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Abstract

We introduce the growth rank of a C∗-algebra—a (N ∪ {∞})-valued invariant whose minimal instance
is equivalent to the condition that an algebra absorbs the Jiang–Su algebra Z tensorially—and prove that
its range is exhausted by simple, nuclear C∗-algebras. As consequences we obtain a well developed the-
ory of dimension growth for approximately homogeneous (AH) C∗-algebras, establish the existence of
simple, nuclear, and non-Z-stable C∗-algebras which are not tensorially prime, and show the assumption
of Z-stability to be particularly natural when seeking classification results for nuclear C∗-algebras via
K-theory.

The properties of the growth rank lead us to propose a universal property which can be considered inside
any class of unital and nuclear C∗-algebras. We prove that Z satisfies this universal property inside a large
class of locally subhomogeneous algebras, representing the first uniqueness theorem for Z which does not
depend on the classification theory of nuclear C∗-algebras.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the late 1980s, Elliott conjectured that separable nuclear C∗-algebras would be classified by
K-theoretic invariants. He bolstered his claim by proving that certain inductive limit C∗-algebras
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(the AT algebras of real rank zero, [8]) were so classified, generalising broadly his seminal
classification approximately of finite-dimensional (AF) algebras by their scaled, ordered K0-
groups ([7], 1976). His conjecture was confirmed in the case of simple algebras throughout the
1990s and early 2000s. Highlights include the Kirchberg–Phillips classification of purely infinite
simple C∗-algebras satisfying the Universal Coefficients Theorem (UCT), the Elliott–Gong–Li
classification of simple unital approximately homogeneous (AH) algebras of bounded topologi-
cal dimension, and Lin’s classification of certain tracially AF algebras. The classifying invariant,
consisting of topological K-theory, traces (in the stably finite case), and a connection between
them is known as the Elliott invariant. (See [28] for a thorough introduction to this invariant and
the classification program for separable, nuclear C∗-algebras.)

Counterexamples to Elliott’s conjecture appeared first in 2002: Rørdam’s construction of a
simple, nuclear, and separable C∗-algebra containing a finite and an infinite projection [29]
was followed by two stably finite counterexamples, due to the author [31,32]. (The second of
these [32] shows that Elliott’s conjecture will not hold even after adding to the Elliott invariant
every continuous (with respect to direct limits) homotopy invariant functor from the category
of C∗-algebras.) The salient common feature of these counterexamples is their failure to absorb
the Jiang–Su algebra Z tensorially. The relevance of this property to Elliott’s classification pro-
gram derives from the following fact: taking the tensor product of a simple unital C∗-algebra
A with Z is trivial at the level of the Elliott invariant when A has weakly unperforated ordered
K-theory [15], and so the Elliott conjecture predicts that any simple, separable, unital, and nu-
clear A satisfying this K-theoretic condition will also satisfy A ⊗ Z ∼= A. This last condition is
known as Z-stability, and any A satisfying it is said to be Z-stable. In recent work with Wilhelm
Winter, the author has proved that every class of unital, simple, and infinite-dimensional C∗-
algebras for which the Elliott conjecture is so far confirmed consists of Z-stable algebras [34].
The emerging consensus, suggested first by Rørdam and well supported by these results, is that
the Elliott conjecture should hold for simple, nuclear, separable, and Z-stable C∗-algebras.

A recurring theme in theorems confirming the Elliott conjecture is that of minimal rank. There
are various notions of rank for C∗-algebras—the real rank, the stable rank, the tracial topologi-
cal rank, and the decomposition rank—which attempt to capture a non-commutative version of
dimension. A natural and successful approach to proving classification theorems for separable
and nuclear C∗-algebras has been to assume that one or more of these ranks is minimal (see
[9,20], for instance). But there are examples which show these minimal rank conditions to be
variously too strong or too weak to characterise those algebras for which the Elliott conjecture
will be confirmed. One wants to assume Z-stability instead, but a fair objection has been that
this assumption seems unnatural.

In the sequel, we situate Z-stability as the minimal instance of a well-behaved rank for
C∗-algebras, which we term the growth rank. The growth rank measures “how far” a given alge-
bra is from being Z-stable, and inherits excellent behaviour with respect to common operations
from the robustness of Z-stability. Our terminology is motivated by the fact that the growth rank
may be viewed as a theory of dimension growth for AH algebras, and, more generally, locally
type-I C∗-algebras. We prove that for every n ∈ N∪{∞}, there is a simple, separable, and nuclear
C∗-algebra An with growth rank equal to n. The algebras constructed in the proof of this theorem
are entirely new, and rather exotic; for all but two of them, the other ranks for C∗-algebras above
are simultaneously infinite. We use these algebras to obtain the unexpected (see [29]): a simple,
nuclear, and non-Z-stable C∗-algebra which is not tensorially prime.

