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Abstract. We prove that the Cuntz semigroup is recovered functorially from the El-
liott invariant for a large class of C�-algebras. In particular, our results apply to the largest
class of simple C�-algebras for which K-theoretic classification can be hoped for. This work
has three significant consequences. First, it provides new conceptual insight into Elliott’s
classification program, proving that the usual form of the Elliott conjecture is equivalent,
among Z-stable algebras, to a conjecture which is in general substantially weaker and for
which there are no known counterexamples. Second and third, it resolves, for the class of
algebras above, two conjectures of Blackadar and Handelman concerning the basic struc-
ture of dimension functions on C�-algebras. We also prove in passing that the Cuntz-
Pedersen semigroup is recovered functorially from the Elliott invariant for a large class of
simple unital C�-algebras.

1. Introduction

The Cuntz semigroup WðAÞ of a C�-algebra A is an analogue for positive elements of
the semigroup of Murray-von Neumann equivalence classes of projections VðAÞ. It is
deeply connected to the classification program for simple separable nuclear C�-algebras:
such algebras cannot be classified up to isomorphism by their K-theory and traces if the
natural partial order on the Cuntz semigroup is not determined by traces in a weak sense
([20]), and the converse—known to hold in some cases ([25])—may well hold in great gen-
erality. One thus expects the structure of the Cuntz semigroup to be implicit in the K-
theory and traces of su‰ciently well-behaved C�-algebras, despite the fact that computing
the Cuntz semigroup of an Abelian C�-algebra is totally infeasible (see [20], Lemma 5.1).

The largest class of simple separable nuclear C�-algebras which one may hope will be
classified by the Elliott invariant of K-theoretic data consists of those algebras which ab-
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sorb the Jiang-Su algebra Z tensorially. Such algebras are said to be Z-stable. It is ex-
pected, but not yet known, that simple unital approximately homogeneous (AH) algebras
of slow dimension growth will be Z-stable. Before stating the first of our two main results,
we recall that the Elliott invariant of a unital C�-algebra A is the 4-tuple

EllðAÞ :¼
�
ðK0A;K0Aþ; ½1A�Þ;K1A;TA; rA

�
;

where the K-groups are the Banach algebra ones, TA is the tracial state space, and rA is the
pairing between K0 and TA given by evaluating a K0-class at a trace.

Theorem A. Let A be a simple unital finite C�-algebra which is either exact and Z-

stable or AH of slow dimension growth. Then, there is a functor which recovers WðAÞ from

the Elliott invariant EllðAÞ.

The functor of Theorem A is defined in Section 2, and describes WðAÞ in terms of the
Murray-von Neumann semigroup VðAÞ and certain a‰ne functions on the tracial state
space TðAÞ of A. It computes WðAÞ for the majority of our stock-in-trade simple separable
nuclear C�-algebras.

The usual form of Elliott’s classification conjecture states that isomorphisms between
the Elliott invariants of simple separable nuclear C�-algebras are liftable to isomorphisms
between the algebras. An immediate consequence of Theorem A is that Elliott’s conjecture
is equivalent, among Z-stable algebras, to a formally weaker conjecture: isomorphisms at
the level of the invariant

�
Ellð�Þ;Wð�Þ

�
are liftable to isomorphisms at the level of algebras.

Outside the class of Z-stable algebras, there are no known counterexamples to this weaker
conjecture. Thus, we reconcile the necessity of the Cuntz semigroup in any e¤ort to classify
general separable nuclear C�-algebras with its absence from known classification results,
and provide a new point of departure for proving classification theorems for Z-stable alge-
bras. It should be noted that the Cuntz semigroup stands out among candidates for aug-
menting the Elliott invariant. Even the addition of all continuous homotopy invariant func-
tors and all stable invariants to EllðAÞ does not yield a complete invariant ([21]).

Our second main result concerns two conjectures of Blackadar and Handelman on
the structure of dimension functions on C�-algebras, put forth in the early 1980s (see Sec-
tion 2 for terminology):

(i) The lower semicontinuous dimension functions are dense in the space of all di-
mension functions.

(ii) The a‰ne space of dimension functions is a simplex.

We will refer to these as the Blackadar-Handelman conjectures for brevity. Blackadar and
Handelman proved that (i) holds for commutative C�-algebras, but did not prove (ii) in any
case. The only further progress on these conjectures was made by the second named author
in [13], Corollary 4.4, where (ii) was confirmed for the class of unital C�-algebras with real
rank zero and stable rank one. We obtain:

Theorem B. Let A be a simple unital finite C�-algebra which is either exact and Z-

stable or AH of slow dimension growth. Then, the Blackadar-Handelman conjectures hold for

A, and the simplex of dimension functions on A is in fact a Choquet simplex.
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Theorem B applies, in particular, to several classes of Z-stable ASH algebras (see [24],
Section 4). The Z-stability of these algebras can only be established using the fact that they
satisfy the Elliott conjecture. Thus, our confirmation of the Blackadar-Handelman conjec-
tures for these algebras constitutes a bona fide application of K-theoretic classification
theorems.

The proofs of Theorems A and B use the fact that the C�-algebras in question have
strict comparison of positive elements in a crucial way. (This property says roughly that the
order structure on the Cuntz semigroup is determined by traces—see Section 2 for an exact
definition.) For the Z-stable algebras we consider, this property was established by M.
Rørdam in [16], building on his earlier work in [15]. For our AH algebras, strict compari-
son was established by the third named author in [22].

Acknowledgement. Most of this work was carried out while the first and second
named authors visited the third at the University of New Brunswick. We gratefully ac-
knowledge the support and hospitality extended by UNB during our visit.

2. Preliminaries and notation

Cuntz equivalence. From here on we make the blanket assumption that all C�-
algebras are separable unless otherwise stated or obviously false.

Let A be a C�-algebra, and let MnðAÞ denote the n � n matrices whose entries are
elements of A. If A ¼ C, then we simply write Mn. Let MyðAÞ denote the algebraic limit
of the direct system

�
MnðAÞ; fn

�
, where fn : MnðAÞ ! Mnþ1ðAÞ is given by

a 7! a 0

0 0

� �
:

Let MyðAÞþ (resp. MnðAÞþ) denote the positive elements in MyðAÞ (resp. MnðAÞ). For

positive elements a and b in MyðAÞ, write al b to denote the element
a 0

0 b

� �
, which is

also positive in MyðAÞ.

