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The Thin Obstacle Problem



The thin obstacle (Signorini) problem

◦ Given

• D open set in Rn

• M smooth hypersurface (thin space)

D \M = D+ ∪D−
• ψ :M→ R (thin obstacle)

g : ∂D → R (boundary values)

g > ψ onM∩ ∂D.

◦ Minimize the Dirichlet integral

JD(u) Í
∫
D
|∇u|2dx

on the closed convex set

Kψ,g Í {u ∈ W 1,2(D) | u = g on ∂D, u ≥ ψ onM∩D}.
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The thin obstacle (Signorini) problem

The minimizer u satisfies

◦ ∆u = 0 in D \M = D+ ∪D−

◦ Signorini (complementarity) conditions

onM

u−ψ ≥ 0
∂ν+u+ ∂ν−u ≥ 0

(u−ψ)(∂ν+u+ ∂ν−u) = 0

D+D− M

ψ

u

◦ Main objectives of study

• Regularity of u

• Structure and regularity of the free boundary

Γ(u) Í ∂M{x ∈M | u = ψ}
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The thin obstacle (Signorini) problem

The thin obstacle problem arises in a variety of situations of interest for the applied

sciences:

◦ It presents itself in elasticity, when an elastic body is at rest, partially laying on a

surfaceM (original Signorini problem).

◦ It models the flow of a saline concentration through a semipermeable membrane

when the flow occurs in a preferred direction.

◦ It also arises in financial mathematics in situations in which the random variation

of an underlying asset changes discontinuously.

◦ Obstacle problem for the fractional Laplacian (−∆)s , 0 < s < 1

u−φ ≥ 0, (−∆)su ≥ 0, (u−φ)(−∆)su = 0 in Rn.

The thin obstacle problem corresponds to s = 1/2.
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Regularity of the minimizer u

◦ Generally, it is easy to realize that u is not

smooth in D, as its graph may develop a

Lipschitz corner acrossM.

Explicit example: M= {xn = 0}, ψ = 0,

u(x) = Re(xn−1 + i|xn|)3/2

◦ However, onM and consequently on D± ∪M, u
is better: u ∈ C1,β(D± ∪M) for some β > 0
[caffarelli’79], [kinderlehrer’81],

[uraltseva’85].

◦ Breakthrough: u ∈ C1,1/2(D± ∪M) [athanasopoulos-caffarelli’04] (whenM
flat, ψ = 0)

• [athanasopoulos-caffarelli-salsa’08] (M flat, nonzero ψ)
• [guillen’09], [garofalo-smit vega garcia’14] (nonflatM)
• [caffarelli-silvestre-salsa’09] (fractional obstacle problem)
• [danielli-garofalo-p.-to’17] (parabolic case)
• . . .
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Structure of the free boundary Γ(u)

◦ Assume for simplicityM= {xn = 0}, ψ = 0, D symmetric w.r.t.M, and

u(x′,−xn) = u(x′, xn)

◦ Almgren’s frequency formula. For x0 ∈M, the function

r , N(r) = N(r ,u,x0) Í
r
∫
Br (x0) |∇u|2∫
∂Br (x0)u2

↗, 0 < r < dist(x0, ∂D)

[athanasopoulos-caffarelli-salsa’08]. Originally due to [almgren’00] for

Q-valued harmonic functions

◦ The limit κ(x0) Í N(0+, u,x0) is called frequency at a point.

◦ Equivalent characterization:

κ(x0) = lim
r→0

log
(

1
rn−1

∫
∂Br (x0)u

2
)1/2

log r
⇐⇒ sup

Br (x0)
|u| ∼ r κ(x0)

◦ Another characterization with Almgren blowups:

uAx0 ,0 = lim
r=rj→0

uAx0 ,r , uAx0 ,r (x) Í
u(x0 + rx)(
1
rn−1

∫
∂Br u2

)1/2
are homogeneous of degree κ = κ(x0): uAx0 ,0(λx) = λκu

A
x0 ,0(x), λ > 0.
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Structure of the free boundary Γ(u)

◦ Frequency κ(x0) can be used to classify the free boundary points

Γ(u) =
⋃
κ
Γκ(u), Γκ(u) Í {x0 ∈ Γ(u) | κ(x0) = κ}.

◦ Possible values of κ: [athanasopoulos-caffarelli-salsa’08]

κ ≥ 3
2

[
κ = 3

2
or κ ≥ 2

]
.

