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�e thin obstacle problem

Given

▸ Ω domain in Rn

▸ M smooth hypersurface,
Ω ∖M = Ω+ ∪Ω−

▸ φ ∶ M→ R (thin obstacle),
 ∶ ∂Ω → R (boundary values),
 > φ onM ∩ ∂Ω.

Minimize the Dirichlet integral

DΩ(u) = ∫
Ω
∣∇u∣dx

on the closed convex set

K = {u ∈W ,(Ω) ∣ u =  on ∂Ω, u ≥ φ onM ∩Ω}.
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�e thin obstacle problem

�e minimizer u satis�es

∆u =  in Ω ∖M = Ω+ ∪Ω−

Complementary conditions onM

u − φ ≥ 
∂ν+u + ∂ν−u ≥ 

(u − φ)(∂ν+u + ∂ν−u) = 

Generally, u ∈ C,αloc(Ω± ∪M)
[Caffarelli 1979]

Ω+Ω− M

φ
u

Main objects of study

Coincidence set ∶ Λ(u) ∶= {x ∈ M ∣ u = φ}
Free Boundary ∶ Γ(u) ∶= ∂MΛ(u)
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Signorini problem

Boundary thin obstacle problem or Signorini problem: M ⊂ ∂Ω

Complementary conditions onM:

u − φ ≥ , ∂νu ≥ , (u − φ)∂νu = 

WhenM is �at, u can be re�ected with respect toM and we will obtain a
solution of the interior thin obstacle problem.

M

Ω

M

Ω+Ω−
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�e thin obstacle problem

�e thin obstacle problem arises in a variety of situations of interest for the
applied sciences:

It presents itself in elasticity, when an elastic body is at rest, partially
laying on a surfaceM.
It models the �ow of a saline concentration through a semipermeable
membrane when the �ow occurs in a preferred direction.
It also arises in �nancial mathematics in situations in which the random
variation of an underlying asset changes discontinuously.
Obstacle problem for the fractional Laplacian (−∆)s,  < s < 

u − φ ≥ , (−∆)su ≥ , (u − φ)(−∆)su ≥  in Rn−.

�e thin obstacle problem corresponds to s = 
 .
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Part I

Zero thin obstacle: φ = 
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Outline
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Normalization: classS

AssumeM is �at: M = Rn− × {}, φ = 

If u solves Signorini problem, a�er translation, rotation, and scaling, we
may normalize u as follows:

De�nition
We say u is a normalized solution of Signorini problem i�

∆u =  in B+
u ≥ , −∂xnu ≥ , u ∂xnu =  on B′

 ∈ Γ(u) = ∂Λ(u) = ∂{u = }.

We denote the class of normalized solutions byS.

Notation: Rn
+
= Rn− × (,+∞), B+ ∶= B ∩Rn

+
, B′ ∶= B ∩ (Rn− ×{})
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Normalization: classS

Every u ∈S can be extended from B+ to B by even symmetry

u(x′,−xn) ∶= u(x′, xn).

�e resulting function will satisfy

∆u ≤  in B
∆u =  in B ∖ Λ(u)

u ∆u =  in B.

Here Λ(u) = {u = } ⊂ B′.
More speci�cally:

∆u = (∂xnu)Hn−∣Λ(u) in D′(B).
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Rescalings and blowups

For u ∈S and r >  consider rescalings

ur(x) ∶=
u(rx)

( 
rn− ∫∂Br

u)


.

�e rescaling is normalized so that

∥ur∥L(∂B) = .

Limits of subsequences {ur j} for some r j → + are known as blowups.
Generally the blowups may be di�erent over di�erent subsequences
r = r j → +.
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Almgren’s frequency function

�eorem (Monotonicity of the frequency)
Let u ∈S.�en the frequency function

r ↦ N(r, u) ∶=
r ∫Br

∣∇u∣

∫∂Br
u
↗ for  < r < .

Moreover, N(r, u) ≡ κ ⇐⇒ x ⋅ ∇u − κu =  in B, i.e. u is homogeneous of
degree κ in B.

[Almgren 1979] for harmonic u

[Garofalo-Lin 1986-87] for divergence form elliptic operators
[Athanasopoulos-Caffarelli-Salsa 2007] for thin obstacle problem
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Figure: Solution of the thin obstacle problem Re(x + i∣x∣)/
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Figure: Multi-valued harmonic function Re(x + ix)/
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Homogeneity of blowups

Uniform estimates on rescalings {ur}:

∫
B

∣∇ur ∣ = N(, ur) = N(r, u) ≤ N(, u).