Motivated by the properties of the growth rank, we propose a pair of conditions on a unital and
nuclear C∗-algebra A which constitute a universal property. The first of these conditions is known
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to hold for Z . We verify the second condition for Z inside a large class of separable, unital,
nuclear, and locally subhomogeneous C∗-algebras which, significantly, contains projectionless
algebras. This represents the first uniqueness theorem for Z among projectionless algebras which
does not depend on the classification of such algebras via the Elliott invariant.

Our paper is organised as follows: in Section 2 we introduce the growth rank and establish its
basic properties; in Section 3 we show that the growth rank may be viewed as an abstract version
of dimension growth for AH algebras; in Section 4 we establish the range of the growth rank, and
consider the growth rank of some examples; tensor factorisation and the existence of a simple,
nuclear, and non-Z-stable C∗-algebra which is not tensorially prime are contained in Section 5;
two universal properties for a simple, separable, unital, and nuclear C∗-algebra are discussed in
Section 6, and the second of these is shown to satisfied by Z inside certain classes of algebras;
connections between the growth rank and other ranks for C∗-algebras are drawn in Section 7,
and it is argued that the growth rank is connected naturally to Elliott’s conjecture.

2. The growth rank of a C∗-algebra

Recall that the Jiang–Su algebra Z is a simple, unital, nuclear, and infinite-dimensional C∗-
algebra which is KK-equivalent to the complex numbers (cf. [16]). We say that a C∗-algebra
A is Z-stable if A ⊗ Z ∼= A. The existence of simple, nuclear, separable, and non-elementary
C∗-algebras which are not Z-stable was established by Villadsen in [35].

Definition 2.1. Let A be a C∗-algebra. The growth rank gr(A) is the least non-negative integer n

such that

A⊗n def= A ⊗ · · · ⊗ A︸ ︷︷ ︸
n times

is Z-stable, assuming the minimal tensor product. If no such integer exists, then say gr(A) = ∞.

The growth rank is most interesting for C∗-algebras without finite-dimensional representa-
tions, as these are the only algebras whose finite tensor powers may be Z-stable. Thus, the
growth rank differs significantly from other notions of rank for nuclear C∗-algebras—the sta-
ble rank, the real rank, the tracial topological rank, and the decomposition rank—see [4,19,26]
and [18], respectively, for definitions and basic properties—in that it is not proportional to the
covering dimension of the spectrum in the commutative case. Rather, it is designed to recover
information about C∗-algebras which are pathological with respect to the Elliott conjecture.

The permanence properties of Z-stability, most of them established in [33], show the growth
rank to be remarkably well behaved with respect to common operations.

Theorem 2.1. Let A, B be separable, nuclear C∗-algebras, I a closed two-sided ideal of A, H

a hereditary subalgebra of A, and k ∈ N. Then,

(i) gr(H) � gr(A);
(ii) gr(A/I) � gr(A);

(iii) gr(A) = gr(A ⊗ Mk) = gr(A ⊗K);
(iv) gr(A ⊗ B) � min{gr(A),gr(B)};
(v) gr(A ⊕ B) � gr(A) + gr(B);
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(vi) if A1, . . . ,Ak are hereditary subalgebras of A, then

gr

(
k⊕

i=1

Ai

)
� gr(A);

(vii) if A is the limit of an inductive sequence (Ai,φi), where Ai is separable, nuclear and
satisfies gr(Ai) � n for each i ∈ N, then gr(A) � n;

(viii) if gr(I ) = gr(A/I) = 1, then gr(A) = 1.

Proof. (i) and (ii) are clearly true if gr(A) = ∞. Suppose that gr(A) = n ∈ N, so that A⊗n is
Z-stable. Since H⊗n is a hereditary subalgebra of A⊗n we conclude that it is Z-stable by Corol-
lary 3.3 of [33]—Z-stability passes to hereditary subalgebras. (ii) follows from Corollary 3.1
of [33] after noticing that (A/I)⊗n is a quotient of A⊗n.

(iii) is Corollary 3.2 of [33].
For (iv), suppose that gr(A) � gr(B). Then,

(A ⊗ B)⊗gr(A) ∼= A⊗gr(A) ⊗ B⊗gr(A)

is Z-stable since is the tensor product of two algebras, one of which—A⊗gr(A)—is Z-stable.
For (v), one can use the binomial theorem to write

(A ⊕ B)⊗gr(A)+gr(B) ∼=
gr(A)+gr(B)⊕

i=0

A⊗i ⊗ B⊗gr(A)+gr(B)−i .