◦ When n = 2, it is known that κ = 3/2,2,7/2,4, . . . ,2m− 1/2,2m, . . . .
◦ For n ≥ 3 this is known to hold up to a set of Hausdorff dimension (n− 3)

[focardi-spadaro’18]

◦ Γ3/2(u) is called the regular set.

x0 ∈ Γ3/2(u) ⇐⇒ uAx0 ,0(x) = cn Re(x′ · e′ + ixn)3/2, e′ ∈ Rn−1, |e′| = 1.

◦ Σ(u) Í ⋃∞m=1 Γ2m(u) is called singular set.

x0 ∈ Σ(u) ⇐⇒ lim
r→0

|{u(·,0) = 0} ∩ B′r (x0)|
|B′r (x0)|

= 0 ⇐⇒ uAx0 ,0 is polynomial.

7
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◦ When n = 2, it is known that κ = 3/2,2,7/2,4, . . . ,2m− 1/2,2m, . . . .
◦ For n ≥ 3 this is known to hold up to a set of Hausdorff dimension (n− 3)

[focardi-spadaro’18]

◦ Γ3/2(u) is called the regular set.
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= 0 ⇐⇒ uAx0 ,0 is polynomial.
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Structure of the free boundary Γ(u)

Theorem (Regularity of the regular set)

Γ3/2(u) is locally an (n− 2)-dimensional real-analytic manifold.

◦ C1,γ -regularity is due-to [athanasopoulos-caffarelli-salsa’08]

◦ C∞-regularity is due to [desilva-savin’15]

◦ Real analyticity is due to [koch-p.-shi’15].

Theorem (Singular set)

Σ(u) is contained in a countable union of C1,log manifolds of dimensions

d = 0, . . . , n− 2.

◦ (More detailed version is given towards the end of the talk.)

◦ C1 regularity is due to [garofalo-p.’09]

◦ C1,log is due to [colombo-spolaor-velichkov’17]
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Almost Minimizers



Almost minimizers

◦ [anzellotti’83] considers almost minimizers

(ω-minimizers) of the Dirichlet integral JD :

u ∈ W 1,2
loc (D) such that∫
Br (x0)

|∇u|2 ≤ (1+ω(r))
∫
Br (x0)

|∇v|2

for any Br (x0) ø D and any competitor

v ∈ u+W 1,2
0 (Br (x0)).

◦ Here ω(r) ↗, ω(0+) = 0

(we later take ω(r) = rα, 0 < α < 2)

v

Br (x0)

D

u

v = u
��

◦ Motivations:

• Almost minimizers can be viewed as perturbations of minimizers.
• Some constrained minimizers (fixed volume, or solution to the obstacle problem) are

almost minimizers without constraint.

◦ Similar notions were used in Geometric Measure Theory e.g. by [almgren’76],

[bombieri’82].
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Competitors

◦ The main complication is that almost minimizers don’t satisfy a PDE. We can only

resort to comparison with conveniently chosen competitors.

◦ Harmonic replacements: Replace u in Br (x0) ø D
with a harmonic function with the same boundary

values:

∆h = 0 in Br (x0),

h = u on ∂Br (x0).

◦ We will then have∫
Br (x0)

|∇u|2 ≤ (1+ω(r))
∫
Br (x0)

|∇h|2

⇒
∫
Br (x0)

|∇(u−h)|2 ≤ω(r)
∫
Br (x0)

|∇h|2

∆h = 0

h = u
��

◦ This allows to treat almost minimizers as perturbations of harmonic functions.
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Regularity of almost minimizers

Theorem (anzellotti’83)

If u is an almost minimizer with ω(r) = rα, 0 < α < 2, then u ∈ C1,α/2(D).

◦ Sketch of the proof:

◦ Almost Lipschitz regularity: Morrey space estimate.

◦ Let h be a harmonic replacement of u in BR(x0) ø D and 0 < ρ < R. Then∫
Bρ(x0)

|∇h|2 ≤
(
ρ
R

)n ∫
BR(x0)

|∇h|2.

◦ This gives the perturbed version for almost minimizer u:∫
Bρ(x0)

|∇u|2 ≤ C
[(
ρ
R

)n
+ Rα

]∫
BR(x0)

|∇u|2.

