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Original Elliptic Monotonicity Formula

Theorem (Alt-Caffarelli-Friedman 1984)

Let u,. be two continuous functions in By in R" such that

uy >0, Au,>0, wu,-u_=0 in B \

then the functional

o) =g(runu) = [ icbas [ FrLas N

B, |x|"2 , Jx|n2

is monotone nondecreasing in r € (0,1].
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Original Elliptic Monotonicity Formula

Theorem (Alt-Caffarelli-Friedman 1984)

Let u,. be two continuous functions in By in R" such that

uy >0, Au,>0, wu,-u_=0 in B \

then the functional

o) =g(runu) = [ icbas [ FrLas N

B, |x|"2 , Jx|n2

is monotone nondecreasing in r € (0,1].

@ This formula has been of fundamental importance in the regularity
theory of free boundaries, especially in problems with two phases.

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas Joint Meeting of KMS & AMS 2/25



Original Elliptic Monotonicity Formula

@ One of the applications of the monotonicity formula is the ability to
produce estimates of the type

cn| Vs (0)P[Vu-(0)* < 9(0+) < 9(1/2) < Culuta |yl u-1223,)
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Original Elliptic Monotonicity Formula

@ One of the applications of the monotonicity formula is the ability to
produce estimates of the type

cn| Vs (0)P[Vu-(0)* < 9(0+) < 9(1/2) < Culuta |yl u-1223,)

o The proof is based on the following eigenvalue inequality of
Friedland-Hayman 1976.
@ For X c 0B define

_ g 2 IVeST _
MZ) = LR flaz =0
Define also a(X) so that A(2) = a(Z)(n -2+ a(X)).
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Original Elliptic Monotonicity Formula

@ One of the applications of the monotonicity formula is the ability to
produce estimates of the type

eal Vit ()PITu-(0) < 9(0+) < 9(1/2) < ol [Fay 1= 22 s

o The proof is based on the following eigenvalue inequality of
Friedland-Hayman 1976.
@ For X c 0B define

A(Z) = inf fsz;Zﬂ’ flaz=0

Define also a(X) so that A(2) = a(Z)(n -2+ a(X)).

Theorem (Friedland-Hayman 1976)
Let X, be disjoint open sets on 0B,. Then

a(Zy) +a(Z2) > 2.

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas Joint Meeting of KMS & AMS

3/25



Parabolic Monotonicity Formula

Theorem (Caffarelli 1993)

Let u.(x,s) be two continuous functions in S; = R" x (-1,0]

u; >0, (A-05)uy >0, wuy-u_=0 in S
then

0
O(r,up,u_)=— f f |Vu+|2G(x,—s)dxds/2fR |Vu_*G(x, —s)dxds

is monotone nondecreasing for r € (0,1].
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Parabolic Monotonicity Formula

Theorem (Caffarelli 1993)

Let u.(x,s) be two continuous functions in S; = R" x (-1,0]

u; >0, (A-05)uy >0, wuy-u_=0 in S
then

0
O(r,up,u_)=— f f |Vu+|2G(x,—s)dxd5/2fR |Vu_*G(x, —s)dxds

is monotone nondecreasing for r € (0,1].

@ Note that . must be defined in an entire strip and we must have a
moderate growth at infinity.
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Parabolic Monotonicity Formula

@ The proof is now based on the eigenvalue inequality in Gaussian space.
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Parabolic Monotonicity Formula

@ The proof is now based on the eigenvalue inequality in Gaussian space.
For Q) c R" define

Jo |V fIPdv

, d =(2 711/2 7x2/2d .
N v=(2mr) e x

A(Q) =inf
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Parabolic Monotonicity Formula

@ The proof is now based on the eigenvalue inequality in Gaussian space.
For Q) c R" define

Jo |V fIPdv

, d =(2 711/2 7x2/2d .
NS v=(2mr) e x

A(Q) =inf

Theorem (Beckner-Kenig-Pipher)
Let Q. be two disjoint open sets in R". Then

A(Q) +A(Q) 22

@ The proof is reduced to the convexity result of Brascamp-Lieb 1976 for
first eigenvalues of —A + V(x) with convex potential V as a function of
the domain.
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Localized Parabolic Formula

Theorem (Caffarelli 1993)

Let u.(x,s) be two continuous functions in Q; = By x (-1, 0] such that
uy 20, (A-05)us >0, wu,-u_=0 in Q.
Let y € C3°(B1) be a cutoff function such that

