Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients

Norayr Matevosyan

Arshak Petrosyan

Joint Meeting of KMS & AMS Seoul, Korea, December 16–20, 2009

Theorem (Alt-Caffarelli-Friedman 1984)

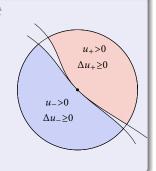
Let u_{\pm} be two continuous functions in B_1 in \mathbb{R}^n such that

$$u_{\pm} \geq 0$$
, $\Delta u_{\pm} \geq 0$, $u_{+} \cdot u_{-} = 0$ in B_{1}

then the functional

$$\varphi(r) = \varphi(r, u_+, u_-) = \frac{1}{r^4} \int_{B_r} \frac{|\nabla u_+|^2}{|x|^{n-2}} dx \int_{B_r} \frac{|\nabla u_-|^2}{|x|^{n-2}} dx$$

is monotone nondecreasing in $r \in (0,1]$.



Theorem (Alt-Caffarelli-Friedman 1984)

Let u_{\pm} be two continuous functions in B_1 in \mathbb{R}^n such that

$$u_{\pm} \geq 0$$
, $\Delta u_{\pm} \geq 0$, $u_{+} \cdot u_{-} = 0$ in B_{1}

then the functional

$$\varphi(r) = \varphi(r, u_+, u_-) = \frac{1}{r^4} \int_{B_r} \frac{|\nabla u_+|^2}{|x|^{n-2}} dx \int_{B_r} \frac{|\nabla u_-|^2}{|x|^{n-2}} dx$$

 $u_{+}>0$ $\Delta u_{+}\geq 0$ $u_{-}>0$ $\Delta u_{-}\geq 0$

is monotone nondecreasing in $r \in (0,1]$.

 This formula has been of fundamental importance in the regularity theory of free boundaries, especially in problems with two phases.

• One of the applications of the monotonicity formula is the ability to produce estimates of the type

$$c_n |\nabla u_+(0)|^2 |\nabla u_-(0)|^2 \le \varphi(0+) \le \varphi(1/2) \le C_n ||u_+||_{L^2(B_1)}^2 ||u_-||_{L^2(B_1)}^2$$

• One of the applications of the monotonicity formula is the ability to produce estimates of the type

$$c_n |\nabla u_+(0)|^2 |\nabla u_-(0)|^2 \leq \varphi(0+) \leq \varphi(1/2) \leq C_n ||u_+||^2_{L^2(B_1)} ||u_-||^2_{L^2(B_1)}$$

• The proof is based on the following eigenvalue inequality of Friedland-Hayman 1976.

• One of the applications of the monotonicity formula is the ability to produce estimates of the type

$$c_n |\nabla u_+(0)|^2 |\nabla u_-(0)|^2 \le \varphi(0+) \le \varphi(1/2) \le C_n ||u_+||^2_{L^2(B_1)} ||u_-||^2_{L^2(B_1)}$$

- The proof is based on the following eigenvalue inequality of Friedland-Hayman 1976.
- For $\Sigma \subset \partial B_1$ define

$$\lambda(\Sigma) = \inf \frac{\int_{\Sigma} |\nabla_{\theta} f|^2}{\int_{\Sigma} f^2}, \quad f|_{\partial \Sigma} = 0$$

Define also $\alpha(\Sigma)$ so that $\lambda(\Sigma) = \alpha(\Sigma)(n-2+\alpha(\Sigma))$.

• One of the applications of the monotonicity formula is the ability to produce estimates of the type

$$c_n |\nabla u_+(0)|^2 |\nabla u_-(0)|^2 \leq \varphi(0+) \leq \varphi(1/2) \leq C_n ||u_+||^2_{L^2(B_1)} ||u_-||^2_{L^2(B_1)}$$

- The proof is based on the following eigenvalue inequality of Friedland-Hayman 1976.
- For $\Sigma \subset \partial B_1$ define

$$\lambda(\Sigma) = \inf \frac{\int_{\Sigma} |\nabla_{\theta} f|^2}{\int_{\Sigma} f^2}, \quad f|_{\partial \Sigma} = 0$$

Define also $\alpha(\Sigma)$ so that $\lambda(\Sigma) = \alpha(\Sigma)(n-2+\alpha(\Sigma))$.

Theorem (Friedland-Hayman 1976)

Let Σ_+ be disjoint open sets on ∂B_1 . Then

$$\alpha(\Sigma_+) + \alpha(\Sigma_-) \geq 2$$
.

Theorem (Caffarelli 1993)

Let $u_{\pm}(x,s)$ be two continuous functions in $S_1 = \mathbb{R}^n \times (-1,0]$

$$u_{\pm} \geq 0$$
, $(\Delta - \partial_s)u_{\pm} \geq 0$, $u_{+} \cdot u_{-} = 0$ in S_1

then

$$\Phi(r, u_+, u_-) = \frac{1}{r^4} \int_{-r^2}^0 \int_{\mathbb{R}^n} |\nabla u_+|^2 G(x, -s) dx ds \int_{-r^2}^0 \int_{\mathbb{R}^n} |\nabla u_-|^2 G(x, -s) dx ds$$

is monotone nondecreasing for $r \in (0,1]$.

Theorem (Caffarelli 1993)

Let $u_{\pm}(x,s)$ be two continuous functions in $S_1 = \mathbb{R}^n \times (-1,0]$

$$u_{\pm} \geq 0$$
, $(\Delta - \partial_s)u_{\pm} \geq 0$, $u_{+} \cdot u_{-} = 0$ in S_1

then

$$\Phi(r, u_+, u_-) = \frac{1}{r^4} \int_{-r^2}^0 \int_{\mathbb{R}^n} |\nabla u_+|^2 G(x, -s) dx ds \int_{-r^2}^0 \int_{\mathbb{R}^n} |\nabla u_-|^2 G(x, -s) dx ds$$

is monotone nondecreasing for $r \in (0,1]$.