⇓∫
Bρ(x0)

|∇u|2 ≤ Cρn+2σ−2, 0 < σ < 1

⇓
u ∈ C0,σ

11
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Regularity of almost minimizers

Theorem (anzellotti’83)

If u is an almost minimizer with ω(r) = rα, 0 < α < 2, then u ∈ C1,α/2(D).

◦ Sketch of the proof:

◦ C1,α/2-regularity: Campanato space estimates.

◦ For harmonic replacement h we have∫
Bρ(x0)

|∇h− 〈∇h〉x,ρ|2 ≤
(
ρ
R

)n+2 ∫
BR(x0)

|∇h− 〈∇h〉x,R|2

◦ The perturbed version for almost minimizer u:∫
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|∇u− 〈∇u〉x,ρ|2 ≤ C
(
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R

)n+2 ∫
BR(x0)

|∇u− 〈∇u〉x,R|2 + CRn+α

⇓∫
Bρ(x0)
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Almost Minimizers for

the Thin Obstacle Problem



Almost minimizers for the thin obstacle problem

◦ Assume ψ = 0,M= {xn = 0} flat, ω(r) = rα, 0 < α < 2.

◦ We say u is an almost minimizer for the thin obstacle

problem if u ∈ W 1,2
loc (D), u ≥ 0 onM, and∫

Br (x0)
|∇u|2 ≤ (1+ rα)

∫
Br (x0)

|∇v|2,

for any Br (x0) ø D and for all competitors

v ∈ u+W 1,2
0 (Br (x0)), v ≥ 0 on Br (x0)∩M.

Br (x0)

M

v

◦ We are interested in local properties, as well as the free boundary

Γ(u) = ∂Rn−1{u(·,0) > 0}

◦ Almost minimizer were considered earlier also for other free boundary problems:

Alt-Caffarelli-Friedman type energy functional∫
D
|∇u|2 + q+(x)χ{u>0} + q−(x)χ{u<0}

by [david-toro’15], [david-engelstein-toro’17], [desilva-savin’19], and its “thin”

one-phase counterpart [desilva-savin’18]
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Competitors

◦ The main complication is again that almost minimizers don’t satisfy a PDE. We also

don’t have an explicit free boundary condition. We can only resort to comparison

with conveniently chosen competitors.

◦ Signorini replacements: for x0 ∈ B′1, r > 0 small,

replace u in Br (x0) with the minimizer of the thin

obstacle problem (Signorini problem)

∆h = 0 in B±r (x0),

h ≥ 0, −∂xnh ≥ 0, h ∂xnh = 0 on B′r (x0)

h = u on ∂Br (x0).

◦ κ-homogeneous replacement: for x0 = 0 and r > 0
small, replace u in Br with a κ-homogeneous function

w(x) =
( |x|
r

)κ
u
(
r
x
|x|

)
.

Br (x0)Br (0)

h = uw = u

��
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Almost Lipschitz regularity

◦ Hereafter u is an almost minimizer for the thin obstacle problem.

◦ We will assume D = B1 and even symmetry in xn:

u(x′,−xn) = u(x′, xn), x ∈ B1.

Theorem (jeon-p.’19)

u is almost Lipschitz, i.e., u ∈ C0,σ (B1), for any 0 < σ < 1.

◦ Idea of the proof:

◦ As in [anzellotti’83], we prove for Br (x0) ⊂ Br (x0) ø B1∫
Bρ(x0)

|∇u|2 ≤ C
[(
ρ
R

)n
+ Rα

]∫
BR(x0)

|∇u|2

◦ Perturbed version for Signorini replacement h in BR(x0):∫
Bρ(x0)

|∇h|2 ≤
(
ρ
R

)n ∫
BR(x0)

|∇h|2,

which is sub-mean value for subharmonic function |∇h|2.
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C1,β-regularity

Theorem (jeon-p.’19)

u ∈ C1,β(B±1 ∪ B′1) for some β = β(α,n) > 0.

◦ Idea of the proof:

◦ Generally, even for minimizers, ∇u is not Hölder across B′1.

◦ Let

∇̂u(x) Í

∇u(x′, xn), xn ≥ 0
∇u(x′,−xn), xn < 0.