0<y<l, suppycBsyy Ylp,=1

then ®(r) = O(r, u,y, u_y) is almost monotone in a sense that

—c/r?
O(0+) = D(r) < Ce™/" s 2y - 320 -
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Generalization: Caffarelli-Kenig Estimate

o Instead of the heat operator A — d; consider now uniformly parabolic

SPu=Lypui=div(d(x,s)Vu) + b(x,s) - Vu+ c(x,s)u — 0su
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o Instead of the heat operator A — d; consider now uniformly parabolic
SPu=Lypui=div(d(x,s)Vu) + b(x,s) - Vu+ c(x,s)u — 0su

@ Assume s to be Dini continuous, b, ¢ uniformly bounded
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Generalization: Caffarelli-Kenig Estimate

o Instead of the heat operator A — d; consider now uniformly parabolic
SPu=Lypui=div(d(x,s)Vu) + b(x,s) - Vu+ c(x,s)u — 0su

@ Assume s to be Dini continuous, b, ¢ uniformly bounded

Theorem (Caffarelli-Kenig 1998)

Let u.(x,s) be two continuous functions in Q such that
U, 20, Lu, >0, wuy-u-=0 in Q.

Let y € C;°(By) be a cutoff function as before. Then ®(r) = O(r, u v, u_y) is
almost monotone in a sense that we have an estimate

2
O(r) < Co (s [agqp * lu-liar)) > r<ro-
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Generalization: Caffarelli-Jerison-Kenig Estimate

Theorem (Caffarelli-Jerison-Kenig 2002)

Let u, be two continuous functions in By in R" such that
u, >0, Auy>-1, wu,-u_=0 in B

then the functional ¢(r) = ¢(r, u,, u_) satisfies

2

9(r) < Co (1+ lualFagzy + lu-IF2ay) > 7 <10
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then the functional ¢(r) = ¢(r, u,, u_) satisfies

2

9(r) < Co (1+ lualFagzy + lu-IF2ay) > 7 <10

@ The proof is based on a sophisticated iteration scheme.
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then the functional ¢(r) = ¢(r, u,, u_) satisfies
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o The difficulties in CJK and CK estimates are of completely different nature
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Generalization: Caffarelli-Jerison-Kenig Estimate

Theorem (Caffarelli-Jerison-Kenig 2002)

Let u, be two continuous functions in By in R" such that
u, >0, Auy>-1, wu,-u_=0 in B

then the functional ¢(r) = ¢(r, u,, u_) satisfies

2

o(r) < Co (1+ [ 2oy + lu-lagay) > 7 <ro.

@ The proof is based on a sophisticated iteration scheme.
o The difficulties in CJK and CK estimates are of completely different nature

o The proof can be easily generalized to parabolic case (Edquist-% 2008).
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Almost Monotonicity Formulas

o In CJK and CK estimates there is essentially no monotonicity left
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Almost Monotonicity Formulas

o In CJK and CK estimates there is essentially no monotonicity left

e However, we still have an estimate of the type
9(0+) < C (sl 2(ayys lu-lli2cs,))
which is able to produce an estimate

Vi (0)]|Vu-(0)] < C (s |12 gmyys u-li2(m,) ) -

This is crucial in proving the optimal regularity in certain two-phase
problems (and not only!)
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Almost Monotonicity Formulas

o In CJK and CK estimates there is essentially no monotonicity left

e However, we still have an estimate of the type

9(0+) < C (sl 2(ayys lu-lli2cs,))

which is able to produce an estimate

Vi (0)]|Vu-(0)] < C (s |12 gmyys u-li2(m,) ) -

This is crucial in proving the optimal regularity in certain two-phase
problems (and not only!)

@ Under certain growth assumptions on u, such as [u(x)| < C|x|° one can
show the existence of ¢(0+). This is important in classification of blowup
solutions.
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CJK+CK

@ Natural question to ask whether there is a combination of CJK and CK
estimates.
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CJK+CK

@ Natural question to ask whether there is a combination of CJK and CK
estimates.

e Namely, do we have an almost monotonicity estimate for u.. satisfying

u. >0, Lypue>-1, wu,-u_-=0 in Q.
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CJK+CK

@ Natural question to ask whether there is a combination of CJK and CK
estimates.

e Namely, do we have an almost monotonicity estimate for u.. satisfying
u. >0, Lypue>-1, wu,-u_-=0 in Q.