For each 0 � i � gr(A) + gr(B) one has that either i � gr(A) or gr(A) + gr(B) − i � gr(B),
whence A⊗i ⊗ B⊗gr(A)+gr(B)−i is Z-stable. It follows that (A ⊕ B)gr(A)+gr(B) is Z-stable, as
required.

For (vi) we use the fact that

(
k⊕

i=1

Ai

)⊗gr(A)

is a direct sum of algebras of the form

A
⊗n1
1 ⊗ A

⊗n2
2 ⊗ · · · ⊗ A

⊗nk

k ,

k∑
i=1

ni = gr(A),

and each such algebra is a hereditary subalgebra of A⊗gr(A). The desired conclusion now follows
from (2).

(vii) is Corollary 3.4 of [33], while (viii) is Theorem 4.3 of the same paper. �
We defer our calculation of the range of the growth rank until Section 4.
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3. The growth rank as abstract dimension growth

In this section we couch the growth rank as a measure of dimension growth in the setting of
AH algebras. Recall that an unital AH algebra is an inductive limit

A ∼= lim
i→∞(Ai,φi) (1)

where φi :Ai → Ai+1 is an unital ∗-homomorphism and

Ai :=
mi⊕
l=1

pi,l

(
C(Xi,l) ⊗K

)
pi,l (2)

for compact connected Hausdorff spaces Xi,l of finite covering dimension, projections pi,l ∈
C(Xi,l) ⊗K (K is the algebra of compact operators on a separable Hilbert space H), and natural
numbers mi . Put

φij := φj−1 ◦ φj−2 ◦ · · · ◦ φi.

We refer to this collection of objects and maps as a decomposition for A. Decompositions for A

are highly non-unique. The proof of Theorem 2.5 in [13] shows that one may assume the Xi,l

above to be finite CW-complexes. We make this assumption throughout the sequel.
When we speak of dimension growth for an AH algebra we are referring, roughly, to the

asymptotic behaviour of the ratios

dim(Xi,l)

rank(pi,l)
,

assuming, due to the non-unique nature of decompositions for A, that we are looking at a de-
composition for which these ratios grow at a rate close to some lower limit. If there exists a
decomposition for A such that

lim
i→∞ max

1�l�mi

{
dim(Xi,l)

rank(pi,l)

}
= 0, (3)

then A is said to have slow dimension growth. This definition appeared first in [2]. As it turns
out, this definition is not suitable for non-simple algebras, at least from the point of view that
slow dimension growth should entail good behaviour in ordered K-theory. This is pointed out
by Goodearl in [13], and a second, more technical definition of slow dimension growth is intro-
duced. We are interested in a demonstration of principle—that the growth rank yields a theory of
dimension growth for AH algebras—and so will limit technicalities by restricting our attention
to direct sums of simple and unital AH algebras. In this setting, Goodearl’s definition and the one
above coincide.

(Slow dimension growth or, occasionally, a slightly stronger version thereof, is an essential
hypothesis in classification theorems for simple unital AH algebras.)

Observe that taking the tensor product of an unital AH algebra with itself reduces dimension
growth. Indeed, for compact Hausdorff spaces X and Y and natural numbers m and n one has

Mn

(
C(X)

)⊗ Mm

(
C(Y )

)∼= Mnm

(
C(X × Y)

);
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the dimension of the unit in a tensor product of two homogeneous C∗-algebras is the product
of the dimensions of the units, while the dimension of the spectrum of the tensor product is the
sum of the dimensions of the spectra. If, for instance, one has a sequence of natural numbers
ni

i→∞−−−→ ∞ and an unital inductive limit algebra A = limi→∞(Ai,φi) where Ai = Mni
(C(Xi))

and dim(Xi) = nm
i , then A⊗m+1 has slow dimension growth, despite the fact that A may not;

A⊗m+1 is an inductive limit of the building blocks

A⊗m+1
i

∼= M
nm+1

i

(
C
(
(Xi)

m+1)),
and

dim((Xi)
m+1)

nm+1
i

= (m + 1)nm
i

nm+1
i

i→∞−−−→ 0.

We use this observation to define a concrete measure of dimension growth for unital AH algebras.

Definition 3.1. Let A be an unital AH algebra. Define the topological dimension growth tdg(A)

to be the least non-negative integer n such that A⊗n has slow dimension growth, if it exists. If no
such integer exists, then say tdg(A) = ∞.