◦ Similar to [anzellotti’83], but significantly more elaborate∫
Bρ(x0)

|∇̂u− 〈∇̂u〉x0 ,ρ|2 ≤ C
(
ρ
R

)n+α ∫
BR(x0)

|∇̂u− 〈∇̂u〉x0 ,R|2 + CRn+2β.

◦ Obtained by perturbation from Signorini replacement in BR(x0).

◦ Had to consider even and odd reflections w.r.t. xn = 0.
◦ This implies ∇̂u ∈ Cβ(B1) and u ∈ C1,β(B±1 ∪ B′1).
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Monotonicity Formulas



Weiss-type monotonicity formula

◦ As we saw, for solutions h of the Signorini problem, Almgren’s frequency formula

N(r ,h,x0) =
r
∫
Br (x0) |∇h|2∫
∂Br (x0) h2

plays a fundamental role in the study of the free boundary.

◦ We need a version of this formula for almost minimizers. We do this indirectly.

◦ [garofalo-p.’09] introduced one-parametric family of related Weiss-type

monotonicity formulas {W 0
κ }κ>0, going back to [weiss’99] in the classical obstacle

problem:

◦ If x0 ∈ Γ(h)∩ B1/2, κ > 0, then

W 0
κ (r ,h,x0) Í

1
rn+2κ−2

∫
Br (x0)

|∇h|2 − κ
rn+2κ−1

∫
∂Br (x0)

h2↗
for 0 < r < 1/2.

◦ Proof is by obtaining a differentiation formula

d
dr
W 0
κ (r) =

1
rn+2κ−2

∫
∂Br

(
∂νh−

κ
r
h
)2
, 0 < r < 1/2,

which also tells about the case of equality.
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Weiss-type monotonicity formula

Theorem (jeon-p.’19)

For x0 ∈ Γ(u)∩ B1/2, 0 < κ < κ0, there are aκ = a(κ) and b = b(κ0) s.t.

Wκ(r ,u,x0) Í
eaκrα

rn+2κ−2

(∫
Br (x0)

|∇u|2 − κ(1− br
α)

r

∫
∂Br (x0)

u2
)
↗

for and 0 < r < r0(α,n, κ0).

◦ Idea of the proof:

◦ Comparing with κ-homogeneous replacements w(x) =
(
|x|
r

)κ
u
(
r x
|x|

)
in Br

(x0 = 0), we have

1
1+ rα

∫
Br
|∇u|2 ≤

∫
Br
|∇w|2 = r

n+ 2κ − 2

∫
∂Br
|∇τu|2 +

κ2

r 2
u2

◦ With algebraic manipulations, we get

d
dr
Wκ(r) ≥

eaκrα

rn+2κ−2

∫
∂Br

(
∂νu−

κ(1− brα)
r

u
)2
, 0 < r < r0(α,n, κ0).
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Almgren-type monotonicity formula

◦ We can now state a version of Almgren’s frequency formula.

Theorem (jeon-p.’19)

If u is an almost minimizer, x0 ∈ Γ(u), κ0 ≥ 2 we have

N̂(r) = N̂(r ,u,x0) Ímin
{
N(r ,u,x0)
1− brα , κ0

}
↗

for 0 < r < r0(α,n, κ0).

◦ Indirect proof using the family {Wκ}0<κ<κ0 of Weiss-type formulas:

N(r)
1− brα < κ < κ0 ⇐⇒

∫
Br (x0)

|∇u|2 − κ(1− br
α)

r

∫
∂Br (x0)

u2 < 0Wκ(r) < 0

◦ Then from monotonicity of Wκ

s < r < r0 ⇒ Wκ(s) ≤ Wκ(r) < 0 ⇒ N(s)
1− bsα < κ.
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Analysis of the Free Boundary



Almgren rescalings

◦ We make use of several types of rescalings and blowups.

◦ For x0 ∈ Γ(u), r > 0, consider Almgren rescalings

uAx0 ,r (x) =
u(x0 + rx)(
1
rn−1

∫
∂Br (x0)u2

)1/2 ,
which play well with Almgren’s frequency function.

◦ Almgren blowups at x0 are limits of uAx0 ,r as r = rj → 0.

◦ Almgren blowups are minimizers of the Signorini problem and homogeneous of

degree κ = κ(x0) Í N̂(0+, u,x0) = N(0+, u,x0) (frequency at x0).