Given a; b A MyðAÞþ, we say that a is Cuntz subequivalent to b (written a6 b) if
there is a sequence ðvnÞyn¼1 of elements of MyðAÞ such that

kvnbv�
n � ak ���!n!y

0:

We say that a and b are Cuntz equivalent (written a@ b) if a6 b and b6 a. This relation is
an equivalence relation, and we write hai for the equivalence class of a. The set

WðAÞ :¼ MyðAÞþ=@

becomes a positively ordered Abelian monoid when equipped with the operation

haiþ hbi ¼ hal bi

and the partial order

193Brown, Perera and Toms, The Cuntz semigroup

Brought to you by | Purdue University Libraries
Authenticated | 172.16.1.226

Download Date | 8/7/12 11:20 PM



haie hbi , a6 b:

In the sequel, we refer to this object as the Cuntz semigroup of A.

Given a in MyðAÞþ and e > 0, we denote by ða � eÞþ the element of C�ðaÞ corre-
sponding (via the functional calculus) to the function

f ðtÞ ¼ maxf0; t � eg; t A sðaÞ:

(Here sðaÞ denotes the spectrum of a.)

In order to ease the notation, we will let Aa denote the hereditary C�-algebra gen-
erated by a positive element a in A, that is, Aa ¼ aAa. Recall that if A is a separable
C�-algebra, then all hereditary algebras are of this form. Some of our results require
the assumption that A has stable rank one, that is, the set of invertible elements is dense
in A. We denote the stable rank of A by srðAÞ. If srðAÞ ¼ 1, then Cuntz subequivalence,
viewed as a relation on hereditary subalgebras, is implemented by unitaries ([15]).

The proposition below collects some facts about Cuntz subequivalence due to Kirch-
berg and Rørdam.

Proposition 2.1 (Kirchberg-Rørdam [8], Rørdam [15]). Let A be a C�-algebra, and

a; b A Aþ.

(i) ða � eÞþ6 a for every e > 0.

(ii) The following are equivalent:

(a) a6 b.

(b) For all e > 0, ða � eÞþ 6 b.

(c) For all e > 0, there exists d > 0 such that ða � eÞþ 6 ðb � dÞþ.

(iii) If e > 0 and ka � bk < e, then ða � eÞþ 6 b.

(iv) If moreover srðAÞ ¼ 1, then

a6 b if and only if for every e > 0, there is u in UðAÞ such that u�ða � eÞþu A Ab.

Note that, if Aa LAb for positive elements a and b in A, we have that a6 b (by Pro-
position 2.1).

Traces, quasitraces, states and dimension functions. As usual, we shall denote the
state space of A (that is, the space of positive, unital, linear functionals) by SðAÞ. The set
of tracial states will be denoted by TðAÞ and QTðAÞ will be used for the space of normal-
ised 2-quasitraces on A (v. [2], Definition II.1.1). Note that TðAÞLQTðAÞ, and equality
holds when A is exact (see [7]).
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Let St
�
WðAÞ; h1Ai

�
denote the set of additive and order preserving maps s from

WðAÞ to Rþ having the property that sðh1AiÞ ¼ 1. Such maps are generally called states

and in the particular case of a C�-algebra, they are termed dimension functions. The set of
all dimension functions on A is denoted by DFðAÞ.

Given t in QTðAÞ, one may define a map dt : MyðAÞþ ! Rþ by

dtðaÞ ¼ lim
n!y

tða1=nÞ:ð1Þ

This map is lower semicontinuous, and depends only on the Cuntz equivalence class of a. It
moreover has the following properties:

(i) If a6 b, then dtðaÞe dtðbÞ.

(ii) If a and b are mutually orthogonal, then dtða þ bÞ ¼ dtðaÞ þ dtðbÞ.

(iii) dt

�
ða � eÞþ

�
% dtðaÞ as e ! 0.

Thus, dt defines a state on WðAÞ. Such states are called lower semicontinuous dimension

functions, and the set of them is denoted LDFðAÞ. It was proved in [2], Theorem II.4.4,
that QTðAÞ is a simplex; the map from QTðAÞ to LDFðAÞ defined by (1) is bijective and
a‰ne ([2], Theorem II.2.2), but generally not continuous. We also have that LDFðAÞ is a
(generally proper) face of DFðAÞ, see [2], Proposition II.4.6. If A has the property that
a6 b whenever sðaÞ < sðbÞ for every s A LDFðAÞ, then we say that A has strict comparison

of positive elements or simply strict comparison.

The Grothendieck group of WðAÞ is denoted by K�
0ðAÞ. The class of an element a

from MyðAÞþ will be denoted by ½a�. This is a partially ordered Abelian group with posi-
tive cone K�

0ðAÞþ ¼ f½a� � ½b� : b6 ag. Observe then that

DFðAÞ ¼ St
�
K�

0ðAÞ;K�
0ðAÞþ; ½1A�

�
;

which is the set of group morphisms s : K�
0ðAÞ ! R such that s

�
K�

0ðAÞþ
�
LRþ and

sð½1A�Þ ¼ 1.

The reconstruction functor. Let A be a unital and stably finite C�-algebra with tra-
cial state space TðAÞ, and let LA¤b

�
TðAÞ

�þþ
denote the set of bounded, strictly positive,

lower semicontinuous, and a‰ne functions on TðAÞ. Define a semigroup structure on the
disjoint union

~WWðAÞ :¼ VðAÞ t LA¤b

�
TðAÞ

�þþ

as follows:

(i) If x; y A VðAÞ, then their sum is the usual sum in VðAÞ.

(ii) If x; y A LA¤b

�
TðAÞ

�þþ
, then their sum is the usual (pointwise) sum in

LA¤b

�
TðAÞ

�þþ
.
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(iii) If x A VðAÞ and y A LA¤b

�
TðAÞ

�þþ
, then their sum is the usual (pointwise) sum

of x̂x and y in LA¤b

�
TðAÞ

�þþ
, where x̂xðtÞ ¼ tðxÞ, Et A TðAÞ.

Equip ~WWðAÞ with the partial order e which restricts to the usual partial order on each of
VðAÞ and LA¤b

�
TðAÞ

�þþ
, and which satisfies the following conditions for x A VðAÞ and

y A LA¤b

�
TðAÞ

�þþ
:

(i) xe y if and only if x̂xðtÞ < yðtÞ, Et A TðAÞ.