Roughly, an unital AH algebra with finite topological dimension growth n has a decomposi-
tion for which

dim(Xi,l) ∝ rank(pi,l)
n−1, (4)

and no decomposition for which (4) holds with n replaced by m < n. One might say that such
an algebra has “polynomial dimension growth of order n − 1.” Similarly, an algebra for which
tdg = ∞ has “exponential dimension growth.”

We now compare the properties of the topological dimension growth to those of the growth
rank.

Lemma 3.1. Let A and B be unital AH algebras with slow dimension growth. Then, A ⊕ B has
slow dimension growth.

Proof. Straightforward. �
Lemma 3.2. Let A and B be simple and unital AH algebras, and suppose that A has slow
dimension growth. Then, A ⊗ B has slow dimension growth.

Proof. We exploit the fact that there is considerable freedom in choosing an inductive limit
decomposition for A ⊗ B , even after fixing decompositions for A and B . Let A be decomposed
as in (1) and (2), and let

B ∼= lim
j→∞

( nj⊕
qj,sMtj,s

(
C(Yj,s)

)
qj,s,ψj

)

s=1
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be a decomposition of B , where the Yj,s are connected compact Hausdorff spaces and the qj,s ∈
Mtj,s (C(Yj,s)) are projections. Put

Bj :=
nj⊕

s=1

qj,sMtj,s

(
C(Yj,s)

)
qj,s .

For any strictly increasing sequence (ri) of natural numbers one has

A ⊗ B ∼= lim
i→∞(Ari ⊗ Bi,φri ,ri+1 ⊗ ψi).

Put

Mi
def= max

1�s�ni

{
dim(Yi,s)

}
.

The simplicity of A implies that for any N ∈ N, there exists iN ∈ N such that rank(pi,l) � N ,
∀i � iN . Choose the sequence (ri) so that

min
1�l�mri

{
dim(pri ,l)

}
� 2iMi.

A typical direct summand of Ari ⊗ Bi with connected spectrum has the form

(pri ,l ⊗ qi,s)
(
Mkri ,l

ti,s

(
C(Xri ,l × Yi,s)

))
(pri ,l ⊗ qi,s),

whence the condition that A ⊗ B has slow dimension growth amounts to the condition that

lim inf
i→∞ max

l,s

{
dim(Xri ,l) + dim(Yi,s)

rank(pri ,l) rank(qi,s)

}
= 0.

We have that

max
l,s

{
dim(Xri ,l) + dim(Yi,s)

rank(pri ,l) rank(qi,s)

}

is dominated by

max
l

{
dim(Xri ,l)

rank(pri ,l) rank(qi,s)

}
+ max

s

{
dim(Yi,s)

rank(pri ,l) rank(qi,s)

}
.

In the above sum the first term tends to zero by virtue of A having slow dimension growth, while
the second tends to zero by our choice of (ri). We conclude that A ⊗ B has slow dimension
growth, as desired. �
Theorem 3.1. Let A, B be simple and unital AH algebras. Then,

(i) tdg(A ⊗ B) � min{tdg(A), tdg(B)};
(ii) tdg(A ⊕ B) � tdg(A) + tdg(B).
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Proof. For (i), suppose that tdg(A) � tdg(B). Then,

(A ⊗ B)⊗ tdg(A) ∼= (
A⊗ tdg(A)

)⊗ (
B⊗ tdg(A)

)
.

Since A⊗ tdg(A) has slow dimension growth by definition, the right-hand side of the equation
above has slow dimension growth by Lemma 3.2.

For (ii), use the binomial theorem to write

(A ⊕ B)⊗ tdg(A)+tdg(B) ∼=
tdg(A)+tdg(B)⊕

i=0

A⊗i ⊗ B⊗ tdg(A)+tdg(B)−i .

Notice that each direct summand of the right-hand side above has slow dimension growth
by part (2) of this proposition, whence the entire direct sum has slow dimension growth by
Lemma 3.1. �

As far as direct sums of simple unital AH algebras are concerned, the properties of the growth
rank agree with those of the topological dimension growth, despite that fact that Z-stability
and slow dimension growth are not yet known to be equivalent for simple, unital and infinite-
dimensional AH algebras.

Next, we prove that the topological dimension growth and the growth rank often agree. Recall
that a Bauer simple is a compact metrizable Choquet simplex S whose extreme boundary ∂eS

is compact. The set Aff(S) of continuous affine real-valued functions on S are in bijective cor-
respondence with continuous real-valued functions on ∂eS. The bijection is given by the map
which assigns to a continuous affine function f on S, the continuous function f̂ : ∂eS → R given
by

f̂ (τ ) = f (τ), ∀τ ∈ ∂eS.

