;j ,
Vynn

Uxyx, = —
v
Ynn
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Higher regularity of R

— yi=xi XM
Yn=Uxp V=0

F(D?v) = f

Xi=Yi
Xn="Vyn

~_
Tfl

@ By direct computation, for j,k=1,...,n—1

y  Uxyx; = y  Uxixy = Uy
Vyuyn : Vynyn

1 _ Yy

Ux,x, = —
. Vyuyn

o v will satisfy fully nonlinear elliptic equation

n-1 1 1 n-1
2 _. 2 _ ’
F(D?v) =: Zvyl.yl—v oy D vi o =f, -y,
i=1 IYnn IYndn =1

inBs N {y, >0}
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Higher regularity of R

— yi=xi XM
Yn=Uxy v=0

F(D?v) = f

Xi=Yi
Xn=-V

~ o —
T71

@ F is uniformly elliptic near the origin (by considering the linearization of F near
the origin)
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Higher regularity of R

— yi=xi XM
Yn=Uxy v=0

F(D?v) = f

Xi=Yi
Xn=-V

~ o —
T71

@ F is uniformly elliptic near the origin (by considering the linearization of F near
the origin)

@ Using [AGMON-DOUGLIS-NIRENBERG'59] one can show that v is C® up to {y, = 0}, if f is.
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@ F is uniformly elliptic near the origin (by considering the linearization of F near
the origin)

@ Using [AGMON-DOUGLIS-NIRENBERG'59] one can show that v is C® up to {y, = 0}, if f is.

@ Using [Morrey’66], v is real analytic, if f is.
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Higher regularity of R

— yi=xi XM
Yn=Uxp V=0

F(D?v) = f

Xi=Yi
Xn=—"

~ T~
T-1

@ F is uniformly elliptic near the origin (by considering the linearization of F near
the origin)

@ Using [AGMON-DOUGLIS-NIRENBERG'59] one can show that v is C® up to {y, = 0}, if f is.
@ Using [Morrey’66], v is real analytic, if f is.

@ Recalling that I' is parametrized by
[:xn=-0,,(x",0)

we obtain that I is real analytic.
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Thin obstacle (Signorini) problem

@ Given D c R", symmetric in x,-variable,
¢:D' =D n{x, =0} — R (thin obstacle)

Oxpu =0

Au =0
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@ Given D c R", symmetric in x,-variable,
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@ u solves the thin obstacle (Signorini) problem if
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Thin obstacle (Signorini) problem

@ Given D c R", symmetric in x,-variable,
¢:D' =D n{x, =0} — R (thin obstacle)

@ u solves the thin obstacle (Signorini) problem if

Au=0 inD* =Dn{+x, >0}
uz=¢, —-0xu=0, (W—-—¢)oy,u=0 onD’

@ u can be obtained as the minimizer of the energy
E() = J Vv |?
D

over & = {v e Wh3(D):v|p = ¢, v]|;p = u|spl-
@ Main objects of study

Coincidence set: A(u):={xeD:u= ¢}

Free Boundary: I'(u):=0pA(u) (thin free boundary)
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Thin obstacle (Signorini) problem

Known results: We will assume ¢ = 0.

@ u € CH¥(D* U D’) [CAFFARELLI'79], See alsO [URALTSEVA'87]
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@ u € CH¥(D* U D’) [CAFFARELLI'79], See alsO [URALTSEVA'87]

@ Optimal regularity: u € C1'/2(D* U D’) [ATHANASOPOULOS-CAFFARELLI'04]
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Thin obstacle (Signorini) problem

Known results: We will assume ¢ = 0.
@ u € CH¥(D* U D’) [CAFFARELLI'79], See alsO [URALTSEVA'87]
@ Optimal regularity: u € C1'/2(D* U D’) [ATHANASOPOULOS-CAFFARELLI'04]

@ Classification of free boundary points: [ATHANASOPOULOS-CAFFARELLI-SALSA’08],
[GAROFALO-P’09]

r= |J Ik TIc=i{xo€l:N*(0+) =k}
k=3/2, k=2
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Thin obstacle (Signorini) problem