 Note that u_± must be defined in an entire strip and we must have a moderate growth at infinity.

• The proof is now based on the eigenvalue inequality in Gaussian space.

• The proof is now based on the eigenvalue inequality in Gaussian space. For $\Omega \subset \mathbb{R}^n$ define

$$\lambda(\Omega) = \inf \frac{\int_{\Omega} |\nabla f|^2 dv}{\int_{\Omega} f^2 dv}, \qquad dv = (2\pi)^{-n/2} e^{-x^2/2} dx.$$

• The proof is now based on the eigenvalue inequality in Gaussian space. For $\Omega \subset \mathbb{R}^n$ define

$$\lambda(\Omega) = \inf \frac{\int_{\Omega} |\nabla f|^2 dv}{\int_{\Omega} f^2 dv}, \qquad dv = (2\pi)^{-n/2} e^{-x^2/2} dx.$$

Theorem (Beckner-Kenig-Pipher)

Let Ω_{\pm} be two disjoint open sets in \mathbb{R}^n . Then

$$\lambda(\Omega_+) + \lambda(\Omega_-) \ge 2$$

• The proof is reduced to the convexity result of Brascamp-Lieb 1976 for first eigenvalues of $-\Delta + V(x)$ with convex potential V as a function of the domain.

Localized Parabolic Formula

Theorem (Caffarelli 1993)

Let $u_{\pm}(x,s)$ be two continuous functions in $Q_1^- = B_1 \times (-1,0]$ such that

$$u_{\pm} \geq 0$$
, $(\Delta - \partial_s)u_{\pm} \geq 0$, $u_{+} \cdot u_{-} = 0$ in Q_1^- .

Let $\psi \in C_0^{\infty}(B_1)$ be a cutoff function such that

$$0 \le \psi \le 1$$
, supp $\psi \subset B_{3/4}$, $\psi|_{B_{1/2}} = 1$

then $\Phi(r) = \Phi(r, u_+\psi, u_-\psi)$ is almost monotone in a sense that

$$\Phi(0+) - \Phi(r) \le C e^{-c/r^2} \|u_+\|_{L^2(Q_1^-)}^2 \|u_-\|_{L^2(Q_1^-)}^2.$$

• Instead of the heat operator $\Delta - \partial_s$ consider now uniformly parabolic

$$\mathcal{L}u = \mathcal{L}_{\mathcal{A},b,c}u := \operatorname{div}(\mathcal{A}(x,s)\nabla u) + b(x,s)\cdot\nabla u + c(x,s)u - \partial_s u$$

• Instead of the heat operator $\Delta - \partial_s$ consider now uniformly parabolic

$$\mathcal{L}u = \mathcal{L}_{\mathcal{A},b,c}u := \operatorname{div}(\mathcal{A}(x,s)\nabla u) + b(x,s)\cdot\nabla u + c(x,s)u - \partial_s u$$

• Assume \mathcal{A} to be Dini continuous, b, c uniformly bounded

• Instead of the heat operator $\Delta - \partial_s$ consider now uniformly parabolic

$$\mathcal{L}u = \mathcal{L}_{\mathcal{A},b,c}u := \operatorname{div}(\mathcal{A}(x,s)\nabla u) + b(x,s)\cdot\nabla u + c(x,s)u - \partial_s u$$

• Assume \mathcal{A} to be Dini continuous, b, c uniformly bounded

Theorem (Caffarelli-Kenig 1998)

Let $u_{\pm}(x,s)$ be two continuous functions in Q_1^- such that

$$u_{\pm} \geq 0$$
, $\mathcal{L}u_{\pm} \geq 0$, $u_{+} \cdot u_{-} = 0$ in Q_{1}^{-} .

Let $\psi \in C_0^{\infty}(B_1)$ be a cutoff function as before. Then $\Phi(r) = \Phi(r, u_+\psi, u_-\psi)$ is almost monotone in a sense that we have an estimate

$$\Phi(r) \leq C_0 \left(\|u_+\|_{L^2(Q_1^-)}^2 + \|u_-\|_{L^2(Q_1^-)}^2 \right)^2, \quad r < r_0.$$

Theorem (Caffarelli-Jerison-Kenig 2002)

Let u_{\pm} be two continuous functions in B_1 in \mathbb{R}^n such that

$$u_{\pm} \geq 0$$
, $\Delta u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in B_{1}

then the functional $\varphi(r) = \varphi(r, u_+, u_-)$ satisfies

$$\varphi(r) \leq C_0 \left(1 + \|u_+\|_{L^2(B_1)}^2 + \|u_-\|_{L^2(B_1)}^2\right)^2, \quad r < r_0.$$

Theorem (Caffarelli-Jerison-Kenig 2002)

Let u_{\pm} be two continuous functions in B_1 in \mathbb{R}^n such that

$$u_{\pm} \geq 0$$
, $\Delta u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in B_{1}

then the functional $\varphi(r) = \varphi(r, u_+, u_-)$ satisfies

$$\varphi(r) \leq C_0 \left(1 + \|u_+\|_{L^2(B_1)}^2 + \|u_-\|_{L^2(B_1)}^2\right)^2, \quad r < r_0.$$

The proof is based on a sophisticated iteration scheme.