(ii) ye x if and only if yðtÞe x̂xðtÞ, Et A TðAÞ.

The map A 7! ~WWðAÞ is a functor—see [14], Section 4 for details.

Now let A be simple. There is a canonical map f : WðAÞ ! ~WWðAÞ first defined in [14].
Let us recall its definition. Denote by Aþþ those elements of Aþ which are not Cuntz equi-
valent to a projection in MyðAÞ, and set

WðAÞþ ¼ fhai A WðAÞ : a A MyðAÞþþg:

The elements of Aþþ are called purely positive. If A has stable rank one, then WðAÞ is the
disjoint union of VðAÞ (identified with its image in WðAÞ via the natural map ½p� 7! hpi),
and WðAÞþ. As observed in [14], Corollary 2.9, if A is either simple and stably finite or of
stable rank one, we have that WðAÞþ is actually a subsemigroup of WðAÞ, and is absorbing
in the sense that a þ b A WðAÞþ whenever a A VðAÞ and b A WðAÞþ.

Let i : WðAÞþ ! LA¤b

�
TðAÞ

�þþ
be given by iðxÞðtÞ :¼ dtðxÞ. If A is exact and has

strict comparison, then i is an order embedding on WðAÞþ ([14], Proposition 3.3). Let
f : WðAÞ ! ~WWðAÞ be given by fjVðAÞ ¼ idVðAÞ and fjWðAÞþ ¼ i. It is proved in [14] that f
is both everywhere-defined and well-defined.

Theorem 2.2 (P-T, [14], Theorem 4.4). Let A be a simple, unital, exact, and stably

finite C�-algebra with strict comparison of positive elements. Then,

f : WðAÞ ! ~WWðAÞ

is an order embedding.

Thus, under the hypotheses of Theorem 2.2, f is an isomorphism whenever i is
surjective.

3. Duality and traces

If SðAÞ is the state space of a unital C�-algebra A and X ¼ spanR SðAÞ is the R-
Banach space of self-adjoint functionals on A then we have two natural dualities:

X ¼ ðAsaÞ� and X � ¼ A��
sa ;

where Asa (resp. A��
sa ) denotes the self-adjoint elements in A (resp. in the enveloping

von Neumann algebra A��). Kadison’s function representation (cf. [11], Theorem 3.10.3)
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is a well-known application of these two facts: If f : SðAÞ ! R is a bounded a‰ne function
then there exists a unique T A A��

sa such that f ðjÞ ¼ jðTÞ, for all j A SðAÞ, and kTk ¼ k f k;
moreover, f is continuous if and only if T A Asa.

The purpose of this section is to prove analogous results when SðAÞ is replaced by
TðAÞ (cf. Theorem 3.8 and Corollary 3.10).

Some conventions and basics. For a unital C�-algebra A, we always consider TðAÞ a

compact topological space, endowed with the weak-� topology coming from A�. (Hence, a
‘‘continuous’’ function on TðAÞ means continuous with respect to this topology.) We re-
gard the R-linear space spanR TðAÞ as an R-Banach space, equipped with the restriction
of the norm on A�; when thinking of spanR TðAÞ as a locally convex space with respect to
the weak-� topology, we will make this point explicit. The following proposition is well
known.

Proposition 3.1 (Jordan decomposition). For any unital C�-algebra A and self-

adjoint functional j A A�, there exist (unique) orthogonal central projections Pþ;P� A A��

such that jþðaÞ :¼ jðaPþÞ and j�ðaÞ :¼ �jðaP�Þ are positive linear functionals,
j ¼ jþ � j� and kjk ¼ kjþk þ kj�k:

If j has the property that jða�aÞ ¼ jðaa�Þ for all a A A and j ¼ jþ � j� is its Jordan

decomposition then j, jþ and j� are all tracial functionals. Consequently,

spanR TðAÞ ¼ fj A A� : jða�Þ ¼ jðaÞ� and jða�aÞ ¼ jðaa�Þ; Ea A Ag

¼ ft1t1 � t2t2 : ti f 0; ti A TðAÞ; i ¼ 1; 2g:

The proof of the next proposition is well known to anyone familiar with the proof of
Kadison’s function representation (cf. [11]).

Proposition 3.2. Let f : TðAÞ ! V be an a‰ne function into an R-vector space V.

Then, f has a unique extension to a linear function ~ff : spanR TðAÞ ! V. If V is a topologi-

cal vector space and f is continuous then ~ff is also continuous (with respect to the weak-�
topology).

Cuntz-Pedersen equivalence. There is another notion of equivalence that one can
consider in Aþ, first studied by Cuntz and Pedersen in [5]. Namely, for positive elements
a; b A Aþ, we write a@CP b if there exist elements un A A such that

a ¼
P

n

u�
n un and b ¼

P
n

unu�
n ;

where convergence is in norm. By [10], Proposition 1.1 (see also [12], Corollary 3.6),@CP is
an equivalence relation. It follows from the definition, and a change of index set, that if
a1 @CP b1 and a2 @CP b2 then a1 þ a2 @CP b1 þ b2. Thus we can define the Cuntz-Pedersen

semigroup to be Aþ modulo the equivalence relation@CP. More generally,

A0 ¼ fa � b : a; b A Aþ; a@CP bg

is an R-linear subspace of Asa. In fact, [5], Theorem 2.6 asserts that A0 is a norm-closed

subspace, and hence we can factor it out.
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Definition 3.3. Define an R-Banach space by

Aq ¼ Asa=A0;

and let A
q
þ ¼ qðAþÞ be the image of Aþ under the quotient map q : Asa ! Aq.

Since spanR TðAÞ is a weak-� closed subspace of ðAsaÞ�, it has a predual (namely, the
quotient of Asa by the pre-annihilator). More precisely:

Proposition 3.4 ([5], Proposition 2.7). The dual space of Aq is isometrically isomor-

phic to spanR TðAÞ. Moreover, the induced weak-� topology agrees with the canonical

weak-� topology (coming from A�).

For simple, unital C�-algebras the following description of A
q
þnf0g is useful.

Proposition 3.5 ([5], Theorem 5.2 and Corollary 6.4). If A is simple, unital and has at

least one tracial state, then

A
q
þnf0g ¼ fx A Aq : tðxÞ > 0; Et A TðAÞg:

In addition, A
q
þ is isomorphic, as an additive semigroup, to the Cuntz-Pedersen semigroup

Aþ=@CP.