Known results: We will assume ¢ = 0.
@ u € CH¥(D* U D’) [CAFFARELLI'79], See alsO [URALTSEVA'87]
@ Optimal regularity: u € C1'/2(D* U D’) [ATHANASOPOULOS-CAFFARELLI'04]

@ Classification of free boundary points: [ATHANASOPOULOS-CAFFARELLI-SALSA’08],
[GAROFALO-P’09]
r= |J Ik TIc=i{xo€l:N*(0+) =k}
k=3/2, k=2

@ Here )
_ TfBr(Xo) [Vul

2
IBB,(X(,) u

is Almgren’s frequency formula, which is monotone increasing in v [ALMGREN'00]

N> (r)
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Thin obstacle (Signorini) problem

Known results: We will assume ¢ = 0.
@ u € CH¥(D* U D’) [CAFFARELLI'79], See alsO [URALTSEVA'87]
@ Optimal regularity: u € C1'/2(D* U D’) [ATHANASOPOULOS-CAFFARELLI'04]

@ Classification of free boundary points: [ATHANASOPOULOS-CAFFARELLI-SALSA’08],
[GAROFALO-P’09]
r= |J Ik TIc=i{xo€l:N*(0+) =k}
k=3/2, k=2
@ Here )
_ v fBr(XO) Vul
IBB,(X(,) u?

is Almgren’s frequency formula, which is monotone increasing in v [ALMGREN'00]

N> (r)

@ xo € I, & blowups at x( are homogeneous of degree k

U () = —HI0 0 (x), Uo(AX) = Ao (x).

1
(yH Jas, 0 ”2)
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Thin obstacle (Signorini) problem

Figure: Graphs of Re(x; + i |x2|)%/? and Re(x; + i |x2|)®

Arshak Petrosyan (Purdue)

@ When k = 3/2, the only blowups are uy(x) = C,Re(x’ - e’ + i|x,|)3/2, for |e'| = 1.
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Thin obstacle (Signorini) problem

Figure: Graphs of Re(x; + i [x2])%? and Re(x; + i |x2])®

Arshak Petrosyan (Purdue)

@ When k = 3/2, the only blowups are uy(x) = C,Re(x’ - e’ + i|x,|)3/2, for |e'| = 1.
@ When k = 2m, then the only blowups are polynomials
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Thin obstacle (Signorini) problem

Figure: Graphs of Re(x; + i |x2|)%/? and Re(x; + i |x2|)®

@ When k = 3/2, the only blowups are uy(x) = C,Re(x’ - e’ + i|x,|)3/2, for |e'| = 1.
@ When k = 2m, then the only blowups are polynomials

@ For other values of k, the blowups are not classified, except when n = 2 (simple
exercise).

=} =) = E = DQC
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Thin obstacle (Signorini) problem

@ The set I3, is also called regular set and denoted R
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@ The set I3, is also called regular set and denoted R

Theorem (Regularity of R [ATHANASOPOULOS-CAFFARELLI-SALSA’08])

R is an (n — 2)-dimensional C* manifold.
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@ The set I3, is also called regular set and denoted R

Theorem (Regularity of R [ATHANASOPOULOS-CAFFARELLI-SALSA’08]) J

R is an (n — 2)-dimensional C* manifold.

@ Step 1: R is Lipschitz, by showing d,u > 0 in a “thin” cone of directions ¢ € R"*"!
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@ The set I3, is also called regular set and denoted R

Theorem (Regularity of R [ATHANASOPOULOS-CAFFARELLI-SALSA’08])

R is an (n — 2)-dimensional C* manifold. J

@ Step 1: R is Lipschitz, by showing d,u > 0 in a “thin” cone of directions ¢ € R"*"!

@ Step 2: Lipschitz = C1%, by applying boundary Harnack principle in B; \ A
Question
Higher regularity of R? Does the hodograph-Legendre transform work? J
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Thin obstacle (Signorini) problem

@ The set I3, is also called regular set and denoted R

Theorem (Regularity of R [ATHANASOPOULOS-CAFFARELLI-SALSA’08])
R is an (n — 2)-dimensional C** manifold.

@ Step 1: R is Lipschitz, by showing d,u > 0 in a “thin” cone of directions ¢ € R"*"!