@ We will see that the answer is positive when s{ is double Dini and b, ¢ are
uniformly bounded.
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Main Results: Assumptions

@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that
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Main Results: Assumptions

@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that
Q MEP <sl(x,5)E- &< 1|7
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Main Results: Assumptions

@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that

Q MEP <sl(x,5)E- &< 1|7
Q |A(x,s)-A(0,0)] cw ((\x|2 + 5)1/2) with double Dini w:

[) f a)(p)d dr /1w(p)logpd
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such that

Q MEP <sl(x,5)E- &< 1|7
Q |A(x,s)-A(0,0)] cw ((\x|2 + 5)1/2) with double Dini w:

[) f a)(p)d dr /1w(p)logpd

Q [b(x,5)| +[c(x,8)| <
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Main Results: Assumptions

@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that
Q MEP <sl(x,5)E- &< 1|7
Q |A(x,s)-A(0,0)] cw ((\x|2 + 5)1/2) with double Dini w:

[) f a)(p)d dr /1w(p)logpd

Q [b(x,5)| +[c(x,8)| <

@ We make similar assumption on the uniformly elliptic operator

o pctti=div(A(x)Vu) + b(x) - Vu + c(x)u
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Global Parabolic Formula

Theorem (Matevosyan-% 2009)

Let u.(x,s) be two continuous functions in S such that
ur. 20, Lypcue>-1, u,-u_=0 in §
Assume also that u. have moderate growth at infinity, so that
M2 = /fs ui(x,s)ze_xz/z'zdxds < o0.
1
Then the functional ®(r) = ®(r, u,,u_) satisfies

O(r) < Co(1+ M2 + M?)%,  forO<r<r,.
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Localized Parabolic Formula

Theorem (Matevosyan-% 2009)

Let u.(x,s) be two continuous functions in Q[ such that
u. >0, Lypcue>-1, u,-u_-=0 in Q
Let also y be a cutoff function such that
0<y<l, suppycBsy Ylp,=1

Then the functional ®(r) = ®(r, u,y, u_y) satisfies

2
O(r) < Cuy (1 + Hu+H%2(Q;) + ”Ll_Hiz(Q;)) , forO<r<r,.
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Elliptic Formula

Theorem (Matevosyan-% 2009)

Let u(x) be two continuous functions in By such that
uy >0, Cypcus>-1, wu,-u_=0 in B

Then the functional ¢(r) = ¢(r, us, u_) satisfies

2
p(r) < Co 1+ sl gay + lu-liaay) » for0<r<ra.
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Proof: CJK Iteration Scheme for £ = A — 0

o Let A*(r) = /fs IVulG(x,-s)dxds, S,=R"x (-2 0]
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Proof: CJK Iteration Scheme for £ = A — 0

o Let A*(r) = /fs IVulG(x,-s)dxds, S,=R"x (-2 0]

o Define A% = A*(47%), b¥ = 4*F A% Then ©(47%) = 4* AT A}
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Proof: CJK Iteration Scheme for £ = A — 0

o Let A*(r) = f[s \Vul*G(x,-s)dxds, S,=R"x (-12,0]

o Define A% = A*(47%), b¥ = 4*F A% Then ©(47%) = 4* AT A}
Proposition
There exists Cy such that if b;; > Co then

Co

Co

k+1Ak+1 < A+Ak(1 ar 8k) Wlth 8k
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Proof: CJK Iteration Scheme for £ = A — 0

o Let A*(r) = f[s \Vul*G(x,-s)dxds, S,=R"x (-12,0]
o Define A% = A*(47%), b¥ = 4*F A% Then ©(47%) = 4* AT A}
Proposition

There exists Cy such that if b;; > Co then

C C
AL A SARAL(L+ ) with 8= —— + ——

Proposition

There exists Cy such that if by > Cy and 44AZ+1 > Ay, then

Al < (1-¢€0)AL.
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Proof: CJK Iteration Scheme for £, .

Define

P2 /42 \/2
e 0(r) = Cr+w(r'?) + (/0 %dp)
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Proof: CJK Iteration Scheme for £, .

Define
P2 a2 \M2
e 0(r)=Cr+aw(r?) + (/ Mdp)
0

p
o gt [ Hap
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Proof: CJK Iteration Scheme for £, .