Theorem (Caffarelli-Jerison-Kenig 2002)

Let u_{\pm} be two continuous functions in B_1 in \mathbb{R}^n such that

$$u_{\pm} \geq 0$$
, $\Delta u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in B_{1}

then the functional $\varphi(r) = \varphi(r, u_+, u_-)$ satisfies

$$\varphi(r) \leq C_0 \left(1 + \|u_+\|_{L^2(B_1)}^2 + \|u_-\|_{L^2(B_1)}^2\right)^2, \quad r < r_0.$$

- The proof is based on a sophisticated iteration scheme.
- The difficulties in CJK and CK estimates are of completely different nature

Theorem (Caffarelli-Jerison-Kenig 2002)

Let u_{\pm} be two continuous functions in B_1 in \mathbb{R}^n such that

$$u_{\pm} \geq 0$$
, $\Delta u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in B_{1}

then the functional $\varphi(r) = \varphi(r, u_+, u_-)$ satisfies

$$\varphi(r) \leq C_0 \left(1 + \|u_+\|_{L^2(B_1)}^2 + \|u_-\|_{L^2(B_1)}^2\right)^2, \quad r < r_0.$$

- The proof is based on a sophisticated iteration scheme.
- The difficulties in CJK and CK estimates are of completely different nature
- The proof can be easily generalized to parabolic case (Edquist-9 2008).

Almost Monotonicity Formulas

• In CJK and CK estimates there is essentially no monotonicity left

Almost Monotonicity Formulas

- In CJK and CK estimates there is essentially no monotonicity left
- However, we still have an estimate of the type

$$\varphi(0+) \leq C(\|u_+\|_{L^2(B_1)}, \|u_-\|_{L^2(B_1)})$$

which is able to produce an estimate

$$|\nabla u_{+}(0)||\nabla u_{-}(0)| \leq C(||u_{+}||_{L^{2}(B_{1})}, ||u_{-}||_{L^{2}(B_{1})}).$$

This is crucial in proving the optimal regularity in certain two-phase problems (and not only!)

Almost Monotonicity Formulas

- In CJK and CK estimates there is essentially no monotonicity left
- However, we still have an estimate of the type

$$\varphi(0+) \leq C(\|u_+\|_{L^2(B_1)}, \|u_-\|_{L^2(B_1)})$$

which is able to produce an estimate

$$|\nabla u_{+}(0)||\nabla u_{-}(0)| \leq C(||u_{+}||_{L^{2}(B_{1})}, ||u_{-}||_{L^{2}(B_{1})}).$$

This is crucial in proving the optimal regularity in certain two-phase problems (and not only!)

• Under certain growth assumptions on u, such as $|u(x)| \le C|x|^{\epsilon}$ one can show the existence of $\varphi(0+)$. This is important in classification of blowup solutions.

CJK+CK

• Natural question to ask whether there is a combination of CJK and CK estimates.

CJK+CK

- Natural question to ask whether there is a combination of CJK and CK estimates.
- Namely, do we have an almost monotonicity estimate for u_{\pm} satisfying

$$u_{\pm} \geq 0$$
, $\mathcal{L}_{\mathcal{A},b,c} u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in Q_{1}^{-} .

CJK+CK

- Natural question to ask whether there is a combination of CJK and CK estimates.
- Namely, do we have an almost monotonicity estimate for u_{\pm} satisfying

$$u_{\pm}\geq 0, \quad \mathcal{L}_{\mathcal{A},b,c}u_{\pm}\geq -1, \quad u_{+}\cdot u_{-}=0 \quad \text{in} \quad Q_{1}^{-}.$$

• We will see that the answer is positive when \mathcal{A} is double Dini and b, c are uniformly bounded.

• We consider the uniformly parabolic operator

$$\mathcal{L}_{\mathcal{A},b,c}u\coloneqq \operatorname{div}(\mathcal{A}(x,s)\nabla u)+b(x,s)\cdot\nabla u+c(x,s)u-\partial_s u$$

• We consider the uniformly parabolic operator

$$\mathcal{L}_{\mathcal{A},b,c}u\coloneqq \operatorname{div}(\mathcal{A}(x,s)\nabla u)+b(x,s)\cdot\nabla u+c(x,s)u-\partial_s u$$

We consider the uniformly parabolic operator

$$\mathcal{L}_{\mathcal{A},b,c}u \coloneqq \operatorname{div}(\mathcal{A}(x,s)\nabla u) + b(x,s)\cdot\nabla u + c(x,s)u - \partial_s u$$

$$\int_0^1 \frac{1}{r} \int_0^r \frac{\omega(\rho)}{\rho} d\rho dr = \int_0^1 \frac{\omega(\rho) \log \frac{1}{\rho}}{\rho} d\rho < \infty$$

• We consider the uniformly parabolic operator

$$\mathcal{L}_{\mathcal{A},b,c}u \coloneqq \operatorname{div}(\mathcal{A}(x,s)\nabla u) + b(x,s)\cdot \nabla u + c(x,s)u - \partial_s u$$

such that

$$\int_0^1 \frac{1}{r} \int_0^r \frac{\omega(\rho)}{\rho} d\rho dr = \int_0^1 \frac{\omega(\rho) \log \frac{1}{\rho}}{\rho} d\rho < \infty$$

 $|b(x,s)| + |c(x,s)| \le \mu$

• We consider the uniformly parabolic operator

$$\mathcal{L}_{\mathcal{A},b,c}u \coloneqq \operatorname{div}(\mathcal{A}(x,s)\nabla u) + b(x,s)\cdot\nabla u + c(x,s)u - \partial_s u$$

$$\int_0^1 \frac{1}{r} \int_0^r \frac{\omega(\rho)}{\rho} d\rho dr = \int_0^1 \frac{\omega(\rho) \log \frac{1}{\rho}}{\rho} d\rho < \infty$$