@ Step 2: Lipschitz = C1%, by applying boundary Harnack principle in B; \ A
Question

Higher regularity of R? Does the hodograph-Legendre transform work?

@ Other free boundary points? Only I with k = 2m, m € N were studied.
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@ The set I3, is also called regular set and denoted R

Theorem (Regularity of R [ATHANASOPOULOS-CAFFARELLI-SALSA’08])
R is an (n — 2)-dimensional C** manifold.

@ Step 1: R is Lipschitz, by showing d,u > 0 in a “thin” cone of directions ¢ € R"*"!

@ Step 2: Lipschitz = C1%, by applying boundary Harnack principle in B; \ A
Question

Higher regularity of R? Does the hodograph-Legendre transform work?

@ Other free boundary points? Only I with k = 2m, m € N were studied.

@ Xx( € I'is called singular if A has zero H""! density at xg. Let = be the set of
singular points.
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Thin obstacle (Signorini) problem

@ The set I3, is also called regular set and denoted R

Theorem (Regularity of R [ATHANASOPOULOS-CAFFARELLI-SALSA’08])
R is an (n — 2)-dimensional C** manifold.

@ Step 1: R is Lipschitz, by showing d,u > 0 in a “thin” cone of directions ¢ € R"*"!

@ Step 2: Lipschitz = C1%, by applying boundary Harnack principle in B; \ A
Question

Higher regularity of R? Does the hodograph-Legendre transform work?

@ Other free boundary points? Only I with k = 2m, m € N were studied.

@ Xx( € I'is called singular if A has zero H""! density at xg. Let = be the set of
singular points.

Theorem (Structure of X [GAROFALO-P’09])

3 = Umen I2m. Moreover, 3. is contained in a countable union of C* manifolds. ’
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Partial hodograph transform

Au=0
y

@ SupposeI' N B; = R n B; (all free boundary points are regular)
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Partial hodograph transform

@ Suppose I' N B; = R n B; (all free boundary points are regular)

@ Normal to I' at the origin vy = e,
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Partial hodograph transform

o yi—x. AL
n-1=Ux,_
Au =0 yn=uX:" 1

@ Suppose I' N B; = R n B; (all free boundary points are regular)
@ Normal to I' at the origin vy = e,

e Partial hodograph transform in two variables needed to straighten T, as it is of
co-dimension two
T:(x",xXn-1,Xn) = (X", Uy, ,, Ux,)
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Partial hodograph transform

o yi—x. AL
m-1=Ux,
Au=0 yn=ux:: !

@ Suppose I' N B; = R n B; (all free boundary points are regular)

@ Normal to I' at the origin vy = e,

e Partial hodograph transform in two variables needed to straighten T, as it is of
co-dimension two
T:(x",xXn-1,Xn) = (X", Uy, ,, Ux,)
@ T(Bi\A) C{yn-1>0}, T(A*) C {yn-1 =0}, T(I) C {yn-1=0,yn =0}
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o yi—x. T
Yi=Xj

Yn-1=Uxy |

Yn=Uxy

o T is a singular transformation. For u = ug = Re(x,_1 + ix,)3/2

. 3 )
Ynot = i¥n = 5 (Xn1 + ixy)!?

a
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Partial hodograph transform

o yi—x. T
Yi=Xj
Yn-1=Ux,

Yn=Uxy

Au =0

o T is a singular transformation. For u = ug = Re(x,_1 + ix,)3/2

; 3 ; 1/2
YVn-1—1Yn = E(Xn—l +ix)Y
@ To better visualize the transformation T, we compose it with
. : . 2
Ye—2z:1zj=Yj, Zn1tizn=(¥Yn-1—-1¥n)
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zj=y;
Zn-1+iZn=(Yn-1-iyn)?
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Partial hodograph transform

Theorem (Invertibility of hodograph transform, [KocH-P-SHr'14])
There exists a 6 > 0 such that T : Ms — Us = T(Ms) is invertible.

Lemma (Homogeneous blowups)
For every xg €T,

u(xo + rx) .
U (X) = == 37— = CgRe(x - vy + 1%y )32

asv — 0, where vy, is the normal toT at x,. Moreover, xo — Cx, is continuous and the
above convergence is uniform on compact subsets of T.