Hence, ∃ blowup u over a sequence r j → +

ur j → u inW ,(B)

Proposition (Homogeneity of blowups)
Let u ∈S and the blowup u be as above.�en, u is homogeneous of degree
κ = N(+, u).

Proof.
N(r, u) = limr j→+ N(r, ur j) = limr j→+ N(rr j , u) = N(+, u)
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Optimal regularity

Lemma (Minimal homogeneity)

Let u ∈S.�en
N(+, u) ≥  − 

 .

Proved by [Silvestre 2006], [Athanasopoulos-Caffarelli-Salsa 2007]

�eorem (Optimal regularity)

Let u ∈S.�en u ∈ C,


loc (B

′

 ∪ B± )

Originally proved by [Athanasopoulos-Caffarelli 2004]

Achieved on û/(x) = Re(x + i∣xn∣)
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Classi�cation of free boundary points

De�nition
Given u ∈S, for κ ≥  − 

 we de�ne

Γκ(u) ∶= {x ∈ Γ(u) ∣ Nx(+, u) = κ}.

Here Nx(r, u) =
r ∫Br(x) ∣∇u∣



∫∂Br(x) u
 .

Γκ = ∅ whenever  − 
 < κ < .

On the other hand,  ∈ Γκ(ûκ) for

ûκ(x) ∶= Re(x + i∣xn∣)κ , κ =  − 
 , , . . . , m − 

 , m, . . .

In dimension , these are the only possible values of κ.
Not known in higher dimensions.
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ûκ(x) ∶= Re(x + i∣xn∣)κ , κ =  − 
 , , . . . , m − 

 , m, . . .

In dimension , these are the only possible values of κ.
Not known in higher dimensions.

Garofalo, Petrosyan (Purdue) Monotonicity formulas and the singular set University of Chicago 16 / 1



Figure: Graphs of Re(x + i∣x∣)

 and Re(x + i∣x∣)
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Regular free boundary points

Of special interest is the case of the smallest possible value κ =  − 
 .

De�nition (Regular points)

For u ∈S we say that x ∈ Γ(u) is regular if Nx(+, u) =  − 
 , i.e., if

x ∈ Γ−  (u).

�e following result was proved by
[Athanasopoulos-Caffarelli-Salsa 2007].

�eorem (Regularity of the regular set)
Let u ∈S, then the free boundary Γ−  (u) is locally a C

,α regular
(n − )-dimensional surface.
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Singular free boundary points

De�nition (Singular points)
Let u ∈S. We say that x is a singular point of the free boundary Γ(u), if the
coincidence set Λ(u) has vanishing (n − )-dimensional density at x, i.e.

lim
r→+

Hn−(Λ(u) ∩ B′r(x))
Hn−(B′r(x))

= .

We denote by Σ(u) the subset of singular points of Γ(u).

In terms of rescalings

 ∈ Σ(u) ⇐⇒ lim
r→+

Hn−(Λ(ur) ∩ B′) = .

Also de�ne
Σκ(u) ∶= Σ(u) ∩ Γκ(u).
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Singular free boundary points: example

(, ) x

xu(x′ , ) = x x

Σ
��

Σ

Σ

Σ

Σ

6

-t

Figure: Free boundary for u(x) = x x − (x + x) x + 
 x

 in R with zero thin

obstacle on R × {}.
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Singular free boundary points: blowups

Any blowup u at a singular point x ∈ Σ(u) belongs to the classPκ for
κ = Nx(+, u):

Pκ = {pκ(x) ∣ ∆pκ = , x ⋅ ∇pκ − κpκ = , pκ(x′, ) ≥ },

i.e. u is a homogeneous harmonic polynomial of degree κ, nonnegative
on Rn− × {}.

�is implies κ = m, m ∈ N.
Central question: Are blowups unique at x ∈ Σ(u)?
Equivalent to Taylor’s expansion:

u(x′, xn) = pxκ (x − x) + o(∣x − x∣κ),

with nonzero pxκ ∈Pκ .

Garofalo, Petrosyan (Purdue) Monotonicity formulas and the singular set University of Chicago 21 / 1



Singular free boundary points: blowups

Any blowup u at a singular point x ∈ Σ(u) belongs to the classPκ for
κ = Nx(+, u):

Pκ = {pκ(x) ∣ ∆pκ = , x ⋅ ∇pκ − κpκ = , pκ(x′, ) ≥ },

i.e. u is a homogeneous harmonic polynomial of degree κ, nonnegative
on Rn− × {}.
�is implies κ = m, m ∈ N.

Central question: Are blowups unique at x ∈ Σ(u)?
Equivalent to Taylor’s expansion:

u(x′, xn) = pxκ (x − x) + o(∣x − x∣κ),

with nonzero pxκ ∈Pκ .

