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The thin obstacle problem

o Given

» ) domain in R”

» JM smooth hypersurface,
QM=0Q,uQ_ ’

» ¢ : M — R (thin obstacle), y
g: 0Q — R (boundary values), /‘P
g>¢ondlnoQ. B B

@ Minimize the Dirichlet integral a | N

DQ(”)=[ﬂ|Vu|%lx \}\w/

on the closed convex set

R={ueW?(Q)|u=gonoQ,u>gon.inQ}.
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The thin obstacle problem

o Given
» Q domain in R”
» JM smooth hypersurface,
QM=0Q, U0
» ¢ : .l — R (thin obstacle),
g:0Q — R (boundary values),
g>¢ondlnoQ.

@ Minimize the Dirichlet integral

Dq(u) = f |Vul*dx
Q
on the closed convex set

R={ueW?(Q)|u=gonoQ,u>gon.inQ}.
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The thin obstacle problem

The minimizer u satisfies

@ Au=0 inO\M=0Q,uUQ_
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The thin obstacle problem

The minimizer u satisfies
@ Au=0 inO\M=0Q,uUQ_

e Complementary conditions on .l

u-¢2>0
Oyt +0y-1u >0
(u—9)(0pru+0,-u)=0
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The thin obstacle problem

The minimizer u satisfies
@ Au=0 inO\M=0Q,uUQ_

e Complementary conditions on .l

u-¢2>0
Oyt +0y-1u >0
(u—9)(0pru+0,-u)=0

o Generally, u € CP%(Q. U M)
[CAFFARELLI 1979]
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The thin obstacle problem

The minimizer u satisfies
@ Au=0 inO\M=0Q,uUQ_

e Complementary conditions on .l

u-¢2>0
Oyt +0y-1u >0
(u—9)(0pru+0,-u)=0

o Generally, u € CP%(Q. U M)

C
[CAFFARELLI 1979]

@ Main objects of study
Coincidence set :  A(u):={xeM|u=¢}
Free Boundary: T(u):=dyA(u)
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Signorini problem

@ Boundary thin obstacle problem or Signorini problem: Jl c 0Q
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e Complementary conditions on JL:

u-¢>0, ou>0, (u—¢)ou=0
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Signorini problem

@ Boundary thin obstacle problem or Signorini problem: Jl c 0Q

e Complementary conditions on JL:
u-9>0, ou>0, (u-¢)ou=0

© When Jl is flat, u can be reflected with respect to .l and we will obtain a
solution of the interior thin obstacle problem.
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The thin obstacle problem

The thin obstacle problem arises in a variety of situations of interest for the
applied sciences:
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The thin obstacle problem arises in a variety of situations of interest for the
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e It presents itself in elasticity, when an elastic body is at rest, partially
laying on a surface JL.
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The thin obstacle problem

The thin obstacle problem arises in a variety of situations of interest for the
applied sciences:

e It presents itself in elasticity, when an elastic body is at rest, partially
laying on a surface JL.

o It models the flow of a saline concentration through a semipermeable
membrane when the flow occurs in a preferred direction.
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variation of an underlying asset changes discontinuously.
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The thin obstacle problem

The thin obstacle problem arises in a variety of situations of interest for the
applied sciences:

e It presents itself in elasticity, when an elastic body is at rest, partially
laying on a surface JL.

o It models the flow of a saline concentration through a semipermeable
membrane when the flow occurs in a preferred direction.

o It also arises in financial mathematics in situations in which the random
variation of an underlying asset changes discontinuously.

@ Obstacle problem for the fractional Laplacian (-A)*, 0 <s <1
u-—9>0, (-AYu>0, (u-¢)(-A)Fu>0 inR"™

1

The thin obstacle problem corresponds to s = 5.
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Normalization: class ©

o Assume /L is flat: M = R" x {0}, 9 = 0
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Normalization: class ©
o Assume /L is flat: M = R" x {0}, 9 = 0

o If u solves Signorini problem, after translation, rotation, and scaling, we
may normalize u as follows:
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Normalization: class ©

o Assume /L is flat: M = R" x {0}, 9 = 0
o If u solves Signorini problem, after translation, rotation, and scaling, we
may normalize u as follows:

Definition

We say u is a normalized solution of Signorini problem iff

Au=0 inB}
u>0, —0,u>0, udyu=0 onB
0eTl(u)=0A(u)=0{u=0}.

We denote the class of normalized solutions by &.
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Normalization: class ©

o Assume /L is flat: M = R" x {0}, 9 = 0
o If u solves Signorini problem, after translation, rotation, and scaling, we
may normalize u as follows:

Definition

We say u is a normalized solution of Signorini problem iff

Au=0 inB}
u>0, —0,u>0, udyu=0 onB
0eTl(u)=0A(u)=0{u=0}.

We denote the class of normalized solutions by &.

e Notation: R"” = R"'x (0,+00), B :=B;nR", B|:=Bn(R"'x{0})
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Normalization: class ©

@ Every u € G can be extended from B; to B; by even symmetry

u(x',—xp) = u(x', x,).
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Normalization: class &
@ Every u € G can be extended from B; to B; by even symmetry
u(x',—xp) = u(x', x,).

o The resulting function will satisfy

Au<0 inB,
Au=0 in B~ A(u)
uAu=0 inB;.