@ Proof uses Weiss and Monneau type monotonicity formulas, as well as a new
boundary Hopf-type principle for domains of the type B; \ A
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Partial Legendre transform

T
 yi—x; T\
Yj=Xj

\ / Yn-1=Ux, _
\ i y n-1
\ Au=0 4 Y=ty y

@ Assume now that T is invertible and define the partial Legendre transform

V(y) = u(X) = Xn-1Yn-1 — Xndn
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Partial Legendre transform

o yi—x, T
Yj=Xj
Yn-1=Ux,

Au=0 Vn=lxn

X
I
N

@ Assume now that T is invertible and define the partial Legendre transform
V(y) = u(X) = Xn-1Yn-1 — Xndn
@ The inverse T-! will then be given by

T!: (yﬂvyn—lyyn) nd (y”,*vyn,”*vyn)
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Partial Legendre transform

o yi—x. AL
Yi=Xj
Yn-1=Ux,

Au =0 Vn=lUxn

Xj=Yj
Xn-1="Vxy_;
Xn="VUyn

~ 7
T71

| 4
| 4
V

@ Assume now that T is invertible and define the partial Legendre transform
V(y) = u(X) = Xn-1¥n-1 = XnVn
@ The inverse T-! will then be given by
T (" Yn1, ) = (¥ =y, 10 —Vy,)

o I will be parametrized by x,-1 = —v,,_,(»"”,0,0). So to show smoothness of T we
need smoothness of v up to {y,-1 =0, y, = 0}.
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Partial Legendre transform

o yi—x. AL
Yi=Xj
Yn-1=Ux,

Au =0 Vn=lUxn

F(D?v) =0

@ Assume now that T is invertible and define the partial Legendre transform
V(y) = u(X) = Xn-1¥n-1 = XnVn
@ The inverse T-! will then be given by
T (" Yn1, ) = (¥ =y, 10 —Vy,)

o I will be parametrized by x,-1 = —v,,_,(»"”,0,0). So to show smoothness of T we
need smoothness of v up to {y,-1 =0, y, = 0}.
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Partial Legendre transform

@ By direct computation, we have the following differentiation formulas:

axju:aij: axn,lu:*yn—ly axnu:*yn

-1
1y V aynflynv) <ay1‘ynlv)

Oxix; U = Oy, V = (03,131 V, 0y, 3, V) ( 5
yiyn V

0y 1y ¥V 0y vV
-1

(axwlanu axnflxnu) _ (aynflymv aymynv)

Oxpxy U Oxx, U 0y ynr V Oy V
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Partial Legendre transform

@ By direct computation, we have the following differentiation formulas:

Oxy U= —=Yn-1, Ox,U=—Yn

-1
0 v 0 v 0 v
_ Yn-1¥Yn-1 Yn-1¥n YiVYn-1
Oxix; U = Oy, V = (03,131 V, 0y, 3, V) ( 3 v P v al " v
Vn-1Vn VnYn YiVn

Ox, U = 0y, V,

-1

yu1va1V  Oyuivn U)

03y V

(axwlanu axnflxnu) _ (
a)’nyn—lv

Oxpxy U Oxx, U

@ Hence v satisfies a fully nonlinear equation
-1

n-2
- Oyn1ynaV Oyp iy V
F(DJZ/U) — Z ayly,v _ tr( Yn-1Yn-1 é’n 1n
i=1 Yn1ynV Ynyn V
n-2 -1
a a aynflynflv aynflynv aylyn—lv _
- Z ( J’i)’nflv’ J’i}’nv) a a ) =0.
izl Vn-1n V 'VnYn U yiyn V
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Partial Legendre transform