Garofalo, Petrosyan (Purdue) Monotonicity formulas and the singular set University of Chicago 21 / 1



Singular free boundary points: blowups

Any blowup u at a singular point x ∈ Σ(u) belongs to the classPκ for
κ = Nx(+, u):

Pκ = {pκ(x) ∣ ∆pκ = , x ⋅ ∇pκ − κpκ = , pκ(x′, ) ≥ },

i.e. u is a homogeneous harmonic polynomial of degree κ, nonnegative
on Rn− × {}.
�is implies κ = m, m ∈ N.
Central question: Are blowups unique at x ∈ Σ(u)?

Equivalent to Taylor’s expansion:

u(x′, xn) = pxκ (x − x) + o(∣x − x∣κ),

with nonzero pxκ ∈Pκ .

Garofalo, Petrosyan (Purdue) Monotonicity formulas and the singular set University of Chicago 21 / 1



Singular free boundary points: blowups

Any blowup u at a singular point x ∈ Σ(u) belongs to the classPκ for
κ = Nx(+, u):

Pκ = {pκ(x) ∣ ∆pκ = , x ⋅ ∇pκ − κpκ = , pκ(x′, ) ≥ },

i.e. u is a homogeneous harmonic polynomial of degree κ, nonnegative
on Rn− × {}.
�is implies κ = m, m ∈ N.
Central question: Are blowups unique at x ∈ Σ(u)?
Equivalent to Taylor’s expansion:

u(x′, xn) = pxκ (x − x) + o(∣x − x∣κ),

with nonzero pxκ ∈Pκ .

Garofalo, Petrosyan (Purdue) Monotonicity formulas and the singular set University of Chicago 21 / 1



Historical development: classical obstacle problem

Normalized solution of classical obstacle problem:

∆u = χ{u>} in B,  ∈ Γ(u) = ∂{u = }

Singular free boundary points: Hn-density of Λ(u) = {u = } is zero.

�eorem (Taylor expansion at singular points)
At singular points one has the Taylor expansion

u(x) = px(x − x) + o(∣x − x∣)

where px is a nonnegative homogeneous quadratic polynomial with ∆px = .
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Alt-Ca�arelli-Friedman monotonicity formula

First proved by [Caffarelli-Riviere 1977] in dimension 2

Proved in any dimension by [Caffarelli 1998] by using the following
deep result of [Alt-Caffarelli-Friedman 1984]

�eorem (ACF monotonicity formula)
If v± ≥  are continuous subharmonic functions such that v+ ⋅ v− = , then

r ↦ Φ(r, v±) ∶=

r ∫Br

∣∇v+∣
∣x∣n− ∫Br

∣∇v−∣
∣x∣n−↗

Applied to v± = (∂eu)± = max{±∂eu, }
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Weiss’ monotonicity formula

Later, [Weiss 1999] discovered a simpler monotonicity formula, that can
be used to prove the Taylor expansion at singular points.

�eorem (Weiss’ monotonicity formula)
If u is a solution of the classical obstacle problem, then

r ↦ W(r) ∶= 
rn+ ∫Br

∣∇u∣ + u − 
rn+ ∫∂Br

u↗.

In fact,
d
dr

W(r) = 
rn+ ∫∂Br

(x ⋅ ∇u − u).
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Monneau’s monotonicity formula at singular points

More recently, [Monneau 2003] derived yet another monotonicity
formula from that of Weiss.

Tailor made for the study of singular free boundary points (in the
classical obstacle problem).

�eorem (Monneau’s monotonicity formula)
Let u be a solution of the classical obstacle problem and  is a singular free
boundary point.�en the function

r ↦ M(r, u, p) ∶= 
rn+ ∫∂Br

(u − p)↗

for arbitrary nonnegative quadratic polynomial p with ∆p = .
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Back to the thin obstacle problem

In the classical obstacle problem the only frequency that appears is κ = .

�e monotonicity formulas of A-C-F,Weiss andMonneau are only
suitable for κ = .
In the thin obstacle problem, frequencies κ take at least values
κ = m − 

 , m, m ∈ N.
In the thin obstacle problem, Almgren’s monotonicity formula works
regardless of κ.
Initial idea: is there a Monneau type formula based on Almgen’s?
Solution found: there is a one-parameter family of monotonicity formulas
{Wκ}κ≥ of Weiss type, which further generate a family of {Mκ}κ=m of
Monneau type formulas.
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Monneau type formulas.
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Weiss type monotonicity formulas

�eorem (Weiss type monotonicity formulas)

Let u ∈S and κ ≥ .�en

r ↦Wκ(r, u) ∶=


rn−+κ ∫Br
∣∇u∣ − κ

rn−+κ ∫∂Br
u↗.