Here A(u) = {u =0} c B].
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Normalization: class &
@ Every u € G can be extended from B; to B; by even symmetry
u(x',—xp) = u(x', x,).

o The resulting function will satisfy

Au<0 inB,
Au=0 in B~ A(u)
uAu=0 inB;.

Here A(u) = {u =0} c B].
@ More specifically:

Au =2(0yx,u) %"_I‘A(u) in %' (B;).
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Rescalings and blowups

@ For u € G and r > 0 consider rescalings

u(rx)

(%faB, ”2)

u,(x) =

D=
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Rescalings and blowups

@ For u € G and r > 0 consider rescalings
u(rx)
1
(7 fon, 2)

@ The rescaling is normalized so that

u,(x) =

D=

lurli2 o8,y = 1
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Rescalings and blowups

@ For u € G and r > 0 consider rescalings
u(rx)
1
(7 fon, 2)

@ The rescaling is normalized so that

u,(x) =

D=

lurli2 o8,y = 1

o Limits of subsequences {u,, } for some r; — 0+ are known as blowups.
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Rescalings and blowups

@ For u € G and r > 0 consider rescalings
u(rx)
1
(7 fon, 2)

@ The rescaling is normalized so that

u,(x) =

D=

lurli2 o8,y = 1

o Limits of subsequences {u,, } for some r; — 0+ are known as blowups.

@ Generally the blowups may be different over different subsequences
r=rj—> 0+

Garofalo, Petrosyan (Purdue) Monotonicity formulas and the singular set University of Chicago 10/1



Almgren’s frequency function

Theorem (Monotonicity of the frequency)
Let u € G. Then the frequency function

”fBr [Vul?

/: 9B, u?

Moreover, N(r,u) =k <= x-Vu—«u =0in By, i.e. u is homogeneous of
degree « in Bj.

r— N(r,u):= A for 0<r<l.

@ [ALMGREN 1979] for harmonic u
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"fBr [Vul?
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Moreover, N(r,u) =k <= x-Vu—«u =0in By, i.e. u is homogeneous of
degree « in Bj.

r— N(r,u):= A for 0<r<l.

@ [ALMGREN 1979] for harmonic u
°

[GaroraLo-LIN 1986-87] for divergence form elliptic operators
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Almgren’s frequency function

Theorem (Monotonicity of the frequency)
Let u € G. Then the frequency function

"fBr [Vul?

/: B, u?

Moreover, N(r,u) =k <= x-Vu—«u =0in By, i.e. u is homogeneous of
degree « in Bj.

r— N(r,u):= A for 0<r<l.

@ [ALMGREN 1979] for harmonic u
@ [GaroraLO-LIN 1986-87] for divergence form elliptic operators
°

[ATHANASOPOULOS-CAFFARELLI-SALSA 2007] for thin obstacle problem
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Figure: Solution of the thin obstacle problem Re(x; + i|x,|)*/?
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Figure: Multi-valued harmonic function Re(x; + ix,)*/?

«40>» «Fr» «)» « > Q>



Homogeneity of blowups

@ Uniform estimates on rescalings {u, }:

Al Vi, = N, u,) = N(r,u) < N(Lu).
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Homogeneity of blowups

@ Uniform estimates on rescalings {u, }:
f VP = N(Luy) = N(r,u) < N(1, ).
By

@ Hence, 3 blowup 1 over a sequence r; — 0+

ur; > up in Wh2(B;)
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Homogeneity of blowups

@ Uniform estimates on rescalings {u, }:
f VP = N(Luy) = N(r,u) < N(1, ).
By

@ Hence, 3 blowup 1 over a sequence r; — 0+

ur, > o in Cj, (Bj U BY)
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Homogeneity of blowups

@ Uniform estimates on rescalings {u, }:
f Vi, = N, u,) = N(r,u) < N(Lu).
B
@ Hence, 3 blowup 1 over a sequence r; — 0+
ur, > uo in Cj(Bju BY)

Proposition (Homogeneity of blowups)

Let u € G and the blowup ug be as above. Then, ug is homogeneous of degree
k=N(0+,u).
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Homogeneity of blowups

@ Uniform estimates on rescalings {u, }:
f Vi, = N, u,) = N(r,u) < N(Lu).
B
@ Hence, 3 blowup 1 over a sequence r; — 0+
ur, > uo in Cj(Bju BY)

Proposition (Homogeneity of blowups)

Let u € G and the blowup ug be as above. Then, ug is homogeneous of degree
k=N(0+,u).

Proof.
N(r,ug) =lim; o+ N (7, ur;) = lim, 0+ N(rrj,u) = N(0+,u) O
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Optimal regularity

Lemma (Minimal homogeneity)

Let u € S. Then
N(0+,u) >2- 3.
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Optimal regularity

Lemma (Minimal homogeneity)

Let u € S. Then
N(0+,u)=2-3 or N(0+u)>2.
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Optimal regularity

Lemma (Minimal homogeneity)

Let u € S. Then
N(0+,u)=2-3 or N(0+u)>2.