Corollary 3.6. If unital C�-algebras A and B have non-empty a‰nely homeomorphic

tracial state spaces then Aq GBq.

If A and B are simple then the Cuntz-Pedersen semigroups Aþ=@CP and Bþ=@CP are

also isomorphic.

Proof. Assume that TðAÞ and TðBÞ are a‰nely homeomorphic (with respect to the
restrictions of the weak-� topologies on A� and, respectively, B�). Then, thanks to Propo-
sitions 3.2 and 3.4, spanR TðAÞ is isomorphic to spanR TðBÞ as locally convex spaces with
respect to the weak-� topologies coming from Aq and, respectively, Bq. Thus their dual
spaces—i.e. Aq and Bq—must be isomorphic too.

It is clear that the induced isomorphism Aq ! Bq will map the set
fx A Aq : tðxÞ > 0; Et A TðAÞg bijectively onto fy A Bq : tðyÞ > 0; Et A TðBÞg. It follows
that A

q
þ will get mapped bijectively onto B

q
þ; hence Proposition 3.5 implies that Aþ=@CP

and Bþ=@CP are isomorphic too. r

Tracial analogue of Kadison’s function representation. With the canonical predual of
spanR TðAÞ in hand, our tracial version of Kadison’s function representation is within sight.
We just need the dual space. This has a simple description in terms of the enveloping von
Neumann algebra A�� (indeed, it may be known to some experts, but we are unaware of a
reference).

Lemma 3.7. Let A be a unital C�-algebra with tracial simplex TðAÞ. If Z denotes the

center of the maximal finite summand of A�� then there is an isometric identification
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Zsa ¼
�
spanR TðAÞ

��
:

In other words, the predual of Z is equal to spanC TðAÞ.

Proof. For convenience, let M denote the maximal finite summand of A�� (hence
A�� ¼ M lN, with N infinite). Let F : M ! Z be the canonical center-valued trace (cf.
[18], Theorem 2.4.6); that is, F is a s-weakly continuous faithful conditional expectation
onto Z with the property that FðxyÞ ¼ FðyxÞ, for all x; y A M, and t �F ¼ t for every tra-
cial state on M. Though a slight abuse of notation, we will let FðaÞ A Z, a A A, denote the
composition of the maps

A ,! A�� ! M !F Z;

where A�� ! M is the canonical quotient map.

For each t A TðAÞ we use the same symbol to denote the normal extension to A��.
Note that each such t is supported on M—i.e. tjN ¼ 0, by maximality of M—and thus
we have a natural inclusion spanC TðAÞHM�. Since Z is a subalgebra of M, we have a
(linear) restriction map spanC TðAÞ ! Z�. It is evidently isometric (hence injective) since

ktjZkZ�
e ktkðA��Þ� ¼ ktkA�

¼ supfjtðaÞj : a A A; kake 1g

¼ sup
���t�FðaÞ

���: a A A; kake 1
�

e ktjZkZ�
:

To prove surjectivity of the restriction map spanC TðAÞ ! Z�, it su‰ces to show
that every normal state on Z is the restriction of some tracial state. So, fix a normal state
j A Z� and define a trace t on A by tðaÞ ¼ j

�
FðaÞ

�
. (This is tracial since F is.) One easily

checks that (the normal extension of ) t restricts to j, using the fact that F is a s-weakly
continuous conditional expectation. This establishes the canonical isometric identification
Z� G spanC TðAÞ.

It follows that Zsa ¼
�
spanR TðAÞ

��
, because Zsa can be identified with the dual of the

self-adjoint, normal functionals on Z—i.e. the dual of spanR TðAÞ. r

Summarizing our duality results, we have:

Theorem 3.8. Let A be a unital C�-algebra with tracial simplex TðAÞ. Then

spanR TðAÞ ¼ ðAqÞ� and
�
spanR TðAÞ

�� ¼ Zsa;

where Z denotes the center of the maximal finite summand of A��.

Definition 3.9. For a unital C�-algebra A, let A¤b

�
TðAÞ

�
denote the set of R-valued

bounded a‰ne functions on TðAÞ. Let A��
sa ! A¤b

�
TðAÞ

�
be the restriction of Kadison’s

function representation to the tracial state space: a 7! âa, where
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âaðtÞ ¼ tðaÞ;

for all a A A��
sa and t A TðAÞ.

We assume below that A is a unital C�-algebra with at least one tracial state.

Corollary 3.10. The mapping a 7! âa gives a linear, order preserving, isometric identi-

fication of Zsa with A¤b

�
TðAÞ

�
. Moreover, for every continuous f A A¤b

�
TðAÞ

�
there exists

a A Asa such that f ðtÞ ¼ tðaÞ, for all t A TðAÞ; if A is simple and f ðtÞ > 0, for all t A TðAÞ,
then we can find a positive a A Aþ with f ðtÞ ¼ tðaÞ.

Proof. Since TðAÞ is identified with the normal states on Z, the mapping
a 7! âa A A¤b

�
TðAÞ

�
is easily seen to be an order preserving, isometric injection of Zsa into

A¤b

�
TðAÞ

�
. (Or, it follows from Kadison’s function representation, applied to Z, and the

fact that TðAÞ is dense in the set of all states on Z.) Surjectivity follows easily from Propo-
sition 3.2 and Lemma 3.7.

Similarly, if f A A¤b

�
TðAÞ

�
is continuous, then Proposition 3.2 says we can extend it

to a weak-� continuous linear functional ~ff on spanR TðAÞ. Since the dual of spanR TðAÞ
with respect to this topology is Aq, and Aq is a quotient of Asa, we simply identify ~ff with an
element in Aq and lift it to Asa.

When A is simple, every x A Aq with the property that tðxÞ > 0, for all t A TðAÞ, can
be lifted to a positive element thanks to Proposition 3.5. This implies the last statement, so
the proof is complete. r

4. Suprema in the Cuntz semigroup

In this section we prove that for C�-algebras with stable rank one, the Cuntz semi-
group admits suprema of countable bounded sequences in a sense that we now proceed to
define.

Definition 4.1. Let ðM;eÞ be a preordered Abelian semigroup with identity element
0. We say that an element x in M is the supremum of an increasing sequence ðxnÞ of ele-
ments in M provided that xn e x for each n and is the smallest such x, meaning that if
y A M and xn e y for all n, then necessarily xe y.