@ Multiplying both sides by

J(‘U) = det <a_’)’n—1yn—1v
a)’n—l)’nv

we can write it in the form
F(D*V) =3y, 1y, ,V + 3y,»,V

where Vi, i =1,...,mn — 2, is the 3 x 3 matrix

Oy V 0y V
i_
Vi=10y,1%V  OypiyuaV
Oy V Oy V

Arshak Petrosyan (Purdue) Thin Obstacle Problem

aJ’n—U’n 'U)
)
0y ¥V

n-2

- > det(V) =0,

i=1

Oy V
a)’n 1¥n v

ay'ﬂynv 3x3

Nicola's 50+10

20/25



Partial Legendre transform

@ Multiplying both sides by

J(v) = det yu1ya1V  OyuyyyV
Oy1ynV OV )’

we can write it in the form

n-2
F(D?V) = 0y, 1y, U + Oyny, v — . det(Vi) =0,
i=1

where Vi, i =1,...,mn — 2, is the 3 x 3 matrix
Oy V 0y V Oy V
i_
Vi=10y,1%V OypiyuaV  OyiyaV
0,3V Oy V Oy

3x3

@ The equation is degenerate, since J(v) ~ 7%(3/%,1 +2)
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Subelliptic structure

@ Consider the linearization of F(D?u). Let

Fij(M) = am,jF(M); M = (Mj)nxn
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Subelliptic structure

@ Consider the linearization of F(D?u). Let
Fij(M) = am,jF(M); M = (Mj)nxn

@ By direct computation (Fij(Dzv))i’j = ABA!, where

Y O 0 - 0 By O 0 e B
0 Y 0 - 0 0 By 0 B B>
S S I B ODES R
0 0 Y 0 0 0 --- By Bno
00 0 - B/ Bi By --- -+ Buu 2(n-1)x2(n-1)
with

bo(y) 0 ) B _(bi,l(y) bi,Z(y))
) ’ i= .

8
Y = = n-IsJn/, B = 7 b b
9 (y LY ) 0 < 0 b()(y bi,l (y) bi,Z (3’)
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Subelliptic structure

@ Entries of the matrix B are smooth in ‘Us \ {y»-1 = ¥» = 0} and continuous up to
{¥n-1 = vn = 0}. Based on the study of blowups of v and T'.
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Subelliptic structure

@ Entries of the matrix B are smooth in ‘Us \ {y»-1 = ¥» = 0} and continuous up to
{¥n-1 = vn = 0}. Based on the study of blowups of v and T'.

@ Aty = 0 we have B(0) = I>(n-1), which makes

AB(0)A" = (%(3”2“‘ + Vi)l O)

0 I
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Subelliptic structure

@ Entries of the matrix B are smooth in ‘Us \ {y»-1 = ¥» = 0} and continuous up to
{¥n-1 = vn = 0}. Based on the study of blowups of v and T'.

@ Aty = 0 we have B(0) = I>(n-1), which makes

AB(0)A" = (%(3”2“‘ + Vi)l O)

0 I

@ Up to a constant, this corresponds to the Baouendi-Grushin type operator:

n-2

Ly = (y‘l?l—l + yEL) Z aiz,i + a31—1,11—1 + agtn

i=1
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Subelliptic structure

Entries of the matrix B are smooth in Us \ {¥n-1 = ¥» = 0} and continuous up to
{¥n-1 = vn = 0}. Based on the study of blowups of v and T'.

@ Aty = 0 we have B(0) = I>(n-1), which makes

AB(0)A" = (%(3”2“‘ + Vi)l O)

0 I

@ Up to a constant, this corresponds to the Baouendi-Grushin type operator:

n-2

Ly = (y‘l?l—l + yEL) Z aiz,i + a31—1,11—1 + agtn

i=1

Thus, the linearization of F near origin is a perturbation of £
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Subelliptic structure

@ Entries of the matrix B are smooth in ‘Us \ {y»-1 = ¥» = 0} and continuous up to
{¥n-1 = vn = 0}. Based on the study of blowups of v and T'.