@ Proved by [SILVESTRE 2006], [ATHANASOPOULOS-CAFFARELLI-SALSA 2007]
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Optimal regularity

Lemma (Minimal homogeneity)

Let u € S. Then
N(0+,u)=2-3 or N(0+u)>2.

@ Proved by [SILVESTRE 2006], [ATHANASOPOULOS-CAFFARELLI-SALSA 2007]

Theorem (Optimal regularity)

1
Letue®. Thenu € Clloi (BjUBY)
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Optimal regularity

Lemma (Minimal homogeneity)

Let u € S. Then
N(0+,u)=2-3 or N(0+u)>2.

@ Proved by [SILVESTRE 2006], [ATHANASOPOULOS-CAFFARELLI-SALSA 2007]

Theorem (Optimal regularity)

1
Letue®. Thenu € Clloi (BjUBY)

@ Originally proved by [ATHANASOPOULOS-CAFFARELLI 2004]
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Optimal regularity

Lemma (Minimal homogeneity)

Let u € S. Then
N(0+,u)=2-3 or N(0+u)>2.

@ Proved by [SILVESTRE 2006], [ATHANASOPOULOS-CAFFARELLI-SALSA 2007]

Theorem (Optimal regularity)

1
Letue®. Thenu € Clloi (BjUBY)

@ Originally proved by [ATHANASOPOULOS-CAFFARELLI 2004]

o Achieved on #3,(x) = Re(x; + ilxn|)%
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Classification of free boundary points

Definition

Givenu € G, forx > 2 — % we define

Te(u) := {xo € T(u) | N*(0+, u) = k).
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Classification of free boundary points

Definition

Givenu € G, fork > 2 — % we define

Te(u) = {xo e T(u) | N*°(0+,u) = «}.

rfBr(XO) ‘vu|2

e Here N*(r,u) = T "
0B;(x0)
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Classification of free boundary points

Definition

Givenu € G, fork > 2 — % we define

Te(u) = {xo e T(u) | N*°(0+,u) = «}.

rfBr(XO) ‘vu|2
faB,(xo) u?

° FK=®whenever2—%<K<2.

e Here N*(r,u) =
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Classification of free boundary points

Definition

Givenu € G, fork > 2 — % we define

To(u):={xo e T(u) | N®(0+,u) = «}.

" Ji, o) VI
fBB,(xo) u?

o I, = & whenever 2 - % <K <2

@ On the other hand, 0 € T () for

e Here N*(r,u) =

i(x) = Re(xy +ilxa|)*, ®=2-1,2,...,2m—3,2m,...
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Classification of free boundary points

Definition

Givenu € G, fork > 2 — % we define

To(u):={xo e T(u) | N®(0+,u) = «}.

" f5, (x0) [Vul?
fBB,(xo) ut

I'. = @ whenever 2 — % <K <2

On the other hand, 0 € T (%) for

Here N*(r,u) =

i(x) = Re(xy +ilxa|)*, ®=2-1,2,...,2m—3,2m,...

In dimension 2, these are the only possible values of «.
Not known in higher dimensions.
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Figure: Graphs of Re(x; + i|x,|) ? and Re(x; + ix,|)®

Garofalo, Petrosyan (Purdue)

Monotonicity formulas and the singular set

University of Chicago

12N Ge

17/1



Regular free boundary points

o Of special interest is the case of the smallest possible value x = 2 - %
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Regular free boundary points

o Of special interest is the case of the smallest possible value x = 2 - %

Definition (Regular points)

For u € & we say that xo € I'(u) is regular if N (0+,u) =2 - 3, ie., if
xo €L, 1(u).
2
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Regular free boundary points

o Of special interest is the case of the smallest possible value x = 2 - %

Definition (Regular points)

For u € & we say that xo € I'(u) is regular if N (0+,u) =2 - 3, ie., if
xo €L, 1(u).
2

@ The following result was proved by
[ATHANASOPOULOS-CAFFARELLI-SALSA 2007].

Theorem (Regularity of the regular set)

Let u € &, then the free boundary T, 1 (u) is locally a C** regular
2
(n - 2)-dimensional surface.
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Singular free boundary points

Definition (Singular points)

Let u € &. We say that xq is a singular point of the free boundary I'(u), if the
coincidence set A(u) has vanishing (n — 1)-dimensional density at xo, i.e.

o A N B(x0)) _
P B )

We denote by 2 (u) the subset of singular points of T'(u).
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Singular free boundary points

Definition (Singular points)

Let u € &. We say that xq is a singular point of the free boundary I'(u), if the
coincidence set A(u) has vanishing (n — 1)-dimensional density at xo, i.e.

o A N B(x0)) _
P B )

We denote by 2 (u) the subset of singular points of T'(u).

@ In terms of rescalings

0eX(u) < 1i131 %" '(A(u,) N B]) = 0.
r—0+
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Singular free boundary points

Definition (Singular points)

Let u € &. We say that xq is a singular point of the free boundary I'(u), if the
coincidence set A(u) has vanishing (n — 1)-dimensional density at xo, i.e.

o A N B(x0)) _
P B )

We denote by 2 (u) the subset of singular points of T'(u).