Existence of suprema in the Cuntz semigroup was first observed by the second named
author in [13], Lemma 3.2 for C�-algebras with real rank zero and stable rank one. In this
section we drop the condition of real rank zero and obtain the same result, albeit with con-
siderably more e¤ort. We have been informed by George Elliott that suprema in the Cuntz
semigroup exist in full generality, a result he has proved with K. Coward and C. Ivanescu.
No preprint was available at the time of writing, but we state for the record their result
predates ours. It is not clear whether their result will su‰ce for our application, as we re-
quire a particular description of suprema in the Cuntz semigroup.

Lemma 4.2. Let A be a unital and separable C�-algebra, and let an be a sequence of

positive elements in A such that Aa1
LAa2

L � � � . Let Ay ¼
Sy

n¼1

Aan
, and let ay be a strictly

positive element of Ay. Then
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hayi ¼ sup
n

hani:

Moreover, for any trace t in TðAÞ, we have dtðayÞ ¼ sup
n

dtðanÞ.

Proof. To prove that hayif hani, it su‰ces to prove that, as observed above,
Ay ¼ Aay . For this, it is enough to show that Ay is hereditary. Indeed, if a A A and
c1; c2 A Ay, then choose sequences xn and yn in Aan

such that

kxn � c1k ! 0 and kyn � c2k ! 0:

Then xnayn A An, and since c1ac2 ¼ lim
n

xnayn, we see that c1ac2. (Recall from, e.g. [9], The-
orem 3.2.2, that a C�-subalgebra C of A is hereditary if and only if c1ac2 A C whenever
a A A and c1; c2 A C.)

Now assume that hanie hbi for all n in N. Choose positive elements xn in Aan

such that kxn � ayk < dn, where dn ! 0. It then follows by [8], Lemma 2.5 (ii), that
hðay � dnÞþie hxnie hanie hbi. Thus [8], Proposition 2.6 (or [15], Proposition 2.4) en-
tails hayie hbi, as desired.

Also, since hxnie hanie hanþ1ie hayi for all n and lim
n

xn ¼ ay, we have that, if
t A TðAÞ,

sup
n!y

dtðanÞe dtðayÞe lim inf
n!y

dtðxnÞe lim inf
n!y

dtðanÞ ¼ sup
n!y

dtðanÞ: r

We shall assume in the results below that srðAÞ ¼ 1. Recall that, under this
assumption, Cuntz subequivalence is implemented by unitaries (by condition (iv) in
Proposition 2.1). Note that, in this case, a6 b implies that for each e > 0, there is u in
UðAÞ such that Aða�eÞþ L uAbu�. Indeed, if a A Aða�eÞþ , then find a sequence ðznÞ in A such
that a ¼ lim

n
ða � eÞþznða � eÞþ. Writing ða � eÞþ ¼ uceu

�, with ce in Ab, we see that

a ¼ u

�
lim

n
ceu

�znuce

�
u� A uAbu�.

Lemma 4.3. Let A be a unital and separable C�-algebra with srðAÞ ¼ 1. Let ðanÞ be a

sequence of elements in A such that ha1ie ha2ie � � � . Then sup
n

hani exists in WðAÞ and

for any t in TðAÞ, we have dt

�
sup

n
hani

�
¼ sup

n
dtðanÞ.

Proof. Define numbers en > 0 recursively. Let e1 ¼ 1=2, and choose en < 1=n such
that

ðaj � ej=kÞþ6 ðan � enÞþ

for all 1e j < n and 1e k e n. (This is possible using [8], Proposition 2.6, and because
aj 6 an for 1e j < n. Notice also that ðan � eÞþ e ðan � dÞþ whenever de e.)

Since ða1 � e1=2Þþ6 ða2 � e2Þþ and srðAÞ ¼ 1, there is a unitary u1 such that

Aða�e1=2Þþ�e1=2Þþ L u1Aða2�e2Þþu�
1 :
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But ða � e1=2Þþ � e1=2Þþ ¼ ða1 � e1Þþ (see [8], Lemma 2.5), so

Aða�e1Þþ L u1Aða2�e2Þþu�
1 :

Continue in this way, and find unitaries un in A such that

Aða�e1Þþ L u1Aða2�e2Þþu�
1

L u1u2Aða3�e3Þþu�
2 u�

1 L � � �L
�Qn�1

i¼1

ui

�
Aðan�enÞþ

�Qn�1

i¼1

ui

��
L � � � :

Use Lemma 4.2 to find a positive element ay in A such that

hayi ¼ sup
n

hða � enÞþi;

and also dtðayÞ ¼ sup
n

dt

�
ða � enÞþ

�
e sup

n
dtðanÞ for any t in TðAÞ.

We claim that hayi ¼ sup
n

hani as well. From this it will readily follow that
dtðayÞ ¼ sup

n
dtðanÞ.

To see that hanie hayi for all n in N, fix n < m and recall that, by construction,

	�
an � en=ðm � 1Þ

�
þ


e hðam � emÞþie hayi:

Hence, letting m ! y, we see that hðan � eÞþie hayi for any e > 0, and so hanie hayi
for all n. Conversely, if hanie hbi for all n in N, then also hðan � enÞþie hbi for all nat-
ural numbers n, and hence hayie hbi. r

Theorem 4.4. Let A be a unital and separable C�-algebra with stable rank one. Then

every bounded sequence fhanig in WðAÞ has a supremum hayi and dtðayÞ ¼ sup
n

dtðanÞ for

any t in TðAÞ.

Proof. Let hx1ie hx2ie � � � be given, and assume that hxnie kh1Ai for all n.

Inspection of the proof of Lemma 4.3 reveals that we may choose a sequence en > 0
with the following properties:

(i) hðxn � enÞþie hðxnþ1 � enþ1Þþi.

(ii) If hðxn � enÞþie hbi for all n, then hxnie hbi for all n.

Since hxnie kh1Ai, find yn in MyðAÞþ such that

ðxn � enÞþ ¼ ynð1A n 1Mk
Þy�

n :

Define an ¼ ð1A n 1Mk
Þy�

n ynð1A n 1Mk
Þ, which is an element of MkðAÞ. Then

hani ¼ hðxn � enÞþie hanþ1i for all n. Since MkðAÞ also has stable rank one, we may
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use Lemma 4.3 to conclude that fhanig has a supremum hayi with ay in MkðAÞ. It fol-
lows that then hayi is the supremum of fhðxn � enÞþig in WðAÞ. Evidently, our selection
of the sequence en > 0 yields that hayi ¼ sup

n
hxni.