@ Aty = 0 we have B(0) = I>(n-1), which makes

AB(0)A" = (%(3”2“‘ + Vi)l O)

0 I
@ Up to a constant, this corresponds to the Baouendi-Grushin type operator:

n-2

Ly = (y‘l?l—l + yEL) Z aiz,i + a31—1,11—1 + agtn

i=1
@ Thus, the linearization of F near origin is a perturbation of £,

@ [, is a well-studied subelliptic operator and can be written as Hormander type sum
of squares operator

2(n-1)
Lo= > Y, {Yi}={yad;,08}, a,B=n-1mn, j=1,...,n-2
k=1
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Subelliptic structure

@ Sobolev spaces associated with vector fields {Yy}

M™P(Q) ={u:Y;Y;---Y;ueLF(Q), fors <m}
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Subelliptic structure

@ Sobolev spaces associated with vector fields {Yy}
M™P(Q) ={u:Y;Y;---Y;ueLF(Q), fors <m}
Lemma (L? estimates)
Letu solve Lou = f inCy = {|y"'| <72, ¥2_, + ¥2 <r?}. Then

lwllser ) < C (LF lr ey + Nullee,)) -
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Subelliptic structure

@ Sobolev spaces associated with vector fields {Yy}
M™P(Q) ={u:Y;Y;---Y;ueLF(Q), fors <m}
Lemma (L? estimates)
Letu solve Lou = f inCy = {|y"| <72,¥2_, + y2 <¥?}. Then

||u||M2*p(Cy/z) <C (||f|\Ln(c,) + ||M||Lv<cr))-

@ Yy, k=1,...,2(n — 1) can be lifted to left-invariant horizontal vector fields on
Heisenberg-Reiter group R? x R?("~2 x R"~2, Then apply [FoLLAND'75].
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Subelliptic structure

@ Sobolev spaces associated with vector fields {Yy}

M™P(Q) ={u:Y;Y;---Y;ueLF(Q), fors <m}

Lemma (L? estimates)
Letu solve Lou = f inCy = {|y"| <72,¥2_, + y2 <¥?}. Then

lullaer ) < C (Lf vy + 1l e,)) -

@ Yy, k=1,...,2(n — 1) can be lifted to left-invariant horizontal vector fields on
Heisenberg-Reiter group R? x R?("~2 x R"~2, Then apply [FoLLAND'75].

@ Estimate still holds if we replace £y with a perturbation £ given with a matrix B, if

[|[B — B(0)|| is sufficiently small.
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Subelliptic structure

@ Sobolev spaces associated with vector fields {Yy}

M™P(Q) ={u:Y;Y;---Y;ueLF(Q), fors <m}

Lemma (L? estimates)

Letu solve Lou = f inCy = {|y"| <72,¥2_, + y2 <¥?}. Then

lullaer ) < C (Lf vy + 1l e,)) -

@ Yy, k=1,...,2(n — 1) can be lifted to left-invariant horizontal vector fields on
Heisenberg-Reiter group R? x R?("~2 x R"~2, Then apply [FoLLAND'75].

@ Estimate still holds if we replace £y with a perturbation £ given with a matrix B, if
[|[B — B(0)|| is sufficiently small.

o Embedding theorems:
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Subelliptic structure

@ Sobolev spaces associated with vector fields {Yy}

M™P(Q) ={u:Y;Y;---Y;ueLF(Q), fors <m}

Lemma (L? estimates)

Letu solve Lou = f inCy = {|y"| <72,¥2_, + y2 <¥?}. Then

lullaer ) < C (Lf vy + 1l e,)) -

@ Yy, k=1,...,2(n — 1) can be lifted to left-invariant horizontal vector fields on
Heisenberg-Reiter group R? x R?("~2 x R"~2, Then apply [FoLLAND'75].
@ Estimate still holds if we replace £y with a perturbation £ given with a matrix B, if
[|[B — B(0)|| is sufficiently small.
o Embedding theorems:
Qo Mé"’L»L‘ffor$+ﬁ:%ifp<2(n71)
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Subelliptic structure

@ Sobolev spaces associated with vector fields {Yy}

M™P(Q) ={u:Y;Y;---Y;ueLF(Q), fors <m}

Lemma (L? estimates)

Letu solve Lou = f inCy = {|y"| <72,¥2_, + y2 <¥?}. Then

lullaer ) < C (Lf vy + 1l e,)) -

@ Yy, k=1,...,2(n — 1) can be lifted to left-invariant horizontal vector fields on
Heisenberg-Reiter group R? x R?("~2 x R"~2, Then apply [FoLLAND'75].
@ Estimate still holds if we replace £y with a perturbation £ given with a matrix B, if
[|[B — B(0)|| is sufficiently small.
o Embedding theorems:
Qo Mé"’L»L‘ffor$+ﬁ:%ifp<2(n71)
Q MyP ~L*ifp>2n—-1)
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Higher regularity of R

Theorem (Smoothness of R [KocH-P-SHI'14])
R isC™.