In fact,
d
dr

Wκ(r, u) =


rn+κ ∫∂Br
(x ⋅ ∇u − κ u).

Wκ ≡ const ⇐⇒ u is homogeneous of degree κ.
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Connection with Almgren’s formula

For u ∈S, let

D(r) ∶= ∫
Br

∣∇u∣, H(r) ∶= ∫
∂Br

u

Almgren’s: N(r) = rD(r)
H(r)

Weiss type: Wκ(r) =


rn−+κ
[rD(r) − κH(r)] = H(r)

rn−+κ
[N(r) − κ]

Both follow from the same identities for D′(r) and H′(r):

H′(r) = n − 
r

H(r) + D(r)

D′(r) = n − 
r

D(r) + ∫
∂Br

uν
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Monneau type monotonicity formulas

�eorem (Monneau type monotonicity formulas)

Let u ∈S with  ∈ Σκ(u), κ = m, m ∈ N.�en for arbitrary pκ ∈Pκ

r ↦ Mκ(r, u, pκ) ∶=


rn−+κ ∫∂Br
(u − pκ)↗.

Recall that for κ = m

Pκ = {pκ(x) ∣ ∆pκ = , x ⋅ ∇pκ − κpκ = , pκ(x′, ) ≥ }.

Important observation:�e polynomial pκ ∈Pκ in the monotonicity
formulaMκ is arbitrary.
Every blowup at a singular point  ∈ Σk(u) is an element ofPκ .
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Taylor expansion at singular points

�eorem (Taylor expansion at singular points)

Let u ∈S.�en for any x ∈ Σκ(u) there exists a nonzero pxκ ∈Pκ such that

u(x) = pxκ (x − x) + o(∣x − x∣κ).

Moreover, the mapping x ↦ pxκ is continuous on Σκ(u).

Idea of the proof.
Assume x = . Let pκ be a blowup of u over a sequence r j → .�en

Mκ(r j , u, pκ)→ .

Monotonicity ofMκ ⇒ Mκ(r, u, pκ)→  as r → .
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Structure of the singular set

De�nition (Dimension at the singular point)

For x ∈ Σκ(u) denote

dx
κ ∶= dim{ξ ∈ Rn− ∣ ξ ⋅ ∇x′ pxκ ≡ },

which we call the dimension of Σκ(u) at x.
For d = , , . . . , n −  de�ne

Σdκ(u) ∶= {x ∈ Σκ(u) ∣ dx
κ = d}.

Note that since pxκ /≡  on Rn− × {} one has

 ≤ dx
κ ≤ n − .
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Structure of the singular set

�eorem (Structure of the singular set)

Let u ∈S.�en every set Σdκ(u), κ = m, m ∈ N, d = , , . . . , n −  is contained
in a countable union of d-dimensional C manifolds.

Proof is a direct corollary of the following three ingredients

the continuous dependence of pxκ on x
Withney’s extension theorem
Implicit function theorem
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Structure of the singular set: example

(, ) x

xu(x′ , ) = x x

Σ
��

Σ

Σ

Σ

Σ

6

-t

Figure: Free boundary for u(x) = x x − (x + x) x + 
 x

 in R with zero thin

obstacle on R × {}.
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Part II

Nonzero thin obstacle: φ ≠ 
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Outline
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Normalization: classSφ

De�nition
LetSφ be the class of solutions of the Signorini problem:

∆v =  in B+
v − φ ≥ , −∂xnv ≥ , (v − φ) ∂xnv =  on B′

 ∈ Γ(v) = ∂Λ(v) = ∂{v = φ}.

Rough idea: Subtract φ from v
Proper way:

▸ Let φ ∈ Ck ,(B′) and φ(x′) = q(x′) + O(∣x′∣k+)
▸ Extend Taylor’s polynomial q(x′) to an harmonic polynomial Q(x) on Rn

such that Q(x′ , xn) = Q(x′ ,−xn).
▸ De�ne

u(x′ , xn) ∶= v(x′ , xn) − Q(x′ , xn) − (φ(x′) − q(x′))
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Normalization: classSk

�is new function u belongs to the following class:

De�nition
We say u ∈Sk(M) i�

∣∆u∣ ≤ M∣x′∣k− in B+
u ≥ , −∂xnu ≥ , u ∂xnu =  on B′

 ∈ Γ(u) = ∂Λ(u) = ∂{u = }.
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Generalized frequency formula

By allowing nonzero obstacles one sacri�ces Almgren’s frequency
formula in its purest form. However, a modi�ed version of it does hold.

