MA52300 Fall 2025

Homework Assignment 7 – Solutions

1.

Given a C2 function u defined on a set UβŠ‚β„nβˆ–{0}, we define the function 𝒦⁒[u] on Uβˆ— by

𝒦⁒[u]⁒(x)=|x|2βˆ’n⁒u⁒(xβˆ—),where ⁒xβˆ—=x/|x|2,Uβˆ—={xβˆ—:x∈U};

the function 𝒦⁒[u] is called the Kelvin transform of u. Prove that

Δ⁒(𝒦⁒[u])=𝒦⁒[|x|4⁒Δ⁒u]in ⁒Uβˆ—.

In particular, if u is harmonic in U, then 𝒦⁒[u] is harmonic in Uβˆ—.

Hint: 1) Prove that for any polynomial p in ℝn homogeneous of degree m, one has

Δ⁒(|x|2βˆ’nβˆ’2⁒m⁒p)=|x|2βˆ’nβˆ’2⁒m⁒Δ⁒p,

which is equivalent to Δ⁒(𝒦⁒[p])=𝒦⁒[|x|4⁒Δ⁒p]. Start by computing Δ⁒(|x|k⁒p) for arbitrary k and use that x⁒D⁒p⁒(x)=m⁒p⁒(x) by homogeneity. 2) Conclude that the statement of the problem holds for any polynomial p, not necessarily homogeneous, and then use the density of polynomials in C2 norm on compact subsets of U.

Solution.

Let pm be a homogeneous polynomial of degree m. We then can compute

𝒦⁒[pm]⁒(x)=|x|2βˆ’n⁒pm⁒(x/|x|2)=|x|2βˆ’nβˆ’2⁒m⁒pm⁒(x).

Noting that |x|4⁒Δ⁒pm is a homogeneous polynomial of degree m+2, we will also have

𝒦⁒[|x|4⁒Δ⁒pm]⁒(x)=|x|2βˆ’n⁒|x/|x|2|4⁒(Δ⁒pm)⁒(x/|x|2)=|x|2βˆ’nβˆ’2⁒m⁒Δ⁒pm⁒(x).

Next, let k be a real number and note that

Δ⁒(|x|k⁒pm⁒(x))=Δ⁒(|x|k)⁒pm⁒(x)+2⁒D⁒(|x|k)⁒D⁒pm⁒(x)+|x|k⁒Δ⁒pm⁒(x),

which is a particular case of a more general formula

Δ⁒(u⁒v)=(Δ⁒u)⁒v+2⁒D⁒u⁒D⁒v+u⁒(Δ⁒v).

Now, following the same computations as in the derivation of the fundamental solution, we have

D⁒(|x|k)=k⁒|x|kβˆ’2⁒x,Δ⁒(|x|k)=k⁒(kβˆ’2+n)⁒|x|kβˆ’2,xβ‰ 0

which gives

Δ⁒(|x|k⁒pm⁒(x))=k⁒(kβˆ’2+n)⁒|x|kβˆ’2⁒pm⁒(x)+2⁒k⁒|x|kβˆ’2⁒x⁒D⁒pm⁒(x)+|x|k⁒Δ⁒pm⁒(x)=k⁒(kβˆ’2+n)⁒|x|kβˆ’2⁒pm⁒(x)+2⁒k⁒m⁒|x|kβˆ’2⁒pm⁒(x)+|x|k⁒Δ⁒pm⁒(x)=k⁒(kβˆ’2+n+2⁒m)⁒|x|kβˆ’2⁒pm⁒(x)+|x|k⁒Δ⁒pm⁒(x),

where we have used that x⁒D⁒pm⁒(x)=m⁒pm⁒(x). Taking, k=2βˆ’nβˆ’2⁒m, we then have

Δ⁒(|x|2βˆ’nβˆ’2⁒m⁒pm⁒(x))=|x|2βˆ’nβˆ’2⁒m⁒Δ⁒pm⁒(x),

which from the earlier computation is equivalent to

Δ⁒(𝒦⁒[pm])=𝒦⁒[|x|4⁒Δ⁒pm],xβ‰ 0.

Now, noticing that that the Kelvin transform is a linear operator and decomposing any polynomial p of degree N into a finite sum p=βˆ‘m=0Npm, where pm is now a homogeneous polynomial of degree m, we will have that the statement of the problem holds for any polynomial p. Finally, using the density of polynomials in C2 norm locally in U, and taking a sequence of polynomials pjβ†’u in C2⁒(V) for all V⋐U, we will have

Δ⁒(𝒦⁒[u])=limjβ†’βˆžΞ”β’(𝒦⁒[pj])=limjβ†’βˆžπ’¦β’[|x|4⁒Δ⁒pj]=𝒦⁒[|x|4⁒Δ⁒u]

locally uniformly in Uβˆ—, where we have used that 𝒦⁒[pj]→𝒦⁒[u] in C2⁒(Vβˆ—) for any V⋐U. ∎

2.