@ Idea of the proof below is given in R3.
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Higher regularity of R

Theorem (Smoothness of R [KocH-P-SHI'14])
R is C*.

@ Idea of the proof below is given in R3.
v(x + hey) —v(x)
h

@ Step 1: Consider the incremental quotient Aﬁ‘v = , which

satisfies

Fij (1)) (D?v))d;;Av = 0. (1, translation operator)
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Higher regularity of R

Theorem (Smoothness of R [KocH-P-SHI'14])
R is C*.

@ Idea of the proof below is given in R3.
v(x + hey) —v(x)
h

@ Step 1: Consider the incremental quotient Aﬁ‘v = , which

satisfies

Fij (1)) (D?v))d;;Av = 0. (1, translation operator)

@ By L? estimates we obtain that Av € M2? uniformly = 9,v € M27.
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Higher regularity of R

Theorem (Smoothness of R [KocH-P-SHI'14])
R is C*.

@ Idea of the proof below is given in R3.
v(x + hey) —v(x)
h

@ Step 1: Consider the incremental quotient Aﬁ‘v = , which

satisfies

Fij (1)) (D?v))d;;Av = 0. (1, translation operator)

@ By L? estimates we obtain that Av € M2? uniformly = 9,v € M27.
@ Step 2: 011V € M%P:

Fij(D*v)3;;Al0v = f, f = —Al(F;)3i;01v (- + hey).
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Higher regularity of R

Theorem (Smoothness of R [KocH-P-SHI'14])
R is C*.

@ Idea of the proof below is given in R3.
v(x + hey) —v(x)
h

@ Step 1: Consider the incremental quotient A{‘v = , which

satisfies

Fij (1)) (D?v))d;;Av = 0. (1, translation operator)

By L” estimates we obtain that Av € M2? uniformly = d,v € M2?,
Step 2: 011v € M%7

Fij(D*v)3;;Al0v = f, f = —Al(F;)3i;01v (- + hey).

@ Step 3: 0%v € M?P for || = 2 with &p + o3 = 1.
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Higher regularity of R

Theorem (Smoothness of R [KocH-P-SHI'14])
R is C*.

@ Idea of the proof below is given in R3.
v(x + hey) —v(x)
h

@ Step 1: Consider the incremental quotient A{‘v = , which

satisfies

Fij (1)) (D?v))d;;Av = 0. (1, translation operator)

@ By L? estimates we obtain that Av € M2? uniformly = 9,v € M27.
@ Step 2: 011V € M%P:

Fij(D*v)3;;Al0v = f, f = —Al(F;)3i;01v (- + hey).

@ Step 3: 0%v € M?P for || = 2 with &p + o3 = 1.
@ Step 4: We can bootstrap it to show that in fact 0%v € M?? for all |x| = 2.
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Higher regularity of R

Theorem (Smoothness of R [KocH-P-SHI'14])
R is C*.

@ Idea of the proof below is given in R3.
v(x + hey) —v(x)
h

@ Step 1: Consider the incremental quotient A{‘v = , which

satisfies

Fij (1)) (D?v))d;;Av = 0. (1, translation operator)

@ By L? estimates we obtain that Av € M2? uniformly = 9,v € M27.
@ Step 2: 011V € M%P:

Fij(D*v)3;;Al0v = f, f = —Al(F;)3i;01v (- + hey).

@ Step 3: 0%v € M?P for || = 2 with &p + o3 = 1.
@ Step 4: We can bootstrap it to show that in fact 0%v € M?? for all |x| = 2.
@ By Sobolev embedding 0%v € L* = v € C* = T'is C*.
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Higher regularity of R

Theorem (Smoothness of R [KocH-P-SHI'14])
R is C*.