�eorem (Generalized frequency formula)

Let u ∈Sk .�ere exist CM >  and rM >  such that

r ↦ Φk(r, u) ∶= (r + CMr) d
dr
logmax{H(r), rn−+k}↗ for  < r < rM

Originally due to [Caffarelli-Salsa-Silvestre 2008] in the case k = 
Proof consists in estimating the error terms.�e truncation of the growth
of needed to absorb those terms.
Most useful when H(r) > rn−+k . In a sense the “precision ” of the study
is limited by regularity of the thin obstacle φ.
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Classi�cation of free boundary points

De�nition
For v ∈Sφ de�ne

Γ(k)κ (v) ∶= {x ∈ Γ(v) ∣ Φk(+, uxk ) = n −  + κ},

where uxk ∈Sk is obtained by properly subtracting the k-th Taylor’s
polynomial of φ at x.

Possible values of κ:  − 
 ≤ κ ≤ k

Important consistency: If κ < k, k′ ∈ N then Γ(k)κ (v) = Γ(k
′
)

κ (v)
�us, for κ < k we can de�ne Γκ(v) = Γ(k)κ (v)
�e higher is the regularity of φ, the more values of κ we can study.
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where uxk ∈Sk is obtained by properly subtracting the k-th Taylor’s
polynomial of φ at x.

Possible values of κ:  − 
 ≤ κ ≤ k

Important consistency: If κ < k, k′ ∈ N then Γ(k)κ (v) = Γ(k
′
)

κ (v)
�us, for κ < k we can de�ne Γκ(v) = Γ(k)κ (v)
�e higher is the regularity of φ, the more values of κ we can study.
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Generalized Weiss type monotonicity formulas

�eorem (Weiss type monotonicity formula)

Let u ∈Sk(M) and κ ≤ k.�en there exist CM and rM >  such that

Wκ(r, u) ∶=


rn−+κ ∫Br
∣∇u∣ − κ

rn−+κ ∫∂Br
u

= 
rn−+κ

D(r) − κ
rn−+κ

H(r).

satis�es
d
dr

Wκ(r) ≥ −CM for  < r < rM .
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Generalized Monneau type monotonicity formulas

�eorem (Monneau type monotonicity formulas)

Let u ∈Sk(M) and suppose that  ∈ Σκ(u) with κ = m < k, m ∈ N.�en there
exist CM and rM >  such that for any pκ ∈Pκ

Mκ(r, u, pκ) =


rn−+κ ∫∂Br
(u − pκ)

satis�es

d
dr

Mκ(r, u, pκ) ≥ −CM ( + ∥pκ∥L(B)) for  < r < rM .
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Taylor expansion at singular points

�eorem (Taylor expansion at singular points)
Let u ∈Sk and  ∈ Σκ(u) for κ = m < k, m ∈ N.�en there exist nonzero
pκ ∈Pκ such that

u(x) = pκ(x) + o(∣x∣κ).

Moreover, if v ∈Sφ with φ ∈ Ck,(B′), x ∈ Σκ(v) and uxk is obtained by
translating to x, then in the Taylor expansion

uxk (x) = pxκ (x) + o(∣x∣κ)

the mapping x ↦ pxκ from Σκ(v) toPκ is continuous.

Garofalo, Petrosyan (Purdue) Monotonicity formulas and the singular set University of Chicago 42 / 1



Structure of the singular set

For κ < k, precisely as before one de�nes the dimension dx
κ of Σκ(v) at a

point x and denotes

Σdκ(v) ∶= {x ∈ Σκ(v) ∣ dx
κ = d}, d = , , . . . , n − .

�eorem (Structure of the singular set)

Let v ∈Sφ with φ ∈ Ck,(B′).�en every set Σdκ(v), κ = m < k, m ∈ N,
d = , , . . . , n −  is contained in a countable union of d-dimensional C

manifolds.
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Open problems

It remains to study the set of nonregular nonsingular points, i.e. the set

Γ(u) ∖ (Γ−  (u) ∪ Σ(u)) = ⋃
κ>− 

Γκ(u) ∖ Σκ(u).

Possible values of κ?

▸ Recall that the values

κ =  − 
 , , . . . , m − 

 , m, . . . ,

do occur. Are these the only values? (Yes in 2D)

Structure of the free boundary?

▸ Γκ(u) = Σκ(u), for κ = m, m ∈ N?
▸ Γκ(u) is locally C for κ = m − 

 , m ∈ N?

However, the true picture may be much more complicated than that.
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