@ In terms of rescalings

0eX(u) < 1i131 %" '(A(u,) N B]) = 0.
r—0+
@ Also define
Ze(u) =2(u) nT(u).
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Singular free boundary points: example

u(x',0) = x{x3 X,

Z,

z 0,0) X
2 ‘( ) Z» X1

2y
Z,

Figure: Free boundary for u(x) = x{x3 — (x} + x3) x} +

obstacle on R? x {0}.

1

3 x§ in R? with zero thin
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Singular free boundary points: blowups

@ Any blowup uy at a singular point x € (u) belongs to the class B, for
k=N(0+,u):

P = {px(x) [ Apx =0, x- Vp —kpy =0, pK(x/,O) >0},

i.e. ug is a homogeneous harmonic polynomial of degree x, nonnegative
on R"! x {0}.
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@ Any blowup uy at a singular point x € (u) belongs to the class B, for
k=N(0+,u):

P = {px(x) [ Apx =0, x- Vp —kpy =0, pK(x/,O) >0},

i.e. ug is a homogeneous harmonic polynomial of degree x, nonnegative
on R"! x {0}.

o This implies x = 2m, m € N.
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Singular free boundary points: blowups

@ Any blowup uy at a singular point x € (u) belongs to the class B, for
k=N(0+,u):
P = {px(x) | Apc = 0, x - Vpy — kpyc = 0, pe(x',0) 20},

i.e. ug is a homogeneous harmonic polynomial of degree x, nonnegative
on R"! x {0}.
o This implies x = 2m, m € N.

o Central question: Are blowups unique at xo € Z(u)?
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Singular free boundary points: blowups

@ Any blowup uy at a singular point x € (u) belongs to the class B, for
k=N(0+,u):

P = {px(x) [ Apx =0, x- Vp —kpy =0, pK(x/,O) >0},

i.e. ug is a homogeneous harmonic polynomial of degree x, nonnegative
on R"! x {0}.

o This implies x = 2m, m € N.

o Central question: Are blowups unique at xo € Z(u)?

o Equivalent to Taylor’s expansion:

u(xs xn) = pi (x = x0) + o(|x = x0["),

with nonzero p;° € Py.
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Historical development: classical obstacle problem

@ Normalized solution of classical obstacle problem:

Au = ygus0p inBi, 0eT(u)=0{u=0}
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Historical development: classical obstacle problem

@ Normalized solution of classical obstacle problem:

Au = ygus0p inBi, 0eT(u)=0{u=0}

o Singular free boundary points: #"-density of A(u) = {u = 0} is zero.
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Historical development: classical obstacle problem

@ Normalized solution of classical obstacle problem:
Au = ygus0p inBi, 0eT(u)=0{u=0}
o Singular free boundary points: #"-density of A(u) = {u = 0} is zero.

Theorem (Taylor expansion at singular points)

At singular points one has the Taylor expansion

u(x) = p™(x — x0) + o(|x — x0[*)

where p*° is a nonnegative homogeneous quadratic polynomial with Ap™ = 1.

v
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Alt-Caffarelli-Friedman monotonicity formula

o First proved by [CAFFARELLI-RIVIERE 1977] in dimension 2
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@ Proved in any dimension by [CaFraRELLI 1998] by using the following
deep result of [ALT-CAFFARELLI-FRIEDMAN 1984]
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Alt-Caffarelli-Friedman monotonicity formula

o First proved by [CAFFARELLI-RIVIERE 1977] in dimension 2

@ Proved in any dimension by [CaFraRELLI 1998] by using the following
deep result of [ALT-CAFFARELLI-FRIEDMAN 1984]

Theorem (ACF monotonicity formula)

Ifvy > 0 are continuous subharmonic functions such that v, - v_ = 0, then

1 |Vve> |-
o 0w =5 f e o
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Alt-Caffarelli-Friedman monotonicity formula

o First proved by [CAFFARELLI-RIVIERE 1977] in dimension 2

@ Proved in any dimension by [CaFraRELLI 1998] by using the following
deep result of [ALT-CAFFARELLI-FRIEDMAN 1984]

Theorem (ACF monotonicity formula)

Ifvy > 0 are continuous subharmonic functions such that v, - v_ = 0, then

1 |Vve> |-
o 0w =5 f e o

o Applied to vy = (d,u)* = max{+0d,u,0}
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Weiss’ monotonicity formula

o Later, [Weiss 1999] discovered a simpler monotonicity formula, that can
be used to prove the Taylor expansion at singular points.
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Weiss’ monotonicity formula

o Later, [Weiss 1999] discovered a simpler monotonicity formula, that can
be used to prove the Taylor expansion at singular points.

Theorem (Weiss’ monotonicity formula)

If u is a solution of the classical obstacle problem, then

1 2 2 2
rn+2f3,|w| +2”_rn+3 [azaru 2.

d 2

_ 2
EW(T’) = m aBr(x-Vu—Zu) .

r— W(r):=

In fact,
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Monneau’s monotonicity formula at singular points

@ More recently, [MoNNEAU 2003] derived yet another monotonicity
formula from that of Weiss.
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Monneau’s monotonicity formula at singular points

@ More recently, [MoNNEAU 2003] derived yet another monotonicity
formula from that of Weiss.

e Tailor made for the study of singular free boundary points (in the
classical obstacle problem).
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Monneau’s monotonicity formula at singular points

@ More recently, [MoNNEAU 2003] derived yet another monotonicity
formula from that of Weiss.

e Tailor made for the study of singular free boundary points (in the
classical obstacle problem).