Theorem (jeon-p.’19)

κ(x0) ≥
3
2

[
κ(x0) =

3
2

or ≥ 2
]
.
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Almost κ-homogeneous rescalings

◦ κ-homogeneous rescalings at x0 = 0:

ur (x) Í
u(rx)
r κ

work well for the Weiss-type formula W 0
κ in the Signorini problem.

◦ For our Wκ , we consider almost κ-homogeneous rescalings

uφr (x) Í
u(rx)
φ(r)

, φ(r) = ecrαr κ ,

chosen to satisfy φ′(r) = κ
(
1−brα
r

)
φ(r).

◦ Then
d
dr
uφr (x) =

1
φ(r)

[
∇u(rx) · x − κ(1− br

α)
r

u(rx)
]

plays well with Wκ(r).

21



Almost κ-homogeneous rescalings

◦ κ-homogeneous rescalings at x0 = 0:

ur (x) Í
u(rx)
r κ

work well for the Weiss-type formula W 0
κ in the Signorini problem.

◦ For our Wκ , we consider almost κ-homogeneous rescalings

uφr (x) Í
u(rx)
φ(r)

, φ(r) = ecrαr κ ,

chosen to satisfy φ′(r) = κ
(
1−brα
r

)
φ(r).

◦ Then
d
dr
uφr (x) =

1
φ(r)

[
∇u(rx) · x − κ(1− br

α)
r

u(rx)
]

plays well with Wκ(r).

21



Almost κ-homogeneous rescalings

◦ κ-homogeneous rescalings at x0 = 0:

ur (x) Í
u(rx)
r κ

work well for the Weiss-type formula W 0
κ in the Signorini problem.

◦ For our Wκ , we consider almost κ-homogeneous rescalings

uφr (x) Í
u(rx)
φ(r)

, φ(r) = ecrαr κ ,

chosen to satisfy φ′(r) = κ
(
1−brα
r

)
φ(r).

◦ Then
d
dr
uφr (x) =

1
φ(r)

[
∇u(rx) · x − κ(1− br

α)
r

u(rx)
]

plays well with Wκ(r).

21



Controlling rescalings

◦ One can control the rescalings with Weiss-type monotonicity formula:

1. We have
d
dr
‖uφr ‖L2(∂B1) ≤

ecrα

r 1/2

(
d
dr
Wκ(r)

)1/2

⇓∣∣∣‖uφr ‖L2(∂B1) − ‖uφs ‖L2(∂B1)∣∣∣ ≤ C (log
r
s

)1/2
[Wκ(r)−Wκ(s)]1/2 , 0 < s < r

2. Similarly, ∫
∂B1
|uφr −uφs | ≤ C

(
log

r
s

)1/2
[Wκ(r)−Wκ(s)]1/2 , 0 < s < r

3. Now, if N(0+, u) ≥ κ, without further assumptions, we can conclude only∫
∂Br
u2 ≤ C

(
log

1
r

)
rn+2κ−1

and cannot really say if ∫
∂B1
|uφr −uφs | → 0, 0 < s < r

3. However, if we know

Wκ(r) ≤ Cr δ, for some δ > 0

then by a dyadic argument we can get rid of log∫
∂Br
u2 ≤ Crn+2κ−1∫

∂B1
|uφr −uφs | ≤ Cr δ/2, 0 < s < r.

3. Or, we if know

Wκ(r) ≤ C
(

log
1
r

)−δ
, for some δ > 1,

then by an exponential dyadic argument we can also get rid of log∫
∂Br
u2 ≤ Crn+2κ−1∫

∂B1
|uφr −uφs | ≤ C

(
log

1
r

)(1−δ)/2
, 0 < s < r.
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Epiperimetric inequality, κ = 3/2

Theorem (garofalo-smit vega garcia-p.’16, focardi-spadaro’16)

If w ∈ W 1,2(B1), 3/2-homogeneous, w ≥ 0 on B′1 and h solves the Signorini problem

with boundary values w, then for some η = η(n) > 0

W 0
3/2(h) ≤ (1− η)W 0

3/2(w).

◦ Explicit value η = 1/(2n+ 3): [colombo-spolaor-velichkov’17]

◦ Arguing with 3/2-homogeneous replacement, and using the epiperimetric

inequality above, we have

d
dr
W3/2(r) ≥ −

η
4r
W3/2(r)− Crα/2−1

⇓
W3/2(r) ≤ Crδ, δ <min{η/4, α/2}.