The proof that dtðayÞ ¼ sup
n

dtðanÞ is identical to the one in Lemma 4.3. r

Recall that a state s on a preordered monoid M with order unit u is s-normal if when-
ever ðanÞ is an increasing sequence and sup

n
an ¼ a exists, then sðaÞ ¼ sup

n
sðanÞ. Denote the

set of s-normal states on M by StsðM; uÞ.

Corollary 4.5. Let A be a unital, separable and exact C�-algebra with stable rank one.

Then LDFðAÞ ¼ Sts
�
WðAÞ; h1Ai

�
.

Proof. The inclusion Sts
�
WðAÞ; h1Ai

�
LLDFðAÞ always holds, as shown in [13],

Proposition 3.3. The converse inclusion follows directly from Theorem 4.4 and the fact
that every lower semicontinuous function comes from a trace (see [2]). r

Corollary 4.6. Let A be a unital and separable C�-algebra with stable rank one. If

x A WðAÞ is such that xe h1Ai, then there is a in A such that x ¼ hai.

Proof. There are a natural number n and an element b in MnðAÞþ such that
x ¼ hbi. For any m in N, find elements xm such that

ðb � 1=mÞþ ¼ xm1Ax�
m;

so am :¼ 1Ax�
mxm1A A A and am @ ðb � 1=mÞþ. Moreover, the sequence hami is increasing,

and the proof of Lemma 4.3 ensures that it has a supremum a in A. Clearly,

hai ¼ sup
m

hami ¼ sup
m

hðb � 1=mÞþi ¼ hbi: r

Corollary 4.7. Let A be a unital and separable C�-algebra with stable rank one. If

hani is a bounded and increasing sequence of elements in WðAÞ with supremum hai. Then

hai ¼ hpi for a projection p, if and only if, there exists n0 such that hani ¼ hpi whenever

nf n0.

Proof. Suppose that hai ¼ sup
n

hani ¼ hpi for a projection p. We may assume that

all the elements a, an and p belong to A. For any n, we have that an 6 p. On the other
hand, the proof of Lemma 4.3 shows that p ¼ lim

n
bn, for some elements bn 6 ðan � enÞþ

(where en > 0 is a sequence converging to zero). From this it follows that for su‰ciently
large n, p6 bn 6 ðan � enÞþ6 an. Thus p@ an if n is large enough, as desired. r

5. Surjectivity of i : W(A)B? LA¤b((T)A)BB

In this section we will prove the surjectivity of i for algebras satisfying the hypotheses
of Theorems A and B. This will complete the proof of Theorem A.
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Our first proposition follows from Corollary 3.10. In a break with convention, we let
CA¤ð�Þ denote continuous a‰ne functions for the remainder of the paper—this is neces-
sary as we deal also with not-necessarily-continuous a‰ne functions.

Proposition 5.1. Assume A1 HA2 H � � �HA are unital subalgebras with dense union.

If A is simple and f A A¤b

�
TðAÞ

�
is continuous and strictly positive, then for every e > 0

there exists n A N and 0e a A An such that j f ðtÞ � tðaÞj < e, for all t A TðAÞ. (Using self-

adjoint a, this holds without simplicity.)

Consequently, there exists a continuous function g A A¤
�
TðAnÞ

�
—namely, âa—whose

image under the canonical map A¤
�
TðAnÞ

�
! A¤b

�
TðAÞ

�
is within e of f .

Lemma 5.2. Let A ¼ p
�
CðXÞnK

�
p be a homogeneous C�-algebra with X a com-

pact metric space and rankðpÞ ¼ n. Let there be given g A CA¤
�
TðAÞ

�
satisfying 0e ge 1.

Then, there exists a A MyðAÞþ such that f :¼ iðaÞ satisfies

0e gðtÞ � f ðtÞe 1=n; Et A TðAÞ:

Proof. For each 0e ie n � 1 define an open set

Ai :¼ fx A X : gðxÞ > i=ng:

Notice that Ai LAj whenever j e i. Since X is metric, we can find, for each i, a continuous
function fi : X ! ½0; 1� such that fiðxÞ3 0 if and only if x A Ai. Put

Bi :¼ fx A X : ði þ 1Þ=nf gðxÞ > i=ng ¼ Ain
�S

j>i

Aj

�

and

a :¼
Ln�1

i¼1

fi � q A MyðAÞþ;

where q is a fixed rank one projection in some Mn

�
CðXÞ

�
LMyðAÞ.

The tracial simplex of A is a Bauer simplex, so the lower semicontinuous a‰ne
functions on TðAÞ are in bijective correspondence with the lower semicontinuous functions
on the extreme boundary qeTðAÞGX via restriction. For each x A X , the value of
f ðxÞ :¼ iðaÞðxÞ is the normalised rank of a at x. In other words,

iðaÞðxÞ :¼ jf j f 1 : x A Ajgj
n

:

If x A ðXnA0ÞWB0, then f ðxÞ ¼ 0, and 0e ðg � f ÞðxÞe 1=n for all such x. If j f 1 and
x A Bj, then f ðxÞ ¼ j=n and j=n < gðxÞe ð j þ 1Þ=n, and 0e ðg � f ÞðxÞe 1=n for all
such x. Since f is lower semicontinuous, so is f � g. A lower semicontinuous a‰ne func-
tion on a Bauer simplex achieves its minimum on the extreme boundary, and this minimum
is at least �1=n by construction. Thus, f � gf�1=n. By a‰neness, f � ge 0 on every
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finite convex combination of extreme traces. Every point t A TðAÞ is the weak-� limit of a
sequence of such combinations, so the lower semicontinuity of f � g yields f � ge 0 on
TðAÞ. r

Let A be a unital C�-algebra. It is well known that A 7! CA¤
�
TðAÞ

�
is a covariant

functor into the category of complete order-unit spaces. If B is a unital C�-algebra and
c : A ! B is a �-homomorphism, then let

cK : TðBÞ ! TðAÞ

denote the map induced on traces. The induced map

c� : CA¤
�
TðAÞ

�
! CA¤

�
TðBÞ

�
is then given by

c�ð f ÞðgÞ ¼ f
�
cKðgÞ

�
:

Let a A A be positive, with image iðaÞ A LA¤b

�
TðAÞ

�þ
. Then, i

�
cðaÞ

�
¼ c��iðaÞ�. Indeed,

for g A TðBÞ we have

i
�
cðaÞ

�
ðgÞ ¼ lim

n!y
g
�
cðaÞ1=n

�
¼ lim

n!y
g
�
cða1=nÞ

�
¼ lim

n!y
cKðgÞða1=nÞ

¼ iðaÞ
�
cKðgÞ

�
¼ c��iðaÞ�ðgÞ:

Theorem 5.3. Let A be a simple, unital, separable, and infinite-dimensional AH alge-

bra of stable rank one. If A has strict comparison of positive elements, then the map

i : WðAÞþ ! LA¤b

�
TðAÞ

�þþ

is surjective.