Theorem (Monneau’s monotonicity formula)

Let u be a solution of the classical obstacle problem and 0 is a singular free
boundary point. Then the function

1
r— M(r,u,p):= e [aB (u—-p)*/

for arbitrary nonnegative quadratic polynomial p with Ap = 1.
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Back to the thin obstacle problem

o In the classical obstacle problem the only frequency that appears is x = 2.
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Back to the thin obstacle problem
o In the classical obstacle problem the only frequency that appears is x = 2.

@ The monotonicity formulas of A-C-F, Weiss and Monneau are only
suitable for x = 2.
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Back to the thin obstacle problem

o In the classical obstacle problem the only frequency that appears is x = 2.

@ The monotonicity formulas of A-C-F, Weiss and Monneau are only
suitable for x = 2.

@ In the thin obstacle problem, frequencies x take at least values
K:Zm—%,Zm,meN.
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o In the classical obstacle problem the only frequency that appears is x = 2.

@ The monotonicity formulas of A-C-F, Weiss and Monneau are only
suitable for x = 2.

@ In the thin obstacle problem, frequencies x take at least values
K:Zm—%,Zm,meN.

@ In the thin obstacle problem, Almgren’s monotonicity formula works
regardless of .
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Back to the thin obstacle problem

o In the classical obstacle problem the only frequency that appears is x = 2.

@ The monotonicity formulas of A-C-F, Weiss and Monneau are only
suitable for x = 2.

@ In the thin obstacle problem, frequencies x take at least values
K:Zm—%,Zm,meN.

@ In the thin obstacle problem, Almgren’s monotonicity formula works
regardless of .

o Initial idea: is there a Monneau type formula based on Almgen’s?
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Back to the thin obstacle problem

o In the classical obstacle problem the only frequency that appears is x = 2.

@ The monotonicity formulas of A-C-F, Weiss and Monneau are only
suitable for x = 2.

@ In the thin obstacle problem, frequencies x take at least values
K:Zm—%,Zm,meN.

@ In the thin obstacle problem, Almgren’s monotonicity formula works
regardless of .

o Initial idea: is there a Monneau type formula based on Almgen’s?

@ Solution found: there is a one-parameter family of monotonicity formulas
{ Wy }xs0 of Weiss type, which further generate a family of { My } -2, of
Monneau type formulas.
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Weiss type monotonicity formulas

Theorem (Weiss type monotonicity formulas)

Letu € S and x > 0. Then

r = Wk(r, Ll) = rn_2+2K /;r |Vu| - rn—l+2K /(;Bru /'

In fact,
d 2 5
EWK(r,u) = /;Br(x-Vu —Ku)-.
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Weiss type monotonicity formulas

Theorem (Weiss type monotonicity formulas)

Letu € S and x > 0. Then

r = Wk(r, Ll) = rn_2+2K /;r |Vu| - rn—l+2K /(;Bru /'

In fact,
d 2 5
EWK(T’,M) = /;Br(x-Vu —Ku)-.

o W, = const <= u is homogeneous of degree x.
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Connection with Almgren’s formula

@ Forue S, let

D(r) = /B,W”'z’ H(r) = /aB,”z
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Connection with Almgren’s formula

@ Forue S, let

D(r) = /B,W”'z’ H(r) = /aB,”z

rD(r)
H(r)

o Almgrens: N(r)=
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Connection with Almgren’s formula

@ Forue S, let

D(r) = /B,W”'z’ H(r) = /aB,”z

o Almgrens: N(r)= %
e (D)~ kH()] = T ()

o Weiss type: W, (r) =
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Connection with Almgren’s formula

@ Forue S, let

D(r) = /B,W”'z’ H(r) = /aB,”z

rD(r)
H(r)

o Weiss type: W, (r) =

o Almgrens: N(r)=

D(r) ~kH()] = ) [N(r) ]

@ Both follow from the same identities for D’(r) and H'(r):

rn—1+2x |:

H'(r) = HT_lH(r) +2D(r)
n-2

D'(r)= "= D(r)+2faBru12,
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Monneau type monotonicity formulas

Theorem (Monneau type monotonicity formulas)

Let u € & with 0 € 2, (u), « = 2m, m € N. Then for arbitrary p, € Py

1
re— M (r,u, py) = vl (u—pe)* 7.
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Monneau type monotonicity formulas

Theorem (Monneau type monotonicity formulas)

Let u € & with 0 € 2, (u), « = 2m, m € N. Then for arbitrary p, € Py

1
re M (r,u, pyx) ::m./BB (u—pe)* 7.

@ Recall that for ¥ = 2m

B = {px(x) | Apc =0, x-Vpx —kpx =0, pe(x',0)>0}.
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Monneau type monotonicity formulas

Theorem (Monneau type monotonicity formulas)

Let u € & with 0 € 2, (u), « = 2m, m € N. Then for arbitrary p, € Py

1
re M (r,u, pyx) ::m_/aB (u—pe)* 7.