Define
P2 yayz 12
e 0(r)=Cr+aw(r?) + (/ Mdp)
0

p
o gt [ Hap

o A*(r) = e®IMA*(r), ®(r)=r*A*(r)A (r)
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Proof: CJK Iteration Scheme for £, .

Define
P2 a2 \M2
e 0(r)=Cr+aw(r?) + (/ Mdp)
0

p
o gt [ Hap

o A*(r) = e®IMA*(r), ®(r)=r*A*(r)A (r)
o At =A*(47F),b* = 4 AL,

Proposition

KJ‘,; satisfy the same iterative inequalities as A%, in the case of £ = A — 0.
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Proof: Key Technical Estimate

@ Normalize 54(0,0) = I, ¢ = 0.
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Proof: Key Technical Estimate
e Normalize #4(0,0) =1, ¢ = 0.

Proposition

Let u > 0 satisfy Ly, 04 > ~1in Sy. Suppose also [[s u(x, s)2e P 2dxds < 1.
Then

(1= ¢, 6(r)) ffs VPG (x, —s)dxds <

1/2

/
C0r4+Cnr2(/R u(x,—rz)zG(x,rZ)dx) +%‘[R u(x,—r*)>G(x,r*)dx

forany 0 < r < r,, where

1/42
9(r)=Cr+w(r1/2)+([0 (pp ) p)
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Proof: Parabolic = Elliptic

o Add a “dummy” variable s

ue(x,s) =us(x), (x,8)eQ
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Proof: Parabolic = Elliptic

o Add a “dummy” variable s
ue(x,s) =us(x), (x,8)eQ
o 1, satisfy now conditions of localized parabolic case with

Su=(€-0s)u=div(A(x)Vu) + b(x)Vu + c(x)u — dsu.
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Proof: Parabolic = Elliptic

o Add a “dummy” variable s
ue(x,s) =us(x), (x,8)eQ
o 1, satisfy now conditions of localized parabolic case with
Su=(€-0s)u=div(A(x)Vu) + b(x)Vu + c(x)u — dsu.
e Fixa cutoff function y > 0 such that y =1on B, ,. Note that

fB Tela<c, ffs |V (y(x)u(x)PG(x, ~s)dxds.

. |x|n—2
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Proof: Parabolic = Elliptic

o Add a “dummy” variable s
ue(x,s) =us(x), (x,8)eQ
o 1, satisfy now conditions of localized parabolic case with
Su=(€-0s)u=div(A(x)Vu) + b(x)Vu + c(x)u — dsu.
e Fixa cutoff function y > 0 such that y =1on B, ,. Note that

fB Tela<c, ffs |V (y(x)u(x)PG(x, ~s)dxds.

. |x|n—2
@ Hence
o(r,up,u_) < CyO(r, yity, yii_)

2

< Co (1+ [ 2oy + [ [200)
2

= Cw (1 + Hu+”i2(31) + H l/l_”iZ(Bl))

for r < rg.
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Application: Quasilinear Obstacle-Type Problem

@ Let u be a solution of the system in B,

div(a(|Vul*)Vu) = f(x,u, Vi) xa,
|[Vu|=0 onQF,

where () is an apriori unknown open set.

©
Q@Q
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@ Let u be a solution of the system in B,

div(a(|Vul*)Vu) = f(x,u, Vi) xa,
|[Vu|=0 onQF,

where () is an apriori unknown open set.
@ Problem appears in the description of

type II superconductors
(Berestycki-Bonnet-Chapman 1994)
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Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas Joint Meeting of KMS & AMS 19 / 25



Application: Quasilinear Obstacle-Type Problem

@ Let u be a solution of the system in B,

div(a(|Vul*)Vu) = f(x,u, Vi) xa,
|[Vu|=0 onQF,

where () is an apriori unknown open set.

@ Problem appears in the description of
type II superconductors
(Berestycki-Bonnet-Chapman 1994)

@ One-phase problem, however, no O @ O

assumption is made on the sign of u in Q

e A = Q° may break out into different
patches A; so that u = ¢; on A;
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Application: Quasilinear Obstacle-Type Problem

@ Let u be a solution of the system in B,

div(a(|Vul*)Vu) = f(x,u, Vi) xa,
|[Vu|=0 onQF,

where () is an apriori unknown open set.