- **③** $|b(x,s)| + |c(x,s)| \le \mu$
- We make similar assumption on the uniformly elliptic operator

$$\ell_{\mathcal{A},b,c}u := \operatorname{div}(\mathcal{A}(x)\nabla u) + b(x) \cdot \nabla u + c(x)u$$

Global Parabolic Formula

Theorem (Matevosyan-9 2009)

Let $u_{\pm}(x,s)$ be two continuous functions in S_1 such that

$$u_{\pm} \geq 0$$
, $\mathcal{L}_{\mathcal{A},b,c} u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in S_{1}

Assume also that u_{\pm} have moderate growth at infinity, so that

$$M_{\pm}^2 := \iint_{S_1} u_{\pm}(x,s)^2 e^{-x^2/32} dx ds < \infty.$$

Then the functional $\Phi(r) = \Phi(r, u_+, u_-)$ satisfies

$$\Phi(r) \le C_{\omega} (1 + M_{+}^{2} + M_{-}^{2})^{2}, \quad \text{for } 0 < r \le r_{\omega}.$$

Localized Parabolic Formula

Theorem (Matevosyan-P 2009)

Let $u_{\pm}(x,s)$ be two continuous functions in Q_1^- such that

$$u_{\pm} \geq 0$$
, $\mathcal{L}_{\mathcal{A},b,c} u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in Q_{1}^{-}

Let also ψ be a cutoff function such that

$$0 \le \psi \le 1$$
, supp $\psi \subset B_{3/4}$, $\psi|_{B_{1/2}} = 1$.

Then the functional $\Phi(r) = \Phi(r, u_+\psi, u_-\psi)$ satisfies

$$\Phi(r) \leq C_{\omega,\psi} \left(1 + \|u_+\|_{L^2(Q_1^-)}^2 + \|u_-\|_{L^2(Q_1^-)}^2 \right)^2, \quad \text{for } 0 < r \leq r_{\omega}.$$

Elliptic Formula

Theorem (Matevosyan-9 2009)

Let $u_{\pm}(x)$ be two continuous functions in B_1 such that

$$u_{\pm} \geq 0$$
, $\ell_{\mathcal{A},b,c}u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in B_{1} .

Then the functional $\varphi(r) = \varphi(r, u_+, u_-)$ satisfies

$$\varphi(r) \leq C_{\omega} \left(1 + \|u_{+}\|_{L^{2}(B_{1})}^{2} + \|u_{-}\|_{L^{2}(B_{1})}^{2} \right)^{2}, \quad \text{for } 0 < r \leq r_{\omega}.$$

Proof: CJK Iteration Scheme for $\mathcal{L} = \Delta - \partial_s$

• Let
$$A^{\pm}(r) = \iint_{S_r} |\nabla u|^2 G(x, -s) dx ds$$
, $S_r = \mathbb{R}^n \times (-r^2, 0]$

Proof: CJK Iteration Scheme for $\mathcal{L} = \Delta - \partial_s$

• Let
$$A^{\pm}(r) = \iint_{S_r} |\nabla u|^2 G(x, -s) dx ds$$
, $S_r = \mathbb{R}^n \times (-r^2, 0]$

• Define
$$A_k^{\pm} = A^{\pm}(4^{-k}), b_k^{\pm} = 4^{4k}A_k^{\pm}$$
. Then $\Phi(4^{-k}) = 4^{4k}A_k^{+}A_k^{-}$.

Proof: CJK Iteration Scheme for $\mathcal{L} = \Delta - \partial_s$

• Let
$$A^{\pm}(r) = \iint_{S_r} |\nabla u|^2 G(x, -s) dx ds$$
, $S_r = \mathbb{R}^n \times (-r^2, 0]$

• Define $A_k^{\pm} = A^{\pm}(4^{-k}), b_k^{\pm} = 4^{4k}A_k^{\pm}$. Then $\Phi(4^{-k}) = 4^{4k}A_k^{+}A_k^{-}$.

Proposition

There exists C_0 such that if $b_k^{\pm} \geq C_0$ then

$$4^{4}A_{k+1}^{+}A_{k+1}^{-} \leq A_{k}^{+}A_{k}^{-}(1+\delta_{k}) \quad with \quad \delta_{k} = \frac{C_{0}}{\sqrt{b_{k}^{+}}} + \frac{C_{0}}{\sqrt{b_{k}^{-}}}.$$

Proof: CJK Iteration Scheme for $\mathcal{L} = \Delta - \partial_s$

• Let
$$A^{\pm}(r) = \iint_{S_r} |\nabla u|^2 G(x, -s) dx ds$$
, $S_r = \mathbb{R}^n \times (-r^2, 0]$

• Define $A_k^{\pm} = A^{\pm}(4^{-k}), b_k^{\pm} = 4^{4k}A_k^{\pm}$. Then $\Phi(4^{-k}) = 4^{4k}A_k^{+}A_k^{-}$.