Idea of the proof below is given in R3.
v(x + hey) —v(x)
h

Step 1: Consider the incremental quotient A{‘v = , which

satisfies

Fij (1)) (D?v))d;;Av = 0. (1, translation operator)

@ By L? estimates we obtain that Av € M2? uniformly = 9,v € M27.

Step 2: 011v € M%7
Fij(D*v)0;;At01v = f, f = —AF(Fij)d;j01v (- + hey).

Step 3: 0%v € M??, for || = 2 with &» + &3 = 1.

Step 4: We can bootstrap it to show that in fact 0%v € M?? for all | x| = 2.
By Sobolev embedding 0*v € L = v € C® = T'is C*.

Recall that the latter follows from the parametrization

I:xp1=-0p1v(x",0,0), x, =0.
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Higher regularity of R

Theorem (Real analyticity of R,[KocH-P-SH1'14])

R is real analytic.

@ Carefully do the estimates in the previous proof.
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Higher regularity of R

Theorem (Real analyticity of R,[KocH-P-SHI'14])
R is real analytic. J

@ Carefully do the estimates in the previous proof.

@ Show by induction that there exist universal constants R, 0 < R < 1 such that for
any k > 4
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Higher regularity of R

Theorem (Real analyticity of R,[KocH-P-SHI'14])
R is real analytic. J

@ Carefully do the estimates in the previous proof.

@ Show by induction that there exist universal constants R, 0 < R < 1 such that for
any k > 4
o an"Za%a{‘va < R—(k=4) k-4
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Higher regularity of R

Theorem (Real analyticity of R,[KocH-P-SHI'14])
R is real analytic. J

@ Carefully do the estimates in the previous proof.

@ Show by induction that there exist universal constants R, 0 < R < 1 such that for
any k > 4
© IIn*-237afvll, = R--kk-4;
Q (In*2%020%v|l, < R-*Ikk-3 Vo with |«| = k and otz + o3 > 1.
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Higher regularity of R

Theorem (Real analyticity of R,[KocH-P-SHI'14])
R is real analytic. J

@ Carefully do the estimates in the previous proof.

@ Show by induction that there exist universal constants R, 0 < R < 1 such that for
any k > 4
© IIn*-237afvll, = R--kk-4;
Q (In*2%020%v|l, < R-*Ikk-3 Vo with |«| = k and otz + o3 > 1.

@ Here n is a cutoff function [KaT0’96]
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Higher regularity of R

Theorem (Real analyticity of R,[KocH-P-SHI'14])
R is real analytic. J

@ Carefully do the estimates in the previous proof.

Show by induction that there exist universal constants R, 0 < R < 1 such that for
any k > 4

© IIn*-237afvll, = R--kk-4;

Q (In*2%020%v|l, < R-*Ikk-3 Vo with |«| = k and otz + o3 > 1.

@ Here n is a cutoff function [KaT0’96]

This implies

sup |0*v| < R x|'¥ || = 4.
Cy
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Higher regularity of R

Theorem (Real analyticity of R,[KocH-P-SHI'14])
R is real analytic. J

@ Carefully do the estimates in the previous proof.

Show by induction that there exist universal constants R, 0 < R < 1 such that for
any k > 4

© IIn*-237afvll, = R--kk-4;

Q (In*2%020%v|l, < R-*Ikk-3 Vo with |«| = k and otz + o3 > 1.

@ Here n is a cutoff function [KaT0’96]

This implies

sup |0*v| < R x|'¥ || = 4.
Cy

@ Hence v of Gevrey class 1, i.e. real analytic.
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Higher regularity of R

Theorem (Real analyticity of R,[KocH-P-SHI'14])
R is real analytic. J

@ Carefully do the estimates in the previous proof.

@ Show by induction that there exist universal constants R, 0 < R < 1 such that for
any k > 4
Q lIn*2a3ofvll, = R ik
Q (In*2%020%v|l, < R-*Ikk-3 Vo with |«| = k and otz + o3 > 1.
@ Here n is a cutoff function [KaT0’96]

@ This implies

sup |0*v| < R x|'¥ || = 4.
Cy

@ Hence v of Gevrey class 1, i.e. real analytic.

@ Consequently, I' is also real analytic.
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