@ Problem appears in the description of
type II superconductors
(Berestycki-Bonnet-Chapman 1994)

@ One-phase problem, however, no O @ O

assumption is made on the sign of u in Q

e A = Q° may break out into different
patches A; so that u = ¢; on A;

o Similar problem has been studied by Caffarelli-Salazar-Shahgholian 2004
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Application: Quasilinear Obstacle-Type Problem

Assumptions
Q@ acC([0,00))

loc
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Application: Quasilinear Obstacle-Type Problem

Assumptions
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Assumptions
Q@ acCp([0,00))

Q a(q),a(q) +24a’(q)q € [Mo,1/Ag] forany g > 0
Q |f|+|Vaf|+|0-f|+|Vpfl < Mfor (x,2,p) € Dx Rx R".
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Q a(q),a(q) +24a’(q)q € [Mo,1/Ag] forany g > 0
Q |f|+|Vaf|+|0-f|+|Vpfl < Mfor (x,2,p) € Dx Rx R".

Theorem (Matevosyan-% 2009)

Under conditions above, u € Cll(’)lc( By) and
|l cragz, ) < € (Car s 1, Ao, M, 1] o 5,) )

with C, = ”aHCL“([O,R(n,/lo,M,HuHLoo(Bl))])'
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Application: Quasilinear Obstacle-Type Problem

Assumptions
Q@ acC([0,00))

loc

Q a(q),a(q) +24a’(q)q € [Mo,1/Ag] forany g > 0
Q |f|+|Vaf|+|0-f|+|Vpfl < Mfor (x,2,p) € Dx Rx R".

Theorem (Matevosyan-% 2009)

Under conditions above, u € Cll(’)lc( By) and
|l cragz, ) < € (Car s 1, Ao, M, 1] o 5,) )

with C, = ”aHCL“([O,R(n,/lo,M,HuHLoo(Bl))])'

@ Generalizes a theorem of Shahgholian 2003 for

Au= f(x,u)xa, |Vul=00nQ".
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Application: Quasilinear Obstacle-Type Problem

o Connection with the almost monotonicity formulas:
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Application: Quasilinear Obstacle-Type Problem

o Connection with the almost monotonicity formulas:

Lemma

For any direction e the functions w.. = (d.u)* = max{+0d.u, 0} satisfy
wy 20, div(d(x)Vwe) +b(x)Vwe +c(x)we >-M, w,-w_=0,
where

sh(x) = a(|Vu(x)P)I + 24" (|Vu(x)P) Vu(x) ® Vu(x),
b(x) = =(Vpf)(x u(x), Vu(x)),
c(x) = =(9=1) (%, u(x), Vu(x)).
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Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)

o u e W>P, p > n, hence twice differentiable a.e.
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Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)
o u e W>P, p > n, hence twice differentiable a.e.

o take e 1 Vu(xo) and apply almost monotonicity formula to w. = (d.u)*:

_ 2
[T ()l < Cop(0+,ww7) < (14 [l )
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Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)
o u e W>P, p > n, hence twice differentiable a.e.

o take e 1 Vu(xo) and apply almost monotonicity formula to w. = (d.u)*:

B 2
Tl < Cap(0r,ww7) < (14 g )
o this implies that

|0cett(x0)| < C, fore L Vu(xp)
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Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)

o u e W>P, p > n, hence twice differentiable a.e.

take e L Vu(xp) and apply almost monotonicity formula to w.. = (d.u)*:

_ 2
[T ()l < Cop(0+,ww7) < (14 [l )

this implies that
|0cett(x0)| < C, fore L Vu(xp)

@ to obtain the estimate in the missing direction e || Vu(xo), we use the
equation.
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A Variant of the Almost Monotonicity Formula

Theorem (Matevosyan-% 2009)
Let uy satisfy u, >0, Ly p the > =1ty -u_=0in S, and
us(x,5) < o((|x +[s)'?) for (x,5) € Qr
for a Dini modulus of continuity o(r). Then ®(r) = O(r, u,y, u_y) satisfies
O(r) <[1+a(p)]P(p) + Cay,o0x(p)s 0<r<p<ry,

where a(r) = Cy [r +a(r?) + [] U(’)Tl/z)dp + [y @dp] and
M = |ui2(qr) + lu-lz2qr)-
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A Variant of the Almost Monotonicity Formula