Proposition

There exists C_0 such that if $b_k^{\pm} \geq C_0$ then

$$4^{4}A_{k+1}^{+}A_{k+1}^{-} \leq A_{k}^{+}A_{k}^{-}(1+\delta_{k}) \quad with \quad \delta_{k} = \frac{C_{0}}{\sqrt{b_{k}^{+}}} + \frac{C_{0}}{\sqrt{b_{k}^{-}}}.$$

Proposition

There exists C_0 such that if $b_k^{\pm} \ge C_0$ and $4^4 A_{k+1}^+ \ge A_k^+$ then

$$A_{k+1}^- \leq (1 - \epsilon_0) A_k^-.$$

•
$$\theta(r) = Cr + \omega(r^{1/2}) + \left(\int_0^{r^2} \frac{\omega(\rho^{1/4})^2}{\rho} d\rho\right)^{1/2}$$

•
$$\theta(r) = Cr + \omega(r^{1/2}) + \left(\int_0^{r^2} \frac{\omega(\rho^{1/4})^2}{\rho} d\rho\right)^{1/2}$$

•
$$g(r) = \int_0^r \frac{\theta(\rho)}{\rho} d\rho$$

•
$$\theta(r) = Cr + \omega(r^{1/2}) + \left(\int_0^{r^2} \frac{\omega(\rho^{1/4})^2}{\rho} d\rho\right)^{1/2}$$

•
$$g(r) = \int_0^r \frac{\theta(\rho)}{\rho} d\rho$$

$$\bullet \ \widetilde{A}^{\pm}(r)=e^{c_0g(r)}A^{\pm}(r), \quad \widetilde{\Phi}(r)=r^{-4}\widetilde{A}^{+}(r)\widetilde{A}^{-}(r)$$

•
$$\theta(r) = Cr + \omega(r^{1/2}) + \left(\int_0^{r^2} \frac{\omega(\rho^{1/4})^2}{\rho} d\rho\right)^{1/2}$$

•
$$g(r) = \int_0^r \frac{\theta(\rho)}{\rho} d\rho$$

$$\bullet \ \widetilde{A}^{\pm}(r)=e^{c_0g(r)}A^{\pm}(r), \quad \widetilde{\Phi}(r)=r^{-4}\widetilde{A}^{+}(r)\widetilde{A}^{-}(r)$$

$$\bullet \ \widetilde{A}_k^{\pm} = \widetilde{A}^{\pm} \big(4^{-k} \big), \, \widetilde{b}^{\pm} = 4^{4k} \widetilde{A}_k^{\pm}.$$

Define

•
$$\theta(r) = Cr + \omega(r^{1/2}) + \left(\int_0^{r^2} \frac{\omega(\rho^{1/4})^2}{\rho} d\rho\right)^{1/2}$$

•
$$g(r) = \int_0^r \frac{\theta(\rho)}{\rho} d\rho$$

$$\bullet \ \widetilde{A}^{\pm}(r)=e^{c_0g(r)}A^{\pm}(r), \quad \widetilde{\Phi}(r)=r^{-4}\widetilde{A}^{+}(r)\widetilde{A}^{-}(r)$$

•
$$\widetilde{A}_k^{\pm} = \widetilde{A}^{\pm}(4^{-k}), \widetilde{b}^{\pm} = 4^{4k}\widetilde{A}_k^{\pm}.$$

Proposition

 \widetilde{A}_k^{\pm} satisfy the same iterative inequalities as A_k^{\pm} in the case of $\mathcal{L}=\Delta-\partial_s$.

Proof: Key Technical Estimate

• Normalize $\mathcal{A}(0,0) = I, c = 0.$

Proof: Key Technical Estimate

• Normalize $\mathcal{A}(0,0) = I, c = 0.$

Proposition

Let $u \ge 0$ satisfy $\mathcal{L}_{A,b,0}u \ge -1$ in S_1 . Suppose also $\iint_{S_1} u(x,s)^2 e^{-x^2/32} dx ds \le 1$. Then

$$(1 - c_n \theta(r)) \iint_{S_r} |\nabla u|^2 G(x, -s) dx ds \le$$

$$C_0 r^4 + C_n r^2 \left(\int_{\mathbb{R}^n} u(x, -r^2)^2 G(x, r^2) dx \right)^{1/2} + \frac{1}{2} \int_{\mathbb{R}^n} u(x, -r^2)^2 G(x, r^2) dx$$

for any $0 < r \le r_{\omega}$ *, where*

$$\theta(r) = Cr + \omega(r^{1/2}) + \left(\int_0^{r^2} \frac{\omega(\rho^{1/4})^2}{\rho} d\rho\right)^{1/2}.$$

• Add a "dummy" variable s

$$\widetilde{u}_{\pm}(x,s)=u_{\pm}(x),\quad (x,s)\in Q_1^-$$

• Add a "dummy" variable s

$$\widetilde{u}_{\pm}(x,s) = u_{\pm}(x), \quad (x,s) \in Q_1^-$$

• \widetilde{u}_{\pm} satisfy now conditions of localized parabolic case with

$$\mathcal{L}u = (\ell - \partial_s)u = \operatorname{div}(\mathcal{A}(x)\nabla u) + b(x)\nabla u + c(x)u - \partial_s u.$$

• Add a "dummy" variable s

$$\widetilde{u}_{\pm}(x,s) = u_{\pm}(x), \quad (x,s) \in Q_1^-$$

• \widetilde{u}_{\pm} satisfy now conditions of localized parabolic case with

$$\mathcal{L}u = (\ell - \partial_s)u = \operatorname{div}(\mathcal{A}(x)\nabla u) + b(x)\nabla u + c(x)u - \partial_s u.$$

• Fix a cutoff function $\psi \ge 0$ such that $\psi = 1$ on $B_{1/2}$. Note that

$$\int_{B_r} \frac{|\nabla u(x)|}{|x|^{n-2}} dx \leq C_n \iint_{S_r} |\nabla (\psi(x)u(x))|^2 G(x, -s) dx ds.$$

• Add a "dummy" variable s

$$\widetilde{u}_{\pm}(x,s) = u_{\pm}(x), \quad (x,s) \in Q_1^-$$

• \widetilde{u}_{\pm} satisfy now conditions of localized parabolic case with

$$\mathcal{L}u = (\ell - \partial_s)u = \operatorname{div}(\mathcal{A}(x)\nabla u) + b(x)\nabla u + c(x)u - \partial_s u.$$