@ Recall that for ¥ = 2m

B = {px(x) | Apc =0, x-Vpx —kpx =0, pe(x',0)>0}.

o Important observation: The polynomial p, € B in the monotonicity
formula M, is arbitrary.
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Monneau type monotonicity formulas

Theorem (Monneau type monotonicity formulas)

Let u € & with 0 € 2, (u), « = 2m, m € N. Then for arbitrary p, € Py

1
re M (r,u, pyx) ::m./BB (u—pe)* 7.

@ Recall that for ¥ = 2m

B = {px(x) | Apc =0, x-Vpx —kpx =0, pe(x',0)>0}.

o Important observation: The polynomial p, € B in the monotonicity
formula M, is arbitrary.

e Every blowup at a singular point 0 € X, (u) is an element of ;.
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Taylor expansion at singular points

Theorem (Taylor expansion at singular points)

Let u € &. Then for any xy € 2, (u) there exists a nonzero p}° € B such that

u(x) = pi’ (x = x0) + o(|x = xo[").

Moreover, the mapping xo — py° is continuous on X, (u).
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Taylor expansion at singular points

Theorem (Taylor expansion at singular points)
Let u € &. Then for any xy € 2, (u) there exists a nonzero p}° € B such that
u(x) = pi’ (x = xo0) + o(|x = xo*).

Moreover, the mapping xo — py° is continuous on X, (u).

Idea of the proof.

Assume x = 0. Let p, be a blowup of u over a sequence r; — 0. Then
M (rj,u, px) = 0.

Monotonicity of M, = M (r,u,px) =0 asr—0.
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Structure of the singular set

Definition (Dimension at the singular point)
For x¢ € 2, (u) denote
d¥ = dim{& e R"™ | & V,up = 0},

which we call the dimension of 2, (1) at x,.
Ford =0,1,...,n — 2 define

9 (u) := {x0 € Zo(u) | d¥ = d}.
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Structure of the singular set

Definition (Dimension at the singular point)
For x¢ € 2, (u) denote
d¥ = dim{& e R"™ | & V,up = 0},

which we call the dimension of 2, (1) at x,.
Ford =0,1,...,n — 2 define

9 (u) := {x0 € Zo(u) | d¥ = d}.

@ Note that since pi° # 0 on R"™! x {0} one has

0<d® <n-2.
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Structure of the singular set

Theorem (Structure of the singular set)

Let u € S. Then every set Zz(u), k=2mmeN,d=0,1,...,n— 2 is contained

in a countable union of d-dimensional C' manifolds.

Garofalo, Petrosyan (Purdue) Monotonicity formulas and the singular set
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Structure of the singular set

Theorem (Structure of the singular set)

Let u € G. Then every set Zz(u), k=2mmeN,d=0,1,...,n—2is contained
in a countable union of d-dimensional C' manifolds.

Proof is a direct corollary of the following three ingredients
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Structure of the singular set

Theorem (Structure of the singular set)

Let u € G. Then every set Zﬁ(u), k=2mmeN,d=0,1,...,n—2is contained
in a countable union of d-dimensional C' manifolds.

Proof is a direct corollary of the following three ingredients

e the continuous dependence of p;° on x
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Structure of the singular set

Theorem (Structure of the singular set)

Let u € G. Then every set Zz(u), k=2mmeN,d=0,1,...,n—2is contained

in a countable union of d-dimensional C' manifolds.

Proof is a direct corollary of the following three ingredients
e the continuous dependence of p;° on x

e Withney’s extension theorem
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Structure of the singular set

Theorem (Structure of the singular set)

Let u € G. Then every set Zz(u), k=2mmeN,d=0,1,...,n—2is contained

in a countable union of d-dimensional C' manifolds.

Proof is a direct corollary of the following three ingredients
e the continuous dependence of p;° on x
e Withney’s extension theorem

o Implicit function theorem
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Structure of the singular set: example

u(x',0) = x{x3 X,

> ‘(o,o) 3 x

DX
b}

Figure: Free boundary for u(x) = x{x3 — (x} + x3) x} +

obstacle on R? x {0}.

1

3 x§ in R? with zero thin
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Part II

Nonzero thin obstacle: ¢ # 0
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Normalization: class &¢

Definition

Let G be the class of solutions of the Signorini problem:
Av=0 inBj}

v—9>0, -0,v>0, (v-¢)ds,v=0 onB|
0eT(v)=0A(v)=0{v =9}
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Normalization: class &¢

Definition

Let G be the class of solutions of the Signorini problem:
Av=0 inBj}

v—9>0, -0,v>0, (v-¢)ds,v=0 onB|
0eT(v)=0A(v)=0{v =9}

@ Rough idea: Subtract ¢ from v
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Normalization: class &¢

Definition

Let G be the class of solutions of the Signorini problem:
Av=0 inBj}

v—9>0, -0,v>0, (v-¢)ds,v=0 onB|
0eT(v)=0A(v)=0{v =9}

@ Rough idea: Subtract ¢ from v
@ Proper way:
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Normalization: class &¢

Definition

Let G be the class of solutions of the Signorini problem:
Av=0 inBj}

v—9>0, -0,v>0, (v-¢)ds,v=0 onB|
0eT(v)=0A(v)=0{v =9}

@ Rough idea: Subtract ¢ from v
@ Proper way:
> Letg e CA(B]) and p(x) = q(x") + O(|x'[**")
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Normalization: class &¢