Proposition 3.1. Let A be a simple, unital and infinite-dimensional AH algebra. Suppose that
the simplex of tracial states TA is a Bauer simplex, and that the image of K0(A) in CR(∂eTA) is
uniformly dense. Then,

tdg(A) = gr(A).

Proof. It is well known that

∂eTA⊗n ∼=
n×

i=1

∂eTA,

whence,

CR

(
∂eTA⊗n

)∼= CR(∂eTA)⊗n.
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Let f1, . . . , fn ∈ CR(∂eTA) be the images of elements x1, . . . , xn ∈ K0(A), respectively. Write
xi = [pi]− [qi] for projections pi, qi ∈ M∞(A), 1 � i � n. Let gi, hi ∈ CR(∂eTA) be the images
of pi, qi , respectively. Now

f1 ⊗ · · · ⊗ fn =
n⊗

i=1

(gi − hi), (5)

and the right-hand side of the equation is a sum of elementary tensor ±(r1 ⊗ · · · ⊗ rn), where
ri ∈ {hi, gi}. There are thus projections ti ∈ {pi, qi} such that the image of

[t1 ⊗ · · · ⊗ tn] ∈ K0
(
A⊗n

)
is

r1 ⊗ · · · ⊗ rn ∈ CR(∂eTA)⊗n.

Thus, the right-hand side of (5) can be obtained as the image of some x ∈ K0(A
⊗n). Given ε > 0

and an elementary tensor

m1 ⊗ · · · ⊗ mn ∈ CR(∂eTA)⊗n ∼= CR

(
∂eTA⊗n

)
,

we may, by the density of the image of K0(A) in CR(∂eTA), choose f1, . . . , fn ∈ CR(∂eTA) to
satisfy

∣∣(m1 ⊗ · · · ⊗ mn) − (f1 ⊗ · · · ⊗ fn)
∣∣< ε.

It follows that the image of K0(A
⊗n) is dense in CR(∂eTA⊗n). Theorem 3.13 of [34] shows that

Z-stability and slow dimension growth are equivalent for such an algebra, and the proposition
follows. �

Following [34], we may drop the condition that the image of K0 in Aff(T(A)) be dense when-
ever A has a unique tracial state. Note that an algebra satisfying the hypotheses of Proposition 3.1
need not have real rank zero, even in the case of a unique tracial state (cf. [36]).

As the growth rank and the topological dimension growth often (probably always, in the
simple and unital case) agree, we suggest simply using the growth rank as a theory of unbounded
dimension growth for AH algebras. It has the advantage of avoiding highly technical definitions
involving arbitrary decompositions for a given AH algebra, and works equally well for non-
simple and non-unital algebras.

There are definitions of slow dimension growth for more general locally type-I C∗-algebras—
direct limits of recursive subhomogeneous algebras [25], for instance—but these are even more
technical than the definition for non-simple AH algebras. The growth rank seems the logical
choice for defining dimension growth in these situations, too.
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4. A range result

Theorem 4.1. Let n ∈ N ∪ {∞}. There exists a simple, nuclear, and non-type-I C∗-algebra A

such that

tdg(A) = gr(A) = n.

To prepare the proof of Theorem 4.1, we collect some basic facts about the Euler and Chern
classes of a complex vector bundle, and recall results of Rørdam and Villadsen.

Let X be a connected topological space, and let ω and γ be (complex) vector bundles over X

of fibre dimensions k and m, respectively. Recall that the Euler class e(ω) is an element of
H 2k(X;Z) with the following properties:

(i) e(ω ⊕ γ ) = e(ω) · e(γ ), where “·” denotes the cup product in H ∗(X;Z);
(ii) e(θl) = 0, where θl denotes the trivial vector bundle over X of (complex) fibre dimension l.

The Chern class c(ω) ∈ H ∗(X;Z) is a sum

c(ω) = 1 + c1(ω) + c2(ω) + · · · + ck(ω),

where ci(ω) ∈ H 2i (X;Z). Its properties are similar to those of the Euler class:

(i) c(ω ⊕ γ ) = c(ω) · c(γ );
(ii) c(θl) = 1.

The key connection between these characteristic classes is this: e(η) = c1(η) for every line bun-
dle.

The next lemma is due essentially to Villadsen (cf. [35, Lemma 1]), but our version is more
general.

Lemma 4.1. Let X be a finite CW-complex, and let η1, η2, . . . , ηk be complex line bundles
over X. If l < k and

∏k
i=1 e(ηi) = 0, then

[η1 ⊕ η2 ⊕ · · · ⊕ ηk] − [θl] /∈ K0(X)+.