• Fix a cutoff function $\psi \ge 0$ such that $\psi = 1$ on $B_{1/2}$. Note that

$$\int_{B_r} \frac{|\nabla u(x)|}{|x|^{n-2}} dx \leq C_n \iint_{S_r} |\nabla (\psi(x)u(x))|^2 G(x, -s) dx ds.$$

Hence

$$\begin{split} \varphi(r, u_+, u_-) &\leq C_n \Phi(r, \psi \widetilde{u}_+, \psi \widetilde{u}_-) \\ &\leq C_\omega \left(1 + \|\widetilde{u}_+\|_{L^2(Q_1^-)}^2 + \|\widetilde{u}_-\|_{L^2(Q_1^-)}^2 \right)^2 \\ &= C_\omega \left(1 + \|u_+\|_{L^2(B_1)}^2 + \|u_-\|_{L^2(B_1)}^2 \right)^2 \end{split}$$

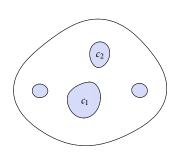
for $r < r_{\omega}$.

• Let u be a solution of the system in B_1

$$\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega},$$

$$|\nabla u| = 0 \quad \text{on } \Omega^c,$$

where Ω is an apriori unknown open set.



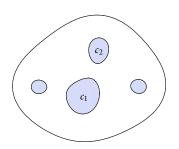
• Let u be a solution of the system in B_1

$$\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega},$$

$$|\nabla u| = 0 \quad \text{on } \Omega^c,$$

where Ω is an apriori unknown open set.

 Problem appears in the description of type II superconductors (Berestycki-Bonnet-Chapman 1994)



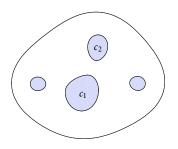
• Let u be a solution of the system in B_1

$$\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega},$$

$$|\nabla u| = 0 \quad \text{on } \Omega^c,$$

where Ω is an apriori unknown open set.

- Problem appears in the description of type II superconductors (Berestycki-Bonnet-Chapman 1994)
- One-phase problem, however, no assumption is made on the sign of u in Ω



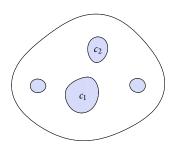
• Let u be a solution of the system in B_1

$$\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega},$$

$$|\nabla u| = 0 \quad \text{on } \Omega^c,$$

where Ω is an apriori unknown open set.

- Problem appears in the description of type II superconductors (Berestycki-Bonnet-Chapman 1994)
- One-phase problem, however, no assumption is made on the sign of u in Ω
- $\Lambda = \Omega^c$ may break out into different patches Λ_i so that $u = c_i$ on Λ_i



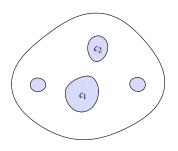
• Let u be a solution of the system in B_1

$$\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega},$$

$$|\nabla u| = 0 \quad \text{on } \Omega^c,$$

where Ω is an apriori unknown open set.

- Problem appears in the description of type II superconductors (Berestycki-Bonnet-Chapman 1994)
- One-phase problem, however, no assumption is made on the sign of u in Ω
- $\Lambda = \Omega^c$ may break out into different patches Λ_i so that $u = c_i$ on Λ_i
- Similar problem has been studied by Caffarelli-Salazar-Shahgholian 2004



4日)4周)4章)4章)

Assumptions

Assumptions

- $\bullet \quad a \in C^{1,\alpha}_{\mathrm{loc}}([0,\infty))$
- $a(q), a(q) + 2a'(q)q \in [\lambda_0, 1/\lambda_0] \text{ for any } q \ge 0$

Assumptions

- $\bullet \quad a \in C^{1,\alpha}_{\mathrm{loc}}([0,\infty))$
- $a(q), a(q) + 2a'(q)q \in [\lambda_0, 1/\lambda_0] \text{ for any } q \ge 0$

Assumptions

- $\bullet \quad a \in C^{1,\alpha}_{\mathrm{loc}}([0,\infty))$
- $a(q), a(q) + 2a'(q)q \in [\lambda_0, 1/\lambda_0] \text{ for any } q \ge 0$

Theorem (Matevosyan-P 2009)

Under conditions above, $u \in C^{1,1}_{loc}(B_1)$ and

$$||u||_{C^{1,1}(B_{1/2})} \le C(C_a, \alpha, n, \lambda_0, M, ||u||_{L^{\infty}(B_1)})$$

with
$$C_a = \|a\|_{C^{1,\alpha}([0,R(n,\lambda_0,M,\|u\|_{L^\infty(B_1)})])}$$
.

Assumptions

- $\bullet \quad a \in C^{1,\alpha}_{\mathrm{loc}}([0,\infty))$
- $a(q), a(q) + 2a'(q)q \in [\lambda_0, 1/\lambda_0] \text{ for any } q \ge 0$

Theorem (Matevosyan-P 2009)

Under conditions above, $u \in C^{1,1}_{loc}(B_1)$ *and*

$$||u||_{C^{1,1}(B_{1/2})} \le C(C_a, \alpha, n, \lambda_0, M, ||u||_{L^{\infty}(B_1)})$$

with
$$C_a = ||a||_{C^{1,\alpha}([0,R(n,\lambda_0,M,||u||_{L^{\infty}(B_1)})])}$$
.