Let Ξ© be a bounded domain with C1 boundary, g∈C⁒(βˆ‚Ξ©) and f∈C⁒(Ω¯). Consider then the so-called Neumann problem

(βˆ—) βˆ’Ξ”β’u=finΒ β’Ξ©βˆ‚uβˆ‚Ξ½=gonΒ β’βˆ‚Ξ©,

where Ξ½ is the outer normal on βˆ‚Ξ©. Show that the solution of (βˆ— β€£ 2) in C2⁒(Ξ©)∩C1⁒(Ω¯) is unique up to a constant; i.e., if u1 and u2 are both solutions of (βˆ— β€£ 2), then u2=u1+c⁒o⁒n⁒s⁒t in Ξ©.

Hint: Look at the proof of the uniqueness for the Dirichlet problem by energy methods, [E, 2.2.5a].

Solution.

The proof is almost a verbatim repetition of that of TheoremΒ 16 in [E, 2.2.5a].

Set w=u2βˆ’u1. Then Δ⁒w=0 in Ξ© and βˆ‚w/βˆ‚Ξ½=0 on βˆ‚Ξ©. Integrating by parts, we obtain

∫Ω|D⁒w|2⁒𝑑x=βˆ’βˆ«Ξ©w⁒Δ⁒w⁒𝑑x+βˆ«βˆ‚Ξ©wβ’βˆ‚wβˆ‚Ξ½β’π‘‘S=0.

Thus, D⁒w≑0 in Ξ© and, since Ξ© is connected11 1 By definition, a domain is a connected open set, we deduce w=u2βˆ’u1≑c⁒o⁒n⁒s⁒t in Ξ©. This completes the proof. ∎

3.

Write down an explicit formula for a solution of

{utβˆ’Ξ”β’u+c⁒u=fin ⁒ℝnΓ—(0,∞)u=gon ⁒ℝnΓ—{t=0},

where cβˆˆβ„.

[Hint: Rewrite the problem in terms of v⁒(x,t):=ec⁒t⁒u⁒(x,t)]

Solution.

Following the hint let v⁒(x,t)=ec⁒t⁒u⁒(x,t). Then also

u⁒(x,t)=eβˆ’c⁒t⁒v⁒(x,t).

Furthermore,

ut =βˆ’c⁒eβˆ’c⁒t⁒v+eβˆ’c⁒t⁒vt
Δ⁒u =eβˆ’c⁒t⁒Δ⁒v

Then the equation

utβˆ’Ξ”β’u+c⁒u=f

takes the form

eβˆ’c⁒t⁒(βˆ’c⁒v+vtβˆ’Ξ”β’v+c⁒v)=f

or, equivalently,

(1) vtβˆ’Ξ”β’v=ec⁒t⁒f.

Besides, at the initial time we have

(2) v⁒(x,0)=u⁒(x,0)=g⁒(x).

A solution to problem (1)–(2) is given then by the formula

v⁒(x,t)=βˆ«β„ng⁒(y)⁒Φ⁒(xβˆ’y,t)⁒𝑑y+∫0tβˆ«β„nec⁒s⁒f⁒(y,s)⁒Φ⁒(xβˆ’y,tβˆ’s).

This gives

u⁒(x,t) =βˆ«β„ng⁒(y)⁒eβˆ’c⁒t⁒Φ⁒(xβˆ’y,t)⁒𝑑y+∫0tβˆ«β„nf⁒(y,s)⁒eβˆ’c⁒(tβˆ’s)⁒Φ⁒(xβˆ’y,tβˆ’s)
=βˆ«β„ng⁒(y)⁒Φc⁒(xβˆ’y,t)⁒𝑑y+∫0tβˆ«β„nf⁒(y,s)⁒Φc⁒(xβˆ’y,tβˆ’s),

where

Ξ¦c⁒(x,t)=eβˆ’c⁒t⁒Φ⁒(x,t)=1(4⁒π⁒t)n/2⁒eβˆ’c⁒tβˆ’|x|24⁒t.

(The latter function can be actually considered as the fundamental solution of the equation utβˆ’Ξ”β’u+c⁒u=0.) ∎