Theorem (Matevosyan-% 2009)
Let uy satisfy u, >0, Ly p the > =1ty -u_=0in S, and
us(x,5) < o((|x +[s)'?) for (x,5) € Qr
for a Dini modulus of continuity o(r). Then ®(r) = O(r, u,y, u_y) satisfies
O(r) <[1+a(p)]P(p) + Cay,o0x(p)s 0<r<p<ry,

where a(r) = Cy [r +a(r?) + [] U(’)Tl/z)dp + [y @dp] and
M = |ui2(qr) + lu-lz2qr)-

o This guaranties the existence of ®(0+) = lim,_q; (7).
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Application: Classification of Blowups

o Let u solve div(a(|Vul*)Vu) = f(x,u, Vu)xq, |[Vu| = 0 on Q°.
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e For x¢ € dQ) (free boundary) consider rescalings

up(x) =ty (x) = o+ N:z) - ”(xO)'
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Application: Classification of Blowups

o Let u solve div(a(|Vul*)Vu) = f(x,u, Vu)xq, |[Vu| = 0 on Q°.

e For x¢ € dQ) (free boundary) consider rescalings

u(xo +rx) — u(xo)'

Ur(x) = thyy,r(x) = 2

@ Limits of u, over r = r; — 0+ are called blowups of u at xo
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For xy € 0Q) (free boundary) consider rescalings

up(x) =ty (x) = o+ ”;2) - ”(xO)'
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For xy € 0Q) (free boundary) consider rescalings

up(x) =ty (x) = o+ N:z) - ”(xO)'

Limits of u, over r = r; — 0+ are called blowups of u at xo

Key question: what are the possible blowups?

Theorem (Matevosyan-% 2009)

The blowups are either one-dimensional or quadratic polynomial.
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up(x) =ty (x) = o+ N:z) - ”(xO)'

Limits of u, over r = r; — 0+ are called blowups of u at xo

Key question: what are the possible blowups?

Theorem (Matevosyan-% 2009)

The blowups are either one-dimensional or quadratic polynomial.

@ One dimensional means uy(x) = v(x - eg) for some direction e
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Application: Classification of Blowups

Let u solve div(a(|Vu|*)Vu) = f(x, u, Vi) ya, |Vu| = 0 on Q°.

For xy € 0Q) (free boundary) consider rescalings

up(x) =ty (x) = o+ N:z) - ”(xO)'

Limits of u, over r = r; — 0+ are called blowups of u at xo

Key question: what are the possible blowups?

Theorem (Matevosyan-% 2009)

The blowups are either one-dimensional or quadratic polynomial.

@ One dimensional means uy(x) = v(x - eg) for some direction e

e Equivalently, d.u has a sign in R" for any direction e.
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Application: Classification of Blowups

Idea of the proof (assuming xy = 0)
o Recall that £}, (d.u)* > —M for any direction e
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o Recall that £}, .(d.u)* > —M for any direction e
@ We also have that |(d.u)*(x)| < C|x|*
o Thus, ¢(0+, (d.u)*, (deu)™) = co exists.
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Application: Classification of Blowups

Idea of the proof (assuming xy = 0)

o Recall that £}, (d.u)* > —M for any direction e

@ We also have that |(d.u)*(x)| < C|x|*

o Thus, ¢(0+, (d.u)*, (deu)™) = co exists.

o If Uy, = tho in W2P, then we have

@(r, (9euo) ™, (9euo)”) = ]lin; (r, (ae”r7)+a (ae”r;)i)
= lim @(rrj, (Qeu)™, (9eu)™)
j—oo

= CO

ie. o(r, (deuo)™, (Qettg)”) = const
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Application: Classification of Blowups

Idea of the proof (assuming xy = 0)
o Recall that £}, .(d.u)* > —M for any direction e
@ We also have that |(d.u)*(x)| < C|x|*
o Thus, ¢(0+, (d.u)*, (deu)™) = co exists.

o Ifu, — ugin W?2P, then we have
@(r, (9euo) ™, (9euo)”) = ]lin; (r, (ae”r7)+a (ae”r;)i)
= lim @(rrj, (Qeu)™, (9eu)™)
j—oo
= CO

ie. o(r, (deuo)™, (Qettg)”) = const
@ Problem is reduced to analyzing the case of equality for the original

Alt-Caffarelli-Friedman montonicity formula
(Caftarelli-Karp-Shahgholian 2000)
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