Proof. If [η1 ⊕ η2 ⊕ · · · ⊕ ηk] − [θl] ∈ K0(X)+, then there is a vector bundle γ of dimension
k − l and d ∈ N such that

η1 ⊕ η2 ⊕ · · · ⊕ ηk ⊕ θd
∼= γ ⊕ θd+k−l .

Applying the Chern class to both sides of this equation we obtain

k∏
c(ηi) = c(γ ).
i=1
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Expanding the left-hand side yields

k∏
i=1

(
1 + c1(ηi)

)=
k∏

i=1

(
1 + e(ηi)

)
.

The last product has only one term in H 2k(X;Z), namely,
∏k

i=1 e(ηi), and this, in turn, is non-
zero. On the other hand, c(γ ) has no non-zero term in H 2i (X;Z) for i > k − l. Thus, we have a
contradiction, and must conclude that

[η1 ⊕ η2 ⊕ · · · ⊕ ηk] − [θl] /∈ K0(X)+. �
Let ξ be any line bundle over S2 with non-zero Euler class—the Hopf line bundle, for instance.

We recall some notation and a proposition from [29]. Let Y and Z be topological spaces, and let
η and β be vector bundles over Y and Z, respectively. Let

πY :Y × Z → Y, πZ :Y × Z → Z

be the co-ordinate projections, and π∗
Y (η) and π∗

Z(β) the induced bundles over Y × Z. The
external tensor product of η and β is defined to be the internal (fibre-wise) tensor product π∗

Y (η)⊗
π∗

Z(β); we let η ⊗ β denote this tensor product in the sequel, to avoid cumbersome notation. For
each natural number s and for each non-empty finite set

I = {s1, . . . , sk} ⊆ N

define bundles ξs and ξI over S2m
(for all m � s or m � max{s1, . . . , sk}, as appropriate) by

ξs = π∗
s (ξ), ξI = ξs1 ⊗ · · · ⊗ ξsk ,

where πs : S2×m → S2 is the sth co-ordinate projection.

Proposition 4.1. (Rørdam [29, Proposition 3.2].) Let I1, . . . , Im ⊆ N be finite sets. The following
are equivalent:

(i) e(ξI1 ⊕ ξI2 ⊕ · · · ⊕ ξIm) = 0.
(ii) For all subsets F of {1,2, . . . ,m} we have |⋃j∈F Ij | � |F |.

(In fact, there is a third equivalence in Proposition 3.2 of [29]. We do not require it, and so
omit it.)

Proof. (Theorem 4.1) The case where n = 1 is straightforward: any UHF algebra U is Z-stable
by the classification theorem of [16] (or, alternatively, by Theorem 2.3 of [33]), and has tdg(A) =
1 (as does any AF algebra).

Let 1 � n ∈ N ∪ {∞} be given. We will construct an simple, unital, and infinite-dimensional
AH algebra

A = lim (Ai,φi)

i→∞
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along the lines of the construction of [36], and prove that gr(A) = tdg(A) = n + 1. Our strategy
is to prove that A⊗n has a perforated ordered K0-group and is hence not Z-stable by Theorem 1
of [15], while A⊗n+1 is tracially AF and hence approximately divisible by [10] and Z-stable by
Theorem 2.3 of [34]. A will be constructed so as to have a unique trace, whence tdg(A) = gr(A)

by Proposition 3.1.
Let X1 = (S2)n1 , and, for each i ∈ N, let Xi = (Xi−1)

ni , where the ni are natural numbers to
be specified. Set

Ni :=
i∏

j=1

nj

and

I i
l := {

(l − 1)Ni + Ni−1 + 1, . . . , lNi

}⊆ {1, . . . , nNi}, l ∈ {1, . . . , n}.

We will take

Ai = pi

(
C(Xi) ⊗K

)
pi

for some projection pi ∈ C(Xi) ⊗K to be specified. The maps

φi :Ai → Ai+1

are constructed inductively as follows: suppose that p1, . . . , pi have been chosen, and define a
map

φ̃i :Ai → C(Xi+1) ⊗K

by taking the direct sum of the map γi :Ai → C(Xi+1) ⊗K given by

γi(f )(x) = f
(
ωi(x)

)
(ωi :Xi+1 → Xi is projection onto the first factor of Xi+1 = (Xi)

ni+1 ) and mi+1 copies of the
map ηi :Ai → C(Xi+1) ⊗K given by

ηi(f )(x) = f (xi) · ξ
I i+1

1

(xi ∈ Xi is a point to be specified, and mi+1 is a natural number to be specified); set

Ai+1 := φ̃i (pi)C(Xi+1) ⊗Kφ̃i(pi),

and let φi be the restriction of φ̃i to Ai+1. In [36] it is shown that by replacing the xi with various
other points from Xi+1 in a suitable manner, one can ensure a simple limit A := limi→∞(Ai,φi).
A is unital by construction.