Definition

Let G be the class of solutions of the Signorini problem:
Av=0 inBj}

v—9>0, -0,v>0, (v-¢)ds,v=0 onB|
0eT(v)=0A(v)=0{v =9}

@ Rough idea: Subtract ¢ from v
@ Proper way:
» Let 9 € CH1(B]) and ¢(x') = q(x") + O(|x'|¥*1)
» Extend Taylor’s polynomial g(x") to an harmonic polynomial Q(x) on R”"
such that Q(x’, x,) = Q(x', —x,).
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Normalization: class &¢

Definition

Let G be the class of solutions of the Signorini problem:
Av=0 inBj}

v—9>0, -0,v>0, (v-¢)ds,v=0 onB|
0eT(v)=0A(v)=0{v =9}

@ Rough idea: Subtract ¢ from v
@ Proper way:
» Let ¢ € CP(B!) and ¢(x') = g(x") + O(|x'|F*1)
» Extend Taylor’s polynomial g(x") to an harmonic polynomial Q(x) on R”"
such that Q(x’, x,) = Q(x', —x,).
» Define

u(x', x,) = v(x'sxn) = Q(x", x0) = (9(x") = q(x))
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Normalization: class &y

o This new function u belongs to the following class:
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Normalization: class &y
o This new function u belongs to the following class:

Definition
We say u € S (M) iff

|Au| < M|x'|*! in B}
u>0, —0,u>0, udy,u=0 onB
0eTl(u)=0A(u)=0{u=0}.
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Generalized frequency formula

@ By allowing nonzero obstacles one sacrifices Almgren’s frequency
formula in its purest form. However, a modified version of it does hold.
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Generalized frequency formula

@ By allowing nonzero obstacles one sacrifices Almgren’s frequency
formula in its purest form. However, a modified version of it does hold.

Theorem (Generalized frequency formula)

Let u € Sy. There exist Cpr > 0 and rp; > 0 such that

r—> O(r,u) = (r+ CMrz)dilogmax {H(r),r”f”Zk} A forO<r<ry
r
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Generalized frequency formula

@ By allowing nonzero obstacles one sacrifices Almgren’s frequency
formula in its purest form. However, a modified version of it does hold.

Theorem (Generalized frequency formula)

Let u € Sy. There exist Cpr > 0 and rp; > 0 such that

r—> O(r,u) = (r+ CMrz)dilogmax {H(r),r”f”Zk} A forO<r<ry
r

@ Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the case k = 2
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Generalized frequency formula

@ By allowing nonzero obstacles one sacrifices Almgren’s frequency
formula in its purest form. However, a modified version of it does hold.

Theorem (Generalized frequency formula)

Let u € Sy. There exist Cpr > 0 and rp; > 0 such that

r—> O(r,u) = (r+ CMrZ)dilogmax {H(r),r”f”Zk} A forO<r<ry
r

@ Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the case k = 2

@ Proof consists in estimating the error terms. The truncation of the growth
of needed to absorb those terms.
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Generalized frequency formula

@ By allowing nonzero obstacles one sacrifices Almgren’s frequency
formula in its purest form. However, a modified version of it does hold.

Theorem (Generalized frequency formula)

Let u € Sy. There exist Cpr > 0 and rp; > 0 such that

r—> O(r,u) = (r+ CMrZ)dilogmax {H(r),r”f”Zk} A forO<r<ry
r

@ Originally due to [CAFFARELLI-SALSA-SILVESTRE 2008] in the case k = 2

@ Proof consists in estimating the error terms. The truncation of the growth
of needed to absorb those terms.

@ Most useful when H(r) > r""1*2¥_In a sense the “precision ” of the study
is limited by regularity of the thin obstacle ¢.
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Classification of free boundary points

Definition
For v € © define

I (v) = {x0 € T(v) | B (0+, %) = n —1+ 2},

where 1, € & is obtained by properly subtracting the k-th Taylor’s
polynomial of ¢ at xo.
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Classification of free boundary points

Definition
For v € © define

r;gk)(V) ={x0eT(v) | (Dk(0+,u’]§°) =n-1+2«},

where 1, € & is obtained by properly subtracting the k-th Taylor’s
polynomial of ¢ at xo.

@ Possible valuesof k: 2 — = <x <k
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Classification of free boundary points

Definition
For v € © define

r’gk)(v) ={x0eT(v) | (Dk(0+,uz°) =n-1+2«},

where 1, € & is obtained by properly subtracting the k-th Taylor’s
polynomial of ¢ at xo.

@ Possible values of k: 2 — % <k<k

o Important consistency: If k < k, k" € N then F,gk)(v) = l“,gk,)(v)
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Classification of free boundary points

Definition
For v € © define

r;gk)(v) ={x0eT(v) | ®k(0+’”zo) =n-1+2«},

where 1, € & is obtained by properly subtracting the k-th Taylor’s
polynomial of ¢ at xo.