◦ Thus, we have the control of rescalings!
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Regular set

◦ Regular set of the free boundary is defined as the set where the homogeneity

κ(x0) = 3/2:

Γ3/2(u) = {x0 ∈ Γ(u) | κ(x0) = 3/2}.

Theorem (jeon-p.’19)

Γ3/2(u) is locally an (n− 2)-dimensional C1,γ -graph for some γ = γ(α,n) > 0.

◦ Once we can control the almost homogeneous rescalings, we can also show that the

blowups uφx0 ,r → u
φ
x0 ,0 are unique over any r = rj → 0 and that

x0 , u
φ
x0 ,0 = ax0 Re(x · νx0 + ixn)3/2 is Cγ on Γ3/2

◦ Blowups are also nondegenerate: ax0 > 0.

◦ Then x0 , νx0 is Cγ , implying that Γ3/2 is locally C1,γ .
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Log epiperimetric inequality, κ = 2m, m ∈ N

Theorem (colombo-spolaor-velichkov’17)

If w ∈ W 1,2(B1), κ-homogeneous, w ≥ 0 on B′1,
∫
∂B1 w

2 ≤ 1, |W 0
κ (w)| ≤ 1, there

ε = ε(n, κ) > 0 such that if h solves the Signorini problem with h = w on ∂B1 then

W 0
κ (h) ≤ W 0

κ (w)(1− ε|W 0
κ (w)|γ), where γ = n−2

n .

◦ Using the log epiperimetric inequality, we have a bootstrapping argument∫
∂Br
u2 ≤ C

(
log

1
r

)σ
rn+2κ−1 ⇒ Wκ(r) ≤ C

(
log

1
r

)σ− n
n−2

⇒
∫
∂Br
u2 ≤ C

(
log

1
r

)σ− 2
n−2
rn+2κ−1, (σ > 2

n−2 )

◦ In the last step of iteration we arrive at

Wκ(r) ≤ C
(

log
1
r

)− n
n−2

and thus, we have the control of rescalings!

25



Log epiperimetric inequality, κ = 2m, m ∈ N

Theorem (colombo-spolaor-velichkov’17)

If w ∈ W 1,2(B1), κ-homogeneous, w ≥ 0 on B′1,
∫
∂B1 w

2 ≤ 1, |W 0
κ (w)| ≤ 1, there

ε = ε(n, κ) > 0 such that if h solves the Signorini problem with h = w on ∂B1 then

W 0
κ (h) ≤ W 0

κ (w)(1− ε|W 0
κ (w)|γ), where γ = n−2

n .

◦ Using the log epiperimetric inequality, we have a bootstrapping argument∫
∂Br
u2 ≤ C

(
log

1
r

)σ
rn+2κ−1 ⇒ Wκ(r) ≤ C

(
log

1
r

)σ− n
n−2

⇒
∫
∂Br
u2 ≤ C

(
log

1
r

)σ− 2
n−2
rn+2κ−1, (σ > 2

n−2 )

◦ In the last step of iteration we arrive at

Wκ(r) ≤ C
(

log
1
r

)− n
n−2

and thus, we have the control of rescalings!

25



Singular set

◦ Singular set Σ(u) of the free boundary is defined as the set of free boundary

points x0 where {u(·,0) = 0} has a Hn−1 density zero

lim
r→0

|{u(·,0) = 0} ∩ B′r (x0)|
|B′r |

= 0.

◦ If κ(x0) < κ0 (truncation value), then

x0 ∈ Σ(u) ⇐⇒ κ(x0) = 2m, m ∈ N.

◦ For x0 ∈ Γ2m(u), let uφx0 be the unique blowup at x0 and define

d = dim{ξ ∈ Rn−1 | ξ · ∇x′uφx0(x′,0) ≡ 0 on Rn−1}, and set

Σd2m(u) = {x0 ∈ Γ2m(u) | d(x0) = d}, d = 0,1, . . . , n− 2.

Theorem (jeon-p.’19)

Σd2m(u), 2m < κ0, m ∈ N, d = 0,1, . . . , n− 2, is contained in a countable union of

d-dimensional manifolds of class C1,log.

◦ For minimizers, this goes back to [garofalo-p.’09] with C1 manifolds, and to

[colombo-spolaor-velichkov’17] with manifolds of class C1,log.
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Thank you!

Stay safe!
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