Let p1 be the projection over X1 corresponding to the Whitney sum

θ1 ⊕ ξI 1 ⊕ ξI 1 .

1 1
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By Proposition 3.2 of [29] (Proposition 4.1 of this section) we have that the Euler class of⊕k
j=1 ξI 1

1
is non-zero whenever k � n1. By Lemma 4.1, we have

2[ξI 1
1
] − [θ1] /∈ K0(A1)

+.

For each i ∈ N one has

K0
(
A⊗n

i

)∼= K0(Xn
i

)∼= K0(Xi)
⊗n

—the last isomorphism follows from the Künneth formula and the fact that K0(Xi) is torsion
free. We will prove that

(
2
[
φ1i (ξI 1

1
)
]− [

φ1i (θ1)
])⊗ [pi] ⊗ [pi] ⊗ · · · ⊗ [pi] /∈ K0

(
A⊗n

i

)+
, ∀i ∈ N, (6)

whence K0(A
⊗n) is a perforated ordered group, and A⊗n is not Z-stable.

Let πl : (Xi)
l → Xi be the lth co-ordinate projection, and set pl

i := π∗
l (pi). The tensor product

of group elements in (6) corresponds to the external tensor product of the corresponding (formal
difference of) vector bundles. In other words, proving that (6) holds amounts to proving that

2
[
φ1i (ξI 1

1
) ⊗ p2

i ⊗ · · · ⊗ pn
i

]− [
φ1i (θ1) ⊗ p2

i ⊗ · · · ⊗ pn
i

]
/∈ K0(Xn

i

)+
.

Straightforward calculation shows that θ1 is a direct summand of φ1i (θ1)⊗p2
i ⊗· · ·⊗pn

i , for all
i ∈ N. Thus,

2
[
φ1i (ξI 1

1
) ⊗ p2

i ⊗ · · · ⊗ pn
i

]− [
φ1i (θ1) ⊗ p2

i ⊗ · · · ⊗ pn
i

]
� 2

[
φ1i (ξI 1

1
) ⊗ p2

i ⊗ · · · ⊗ pn
i

]− [θ1],

and (6) will hold if

2
[
φ1i (ξI 1

1
) ⊗ p2

i ⊗ · · · ⊗ pn
i

]− [θ1] /∈ K0(Xn
i

)+
. (7)

We prove that (7) holds by induction. Assume that i = 1. The projection pl
1 corresponds to

the vector bundle ξI 1
l

⊕ ξI 1
l

⊕ θ1 = 2ξI 1
l

⊕ θ1 over Xn
i

∼= (S2)n1n. Now

[
n⊗

l=2

pl
1

]
=
[

n⊗
l=2

(2ξI 1
l

⊕ θ1)

]
=
[ ⊕

∅=J⊆{2,...,n}

(⊗
l∈J

2ξI 1
l

)
⊕ θ1

]
,

so that

2
[
φ1i (ξI 1

1
) ⊗ p2

i ⊗ · · · ⊗ pn
i

]=
[

2ξI 1
1

⊗
( ⊕ (⊗

l∈J

2ξI 1
l

))]
+ [2ξI 1

1
].
∅=J⊆{2,...,n}
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By Lemma 4.1 it will suffice to show that

e

( ⊕
∅=J⊆{2,...,n}

2ξI 1
1

⊗
(⊗

l∈J

2ξI 1
l

)
⊕ 2ξI 1

1

)
= 0.

Letting IJ denote the union
⋃

l∈J I 1
l we have

⊕
∅=J⊆{2,...,n}

2ξI 1
1

⊗
(⊗

l∈J

2ξI 1
l

)
⊕ 2ξI 1

1
= 2ξI 1

1
⊕

⊕
∅=J⊆{2,...,n}

2|J |+1ξI 1
1 ∪IJ

. (8)

We wish to apply Proposition 3.2 of [29] to conclude that the Euler class of the bundle above
is non-zero. This will, of course, require that n1 be sufficiently large. One easily sees that the
dimension of the bundle above is 2 ·3n−1. Let R1 = I 1

1 , and define a list of subsets R2, . . . ,R2·3n−1

of N by including, for each J ⊆ {2, . . . , n}, 2|J |+1 copies of I 1
1 ∪ IJ among the Rj . The Rj s are

the index sets of the tensor products of Hopf line bundles appearing as direct summands in (8).
We must choose n1 large enough so that, for any finite subset F of {1, . . . ,2 · 3n−1}, we have
|⋃j∈F Rj | � |F |. Clearly, setting n1 = 3n will suffice. This establishes the base case of our
induction argument.