@ Possible values of k: 2 — % <k<k

o Important consistency: If k < k, k" € N then F,gk)(v) = l“,gk,)(v)
@ Thus, for k < k we can define T\ (v) = F,Ek)(v)
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Classification of free boundary points
Definition
For v € &7 define
r;gk)(v) ={x0eT(v) | ®k(0+’”zo) =n-1+2«},

where 1, € & is obtained by properly subtracting the k-th Taylor’s
polynomial of ¢ at xo.

@ Possible values of x: 2 — % <k<k
o Important consistency: If k < k, k" € N then F,gk)(v) = l“,gk,)(v)
@ Thus, for k < k we can define T\ (v) = F,Ek)(v)

@ The higher is the regularity of ¢, the more values of ¥ we can study.
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Generalized Weiss type monotonicity formulas

Theorem (Weiss type monotonicity formula)

Let u € G (M) and x < k. Then there exist Cpr and rp; > 0 such that

2
W(T, = - n—2+2K f | 7‘” n—1+2x LBru

K
- 7,11—2+21c D(T) B pn—1+2x H(?‘)
satisfies

diWK(r) >-Cy forO<r<ry.
r
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Generalized Monneau type monotonicity formulas

Theorem (Monneau type monotonicity formulas)

Let u € S (M) and suppose that 0 € . (u) with k = 2m < k, m € N. Then there
exist Cpg and ry; > 0 such that for any p, € P
__1 2
M (r,u, p) = L%k aB,(u = px)
satisfies

d

drMK(r, u, p) > —Coyr (1+ | pellizsy))  for0<r<ry.
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Taylor expansion at singular points

Theorem (Taylor expansion at singular points)

Let u € Sy and 0 € 2 (u) for k = 2m < k, m € N. Then there exist nonzero
D« € By such that

u(x) = pe(x) + o(|x[*).

Moreover, if v e G with ¢ € CEY(B]), xo € Z,(v) and u,* is obtained by
translating to x, then in the Taylor expansion

" (%) = pi’ (x) + o(|x[")

the mapping xo — p;° from Z,.(v) to Py is continuous.
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Structure of the singular set

@ For « < k, precisely as before one defines the dimension d;° of Z,(v) ata
point x( and denotes

23(v) = {xo e Ze(v) |d0 =d}, d=0,1,...,n—2.
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Structure of the singular set

@ For « < k, precisely as before one defines the dimension d;° of Z,(v) ata

point x( and denotes

23(v) = {xo e Ze(v) |d0 =d}, d=0,1,...,n—2.

Theorem (Structure of the singular set)

Let v € &% with ¢ € C*Y(BY). Then every set 24(v), k = 2m < k, m € N,

d=0,1,...,n—2is contained in a countable union of d-dimensional C'
manifolds.
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Open problems

o It remains to study the set of nonregular nonsingular points, i.e. the set

T'(u) N (Fz_%(u) UZ(u))= |J Te(u) N Z(u).

1
K>2 2
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Open problems

o It remains to study the set of nonregular nonsingular points, i.e. the set

T'(u) N (Fz_%(u) UZ(u))= |J Te(u) N Z(u).

1
K>2 2

@ Possible values of «?
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Open problems

o It remains to study the set of nonregular nonsingular points, i.e. the set
Tu) N (s () uZ(u) = U Te(u) N Ze(u).
2 K>2—%
@ Possible values of x?

» Recall that the values

K=2-3,2,...,2m-1,2m,...,

1
-2

do occur. Are these the only values? (Yes in 2D)
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o It remains to study the set of nonregular nonsingular points, i.e. the set

T'(u) N (Fz_%(u) UZ(u))= |J Te(u) N Z(u).

K>2—%
@ Possible values of «?

» Recall that the values

K=2-3,2,...,2m-1,2m,...,

_1
2 bl
do occur. Are these the only values? (Yes in 2D)

o Structure of the free boundary?
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Open problems

o It remains to study the set of nonregular nonsingular points, i.e. the set

T'(u) N (Fz_%(u) UZ(u))= |J Te(u) N Z(u).

1
K>2 2

@ Possible values of «?
» Recall that the values

K=2-3,2,...,2m-1,2m,...,

_1
2 bl
do occur. Are these the only values? (Yes in 2D)

o Structure of the free boundary?
» To(u) =2(u), for x=2m, meN?
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Open problems

o It remains to study the set of nonregular nonsingular points, i.e. the set

C(u) N (T () uZ(u) = (U Te(u) N Ze(u).
2 K>2—%
@ Possible values of «?
» Recall that the values

K=2-3,2,...,2m-1,2m,...,

1
-1
do occur. Are these the only values? (Yes in 2D)
o Structure of the free boundary?
» To(u) =2(u), for x=2m, meN?

» Ti(u)islocally C' for k = 2m — 1, m e N?
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Open problems

o It remains to study the set of nonregular nonsingular points, i.e. the set

C(u) N (T () uZ(u) = (U Te(u) N Ze(u).
2 K>2—%
@ Possible values of «?
» Recall that the values

K=2-3,2,...,2m-1,2m,...,

1
-1,
do occur. Are these the only values? (Yes in 2D)
o Structure of the free boundary?
» To(u) =2(u), for x=2m, meN?
» Ti(u)islocally C' for k = 2m — 1, m e N?
e However, the true picture may be much more complicated than that.
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