Proof. By Theorem 4.4 and Corollary 4.7 it will su‰ce to find, for any
f A LA¤b

�
TðAÞ

�þþ
, a sequence ðaiÞyi¼1 in Aþ such that ai 6 aiþ1, haii3haiþ1i, and

lim
i!y

dtðaiÞ ¼ f ðtÞ:

First, use the lower semicontinuity of f to find a sequence ð fiÞyi¼1 in CA¤
�
TðAÞ

�þþ

satisfying

(i) fiðtÞ < fiþ1ðtÞ for every i A N and t A TðAÞ, and

(ii) lim
i!y

fiðtÞ ¼ f ðtÞ for every t A TðAÞ.
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Since the di¤erence fi � fi�1 is continuous and strictly positive on the compact space TðAÞ,
it achieves a minimum, say ei > 0.

Let A ¼ lim
i!y

ðAi; fiÞ be an AH decomposition for A, i.e.,

Ai ¼
Lni

j¼1

pi; j

�
CðXi; jÞnK

�
pi; j

for compact connected metric spaces Xi; j and projections pi; j A CðXi; jÞnK. Put
Ai; j :¼ pi; j

�
CðXi; jÞnK

�
pi; j. By Proposition 5.1 we may assume, modulo compression of

our inductive system, that fi A f�iy
�
CA¤

�
TðAiÞ

�þ�
for each i A N. Let ~ffi be a pre-image of

fi in CA¤
�
TðAiÞ

�þ
. By compressing our inductive sequence again if necessary we may, by

the simplicity and non-finite-dimensionality of A, assume that

1

min
j

rankðpi; jÞ
W ei:

Use Lemma 5.2 to find, for each 1e j e ni, an ai; j A MyðAi; jÞþ such that

0e ~ffi jAi; j
� iðai; jÞe ei=2:

Put ~aai :¼
Pni

j¼1

ai; j. Then,

0e ~ffi � ið~aaiÞe ei=2:

The inequalities above are preserved under f�iy, so that with ai :¼ fiyð~aaiÞ we have

0e fi � iðaiÞe ei=2:

One easily checks that lim
i!y

dtðaiÞ ¼ f ðtÞ for each t A TðAÞ. Moreoever, we have

iðhaiiÞ < iðhaiþ1iÞ, whence haii3haiþ1i and ai 6 aiþ1. r

Now we consider the Z-stable case.

Lemma 5.4. Let X be a compact metric space and f A A¤
�
T
�
CðX ÞnZ

��
be a non-

negative lower semicontinous function. Then, there exists an element hai A W
�
CðXÞnZ

�
such that kiðhaiÞ � f k < e.

Proof. Since the tracial simplex of CðXÞnZ is a‰nely homeomorphic to that of
CðXÞ, we are again in the situation of a Bauer simplex. We first handle the case that
f ¼ wO, where OHX is an open set. As before, just define a A CðX Þ to be any function
which is positive precisely on O and one has iðhaiÞ ¼ wO.

We can even hit multiples of such characteristic functions. Indeed, if 0 < t < 1 we can
find an element zt A Z such that iðan ztÞ equals t times wO (cf. [14], Proposition 3.2). This,
however, completes the proof since linear combinations of such characteristic functions are
uniformly dense in the lower semicontinuous functions. r
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Theorem 5.5. Let A be any simple, unital, and exact C�-algebra which is finite and

Z-stable. Then,

i : WðAÞþ ! LA¤b

�
TðAÞ

�þþ

is surjective.

Proof. It su‰ces to show that if f A LA¤b

�
TðAÞ

�þþ
is continuous then we can ap-

proximate it arbitrarily well by elements in i
�
WðAÞþ

�
.

By Corollary 3.10, we can find 0e a A A such that f ¼ âa. Let c : ZnZ ! Z be
any �-isomorphism, and define

f : AnZnZ ! AnZnZ

by

fðan z1 n z2Þ ¼ ancðz1 n z2Þn 1Z:

By [23], Corollary 1.12, f : A ! A is approximately inner, whence dfðaÞfðaÞ ¼ âa. We will thus
assume below that upon identifying A with AnZ, we have a A An 1Z.

Let B ¼ C �ðaÞnZ and now regard âa as a continuous a‰ne function on the tracial
space of B. By the previous lemma we can approximate âa A A¤b

�
TðBÞ

�
by the image of

WðBÞ. By functoriality, it follows that f is approximated by i
�
WðAÞþ

�
. r

Remark 5.6. It is proved in [22] that a simple, unital, and infinite-dimensional AH
algebra of slow dimension growth has strict comparison; such algebras also have stable
rank one by the main results of [1].

Corollary 5.7. Let A be a simple, unital, and finite C�-algebra which is either exact

and Z-stable or an infinite-dimensional AH algebra of slow dimension growth. Then,

f : WðAÞ ! ~WWðAÞ

is an order isomorphism

Proof. Knowing the surjectivity of i for these two classes of algebras, the result fol-
lows from Theorem 2.2. r

We conjecture that Corollary 5.7 holds for simple, separable, unital ASH algebras
with strict slow dimension growth, and so, by deep results of Q. Lin and N. C. Phillips,
for a large class of C�-dynamical systems.

6. The Blackadar-Handelman conjectures

In this section we prove Theorem B of the introduction. In fact, we prove the
Blackadar-Handelman conjectures in somewhat greater generality. Throughout this section
f : WðAÞ ! ~WWðAÞ is the map defined in Section 5.
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Lemma 6.1. Let SHA¤b

�
TðAÞ

�
be any sub-semigroup containing the constant func-

tion 1, endowed with the pointwise (pre)order. If j : S ! R is any state then there exists a

net of traces ftlgl ALHTðAÞ such that

jðsÞ ¼ lim
l!y

sðtlÞ;

for all s A S.