• Generalizes a theorem of Shahgholian 2003 for

$$\Delta u = f(x, u)\chi_{\Omega}, \quad |\nabla u| = 0 \text{ on } \Omega^{c}.$$

• Connection with the almost monotonicity formulas:

• Connection with the almost monotonicity formulas:

Lemma

For any direction e the functions $w_{\pm} = (\partial_e u)^{\pm} = \max\{\pm \partial_e u, 0\}$ satisfy

$$w_{\pm} \geq 0$$
, $\operatorname{div}(\mathcal{A}(x)\nabla w_{\pm}) + b(x)\nabla w_{\pm} + c(x)w_{\pm} \geq -M$, $w_{+} \cdot w_{-} = 0$,

where

$$\mathcal{A}(x) = a(|\nabla u(x)|^2)I + 2a'(|\nabla u(x)|^2)\nabla u(x) \otimes \nabla u(x),$$

$$b(x) = -(\nabla_p f)(x, u(x), \nabla u(x)),$$

$$c(x) = -(\partial_z f)(x, u(x), \nabla u(x)).$$

Idea of the proof (Shahgholian 2003)

• $u \in W^{2,p}$, p > n, hence twice differentiable a.e.

Idea of the proof (Shahgholian 2003)

- $u \in W^{2,p}$, p > n, hence twice differentiable a.e.
- take $e \perp \nabla u(x_0)$ and apply almost monotonicity formula to $w_{\pm} = (\partial_e u)^{\pm}$:

$$|\nabla w(x_0)|^4 \leq C_n \varphi(0+, w^+, w^-) \leq (1+||w||_{L^2(B_{1/2})}^2)^2,$$

Idea of the proof (Shahgholian 2003)

- $u \in W^{2,p}$, p > n, hence twice differentiable a.e.
- take $e \perp \nabla u(x_0)$ and apply almost monotonicity formula to $w_{\pm} = (\partial_e u)^{\pm}$:

$$|\nabla w(x_0)|^4 \leq C_n \varphi(0+, w^+, w^-) \leq (1+||w||_{L^2(B_{1/2})}^2)^2,$$

this implies that

$$|\partial_{ee}u(x_0)| \leq C$$
, for $e \perp \nabla u(x_0)$

Idea of the proof (Shahgholian 2003)

- $u \in W^{2,p}$, p > n, hence twice differentiable a.e.
- take $e \perp \nabla u(x_0)$ and apply almost monotonicity formula to $w_{\pm} = (\partial_e u)^{\pm}$:

$$|\nabla w(x_0)|^4 \leq C_n \varphi(0+, w^+, w^-) \leq (1+||w||_{L^2(B_{1/2})}^2)^2,$$

this implies that

$$|\partial_{ee}u(x_0)| \leq C$$
, for $e \perp \nabla u(x_0)$

• to obtain the estimate in the missing direction $e \parallel \nabla u(x_0)$, we use the equation.

A Variant of the Almost Monotonicity Formula

Theorem (Matevosyan-P 2009)

Let u_{\pm} satisfy $u_{\pm} \geq 0$, $\mathcal{L}_{\mathcal{A},b,c}u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in S_{1} , and

$$u_{\pm}(x,s) \le \sigma((|x|^2 + |s|)^{1/2})$$
 for $(x,s) \in Q_1^-$

for a Dini modulus of continuity $\sigma(r)$. Then $\Phi(r) = \Phi(r, u_+\psi, u_-\psi)$ satisfies

$$\Phi(r) \leq [1 + \alpha(\rho)]\Phi(\rho) + C_{M,\psi,\sigma,\omega}\alpha(\rho), \quad 0 < r \leq \rho \leq r_{\omega},$$

where
$$\alpha(r) = C_0 \left[r + \sigma(r^{1/2}) + \int_0^r \frac{\sigma(\rho^{1/2})}{\rho} d\rho + \int_0^r \frac{\theta(\rho)}{\rho} d\rho \right]$$
 and
$$M = \|u_+\|_{L^2(Q_1^-)} + \|u_-\|_{L^2(Q_1^-)}.$$

A Variant of the Almost Monotonicity Formula

Theorem (Matevosyan-9 2009)

Let u_{\pm} satisfy $u_{\pm} \geq 0$, $\mathcal{L}_{\mathcal{A},b,c}u_{\pm} \geq -1$, $u_{+} \cdot u_{-} = 0$ in S_{1} , and

$$u_{\pm}(x,s) \le \sigma((|x|^2 + |s|)^{1/2})$$
 for $(x,s) \in Q_1^-$

for a Dini modulus of continuity $\sigma(r)$. Then $\Phi(r) = \Phi(r, u_+\psi, u_-\psi)$ satisfies

$$\Phi(r) \leq [1 + \alpha(\rho)]\Phi(\rho) + C_{M,\psi,\sigma,\omega}\alpha(\rho), \quad 0 < r \leq \rho \leq r_{\omega},$$

where
$$\alpha(r) = C_0 \left[r + \sigma(r^{1/2}) + \int_0^r \frac{\sigma(\rho^{1/2})}{\rho} d\rho + \int_0^r \frac{\theta(\rho)}{\rho} d\rho \right]$$
 and
$$M = \|u_+\|_{L^2(Q_1^-)} + \|u_-\|_{L^2(Q_1^-)}.$$

• This guaranties the existence of $\Phi(0+) = \lim_{r\to 0+} \Phi(r)$.

• Let u solve $\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega}, |\nabla u| = 0$ on Ω^c .

- Let u solve $\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega}, |\nabla u| = 0 \text{ on } \Omega^c$.
- For $x_0 \in \partial \Omega$ (free boundary) consider *rescalings*

$$u_r(x) = u_{x_0,r}(x) = \frac{u(x_0 + rx) - u(x_0)}{r^2}.$$

- Let u solve $\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega}, |\nabla u| = 0 \text{ on } \Omega^c$.
- For $x_0 \in \partial \Omega$ (free boundary) consider *rescalings*

$$u_r(x) = u_{x_0,r}(x) = \frac{u(x_0 + rx) - u(x_0)}{r^2}.$$

• Limits of u_r over $r = r_j \rightarrow 0+$ are called *blowups* of u at x_0

- Let u solve $\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega}, |\nabla u| = 0 \text{ on } \Omega^c$.
- For $x_0 \in \partial \Omega$ (free boundary) consider *rescalings*

$$u_r(x) = u_{x_0,r}(x) = \frac{u(x_0 + rx) - u(x_0)}{r^2}.$$

- Limits of u_r over $r = r_j \rightarrow 0+$ are called *blowups* of u at x_0
- Key question: what are the possible blowups?

- Let u solve $\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega}, |\nabla u| = 0 \text{ on } \Omega^c$.
- For $x_0 \in \partial \Omega$ (free boundary) consider *rescalings*

$$u_r(x) = u_{x_0,r}(x) = \frac{u(x_0 + rx) - u(x_0)}{r^2}.$$

- Limits of u_r over $r = r_j \rightarrow 0+$ are called *blowups* of u at x_0
- Key question: what are the possible blowups?

Theorem (Matevosyan-P 2009)

The blowups are either one-dimensional or quadratic polynomial.

- Let u solve $\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega}, |\nabla u| = 0 \text{ on } \Omega^c$.
- For $x_0 \in \partial \Omega$ (free boundary) consider *rescalings*

$$u_r(x) = u_{x_0,r}(x) = \frac{u(x_0 + rx) - u(x_0)}{r^2}.$$

- Limits of u_r over $r = r_j \rightarrow 0+$ are called *blowups* of u at x_0
- Key question: what are the possible blowups?

Theorem (Matevosyan-P 2009)

The blowups are either one-dimensional or quadratic polynomial.

• One dimensional means $u_0(x) = v(x \cdot e_0)$ for some direction e_0

- Let u solve $\operatorname{div}(a(|\nabla u|^2)\nabla u) = f(x, u, \nabla u)\chi_{\Omega}, |\nabla u| = 0 \text{ on } \Omega^c$.
- For $x_0 \in \partial \Omega$ (free boundary) consider *rescalings*

$$u_r(x) = u_{x_0,r}(x) = \frac{u(x_0 + rx) - u(x_0)}{r^2}.$$

- Limits of u_r over $r = r_j \rightarrow 0+$ are called *blowups* of u at x_0
- Key question: what are the possible blowups?

Theorem (Matevosyan-P 2009)

The blowups are either one-dimensional or quadratic polynomial.

- One dimensional means $u_0(x) = v(x \cdot e_0)$ for some direction e_0
- Equivalently, $\partial_e u_0$ has a sign in \mathbb{R}^n for any direction e.

Idea of the proof (assuming $x_0 = 0$)

• Recall that $\mathcal{L}_{\mathcal{A},b,c}(\partial_e u)^{\pm} \geq -M$ for any direction e

Idea of the proof (assuming $x_0 = 0$)

- Recall that $\mathcal{L}_{\mathcal{A},b,c}(\partial_e u)^{\pm} \geq -M$ for any direction e
- We also have that $|(\partial_e u)^{\pm}(x)| \le C|x|^{\alpha}$

Idea of the proof (assuming $x_0 = 0$)

- Recall that $\mathcal{L}_{\mathcal{A},b,c}(\partial_e u)^{\pm} \geq -M$ for any direction e
- We also have that $|(\partial_e u)^{\pm}(x)| \le C|x|^{\alpha}$
- Thus, $\varphi(0+,(\partial_e u)^+,(\partial_e u)^-)=c_0$ exists.

Idea of the proof (assuming $x_0 = 0$)

- Recall that $\mathcal{L}_{\mathcal{A},b,c}(\partial_e u)^{\pm} \geq -M$ for any direction e
- We also have that $|(\partial_e u)^{\pm}(x)| \le C|x|^{\alpha}$
- Thus, $\varphi(0+,(\partial_e u)^+,(\partial_e u)^-)=c_0$ exists.
- If $u_{r_i} \to u_0$ in $W^{2,p}$, then we have

$$\varphi(r, (\partial_e u_0)^+, (\partial_e u_0)^-) = \lim_{j \to \infty} \varphi(r, (\partial_e u_{r_j})^+, (\partial_e u_{r_j})^-)$$

$$= \lim_{j \to \infty} \varphi(rr_j, (\partial_e u)^+, (\partial_e u)^-)$$

$$= c_0$$

i.e.
$$\varphi(r, (\partial_e u_0)^+, (\partial_e u_0)^-) \equiv const$$

Idea of the proof (assuming $x_0 = 0$)

- Recall that $\mathcal{L}_{\mathcal{A},b,c}(\partial_e u)^{\pm} \geq -M$ for any direction e
- We also have that $|(\partial_e u)^{\pm}(x)| \leq C|x|^{\alpha}$
- Thus, $\varphi(0+,(\partial_e u)^+,(\partial_e u)^-)=c_0$ exists.
- If $u_{r_i} \to u_0$ in $W^{2,p}$, then we have

$$\varphi(r, (\partial_e u_0)^+, (\partial_e u_0)^-) = \lim_{j \to \infty} \varphi(r, (\partial_e u_{r_j})^+, (\partial_e u_{r_j})^-)$$

$$= \lim_{j \to \infty} \varphi(rr_j, (\partial_e u)^+, (\partial_e u)^-)$$

$$= c_0$$

i.e.
$$\varphi(r, (\partial_e u_0)^+, (\partial_e u_0)^-) \equiv const$$

 Problem is reduced to analyzing the case of equality for the original Alt-Caffarelli-Friedman montonicity formula (Caffarelli-Karp-Shahgholian 2000)