Proof. Thanks to [3], Corollary 2.7, we may extend the state j to a state on all of
A¤b

�
TðAÞ

�
; i.e., we may assume S ¼ A¤b

�
TðAÞ

�
.

However, every state on A¤b

�
TðAÞ

�
is actually a bounded linear functional (cf. [6],

Lemma 6.7). That is, j A
�
A¤b

�
TðAÞ

��� ¼ Z�
sa, by Lemma 3.7. Moreover, j defines a pos-

itive linear functional on Z�
sa, since jð0Þ ¼ 0 and j is order preserving. Since the normal

states on Z are weak-� dense in the set of all states, it follows that j A Z�
sa can be approxi-

mated by a net ftlgl AL HTðAÞ. r

The following lemma is well known.

Lemma 6.2. Every infinite-dimensional C�-algebra contains a positive element with in-

finite spectrum.

Corollary 6.3. Let A be a simple, unital, and infinite-dimensional C�-algebra. Then, A

contains a purely positive element.

Proof. By the previous lemma, there is a positive element a A A with infinite spec-
trum. Choose an accumulation point x A sðaÞ. Let f be a continuous function on sðaÞ
such that f ðtÞ is nonzero if and only if t3 x. Then, f ðaÞ is positive and has zero as an ac-
cumulation point of its spectrum. f ðaÞ is thus purely positive by [14], Proposition 2.1. r

Theorem 6.4. Let A be a simple, unital, exact, and stably finite C�-algebra for which

f : WðAÞ ! ~WWðAÞ

is an order-embedding. Then, LDFðAÞ is dense in DFðAÞ.

Proof. We may assume that A is infinite-dimensional, whence WðAÞþ is non-empty
by Corollary 6.3. Thus, K�

0ðAÞ is order-isomorphic to G
�
WðAÞþ

�
(see [14], Lemma 5.5).

Let g : WðAÞþ ! G
�
WðAÞþ

�
denote the natural Grothendieck map.

If we pick any c in WðAÞþ, then we can define an order-isomorphism a by

að½p�Þ ¼ gðhpiþ cÞ � gðcÞ

if p is a projection, and

að½a�Þ ¼ gðhaiÞ

if hai A WðAÞþ. We thus have that, by composition, K�
0ðAÞ is order-isomorphic to a sub-

group S of
�

f � g : f ; g A LA¤b

�
TðAÞ

�þþ�
via
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½a� � ½b� 7! âa � b̂b;

where âaðtÞ ¼ dtðaÞ (for any t in TðAÞ). Note that under this order-isomorphism, [1] is

mapped to ð1l c0Þ̂ � bc 0c 0 ¼ 1 þ bc 0c 0 � bc 0c 0 ¼ 1, where c 0 is any purely positive element such
that hc 0i ¼ c.

Next, if d A DFðAÞ, then by the isomorphism we may think of d as a normalized state
on the image S, which is a subsemigroup of A¤b

�
TðAÞ

�
containing the constant function

1. By Lemma 6.1, there is a net of traces ftlg in TðAÞ such that dðsÞ ¼ lim
l

sðtlÞ for any s in
S. In particular, for a in A:

dð½a�Þ ¼ lim
l

�
âaðtlÞ

�
¼ lim

l
dtlðaÞ;

and since a 7! dtlðaÞ is in LDFðAÞ, the proof is complete. r

Remark 6.5. The order-embedding hypothesis above is satisfied whenever A has
strict comparison. For example, it su‰ces to know A is Z-stable or an AH algebra of
slow dimension growth, though this is overkill as it implies f is an order-isomorphism.

Definition 6.6. Let ðM;eÞ be a preordered monoid. We say that M satisfies the
Riesz interpolation property if whenever x1; x2; y1; y2 A M satisfy xi e yj for all i and j,
then there is z in M such that xi e ze yj.

Lemma 6.7. Let K be a metrizable compact convex set. Then LA¤bðKÞþþ, equipped

with the pointwise ordering, is an interpolation monoid.

Proof. Let there be given functions f1, f2, g1, g2 in LA¤bðKÞþþ such that fi e gj for
i; j ¼ 1; 2.

Since K is metrizable, we may write fi ¼ sup
n

fi;n, where fi;n A CA¤ðKÞþþ and

fi;n e fi;nþ1 for i ¼ 1; 2 and all n. There is h1 in CA¤ðKÞþþ such that fi;1 e h1 e gj, by, e.g.
[6].

Next, since fi;2; h1 e gj ði; j ¼ 1; 2Þ, there is h2 in CA¤ðKÞþþ such that

fi;2; h1 e h2 e gj:

Continue in this way to find an increasing sequence hn in CA¤ðKÞþþ such that
fi;n e hn e gj for i; j ¼ 1; 2 and all n. Put h ¼ sup

n
hn, which is an element of LA¤ðKÞþþ

(as it is a supremum of continuous and a‰ne functions). Then, by construction fi e he gj

for all i, j. r

Theorem 6.8. Let A be a simple, unital, exact, and stably finite C�-algebra. If

f : WðAÞ ! ~WWðAÞ

is an order isomorphism, then DFðAÞ is a Choquet simplex.
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Proof. We may assume that A is infinite-dimensional—the finite-dimensional case
follows from the fact that VðAÞGWðAÞ ([22]).

Since A is infinite dimensional, the semigroup WðAÞþ is non-empty by Corollary 6.3.
Thus, we may use [14], Lemma 5.2, which ensures that the partially ordered group K �

0 ðAÞ
is order-isomorphic to G

�
WðAÞþ

�
(with its natural ordering induced by the partial order

in WðAÞþ). Since, as just mentioned, WðAÞþGLA¤b

�
TðAÞ

�þþ
, Lemma 6.7 applies to con-

clude that WðAÞþ is an interpolation monoid. But then we can use [13], Lemma 4.2, to see
that G

�
WðAÞþ

�
is an interpolation group.

Therefore,
�
K �

0 ðAÞ;K �
0 ðAÞþþ� is an interpolation group and thus DFðAÞ, being the

state space of K �
0 ðAÞ, is a Choquet simplex, by e.g. [6], Theorem 10.17. r

Combining Theorems 6.4 and 6.8 with Corollary 5.7 now yields Theorem B.
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