We proceed to the induction step. By Lemma 4.1 it will suffice to prove that

e

(
2φ1i (ξI 1

1
) ⊗

n⊗
l=2

pl
i

)
= 0.

Suppose that for all k < i, nk has been chosen large enough that

e

(
2φ1k(ξI 1

1
) ⊗

n⊗
l=2

pl
k

)
= 0.

Put ωi,l := ωi ◦ πl . By construction we have

pl
i = ω∗

i,l

(
pl

i−1

)⊕ mi · dim
(
pl

i−1

)⊗ ξI i
l

and

φ1i (ξI 1
1
) = ω∗

i,1

(
φ1,i−1(ξI 1

1
)
)⊕ mi · dim

(
φ1,i−1(ξI 1

1
)
)⊗ ξI i

1
.

It follows that

2φ1i (ξI 1
1
) ⊗

n⊗
l=2

pl
i = 2

(
ω∗

i

(
φ1,i−1(ξI 1

1
)
)⊕ mi · dim

(
φ1,i−1(ξI 1

1
)
)⊗ ξI i

1

)

⊗
(

n⊗(
ω∗

i

(
pl

i−1

)⊕ mi · dim
(
pl

i−1

)⊗ ξI i
l

))

l=2
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=
(

ω∗
i,1

(
2φ1,i−1(ξI 1

1
)
)⊗

n⊗
l=2

ω∗
i,l

(
pl

i−1

))⊕ B

= Γ ∗
i

(
2φ1,i−1(ξI 1

1
) ⊗

n⊗
l=2

pl
i−1

)
⊕ B,

where

Γi := ωi,1 × ωi,2 × · · · × ωi,n : (Xi)
n → (Xi−1)

n

and B is a sum of line bundles, each of which has ξI i
l

as a tensor factor for some l ∈ {1, . . . , n}.
The index sets of the line bundles making up

Γ ∗
i

(
2φ1,i−1(ξI 1

1
) ⊗

n⊗
l=2

pl
i−1

)

are disjoint from each I i
l by construction, so by Proposition 3.2 of [29] we have

e

(
Γ ∗

i

(
2φ1,i−1(ξI 1

1
) ⊗

n⊗
l=2

pl
i−1

)
⊕ B

)
= 0

if

e

(
Γ ∗

i

(
2φ1,i−1(ξI 1

1
) ⊗

n⊗
l=2

pl
i−1

))
= 0, e(B) = 0.

The first inequality follows from our induction hypothesis. For the second inequality, we have

dim(B) < dim

(
2φ1i (ξI 1

1
) ⊗

n⊗
l=2

pl
i

)
< dim

(
pl

i

)n
.

Choosing ni just large enough (for reasons to be made clear shortly) to ensure that |I i
l | �

dim(pl
i)

n
, we may conclude by Proposition 3.2 of [29] that e(B) = 0, as desired.

The fact that A⊗n has a perforated ordered K0-group implies that gr(A) > n. We now show
that gr(A) � n+1. First, we compute an upper bound on the dimension of Xi . We have chosen ni

to be just large enough to ensure that |I i
1| � dim(pi)

n. Using the fact that |I i
1| = Ni − Ni−1 we

have

Ni � dim(pi)
n + 2Ni−1, i ∈ N,

since one could otherwise reduce the size of ni by one or more. Set di := dim(pi) for brevity.
A⊗n+1 will have slow dimension growth if

(n + 1)Ni

dn+1
i→∞−−−→ 0.
i
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We have

(n + 1)Ni

dn+1
i

�
(n + 1)(dn

i + 2Ni−1)

dn+1
i

= n + 1

di

+ 2Ni−1

dn+1
i

,

so that we need only show

2Ni−1

dn+1
i

i→∞−−−→ 0. (9)

But Ni−1 does not depend on mi , so we may make di large enough for (9) to hold (remember that
mi may be chosen before ni ). Thus, A⊗n+1 has slow dimension growth. A has a unique tracial
state by the arguments of [36], whence so does A⊗n+1. It follows that A⊗n+1 is of real rank
zero by the main theorem of [1]. The reduction theorem of [6] together with the classification
theorem of [9] then show that A⊗n+1 is approximately divisible, whence A⊗n+1 is Z-stable by
Theorem 2.3 of [34] and gr(A) = n + 1. Since A has a unique trace, it satisfies the hypotheses of
Proposition 3.1, whence tdg(A) = gr(A) = n + 1. This proves Theorem 4.1 for n finite.

To produce an algebra with infinite growth rank, we follow the construction above, but choose
the ni larger at each stage. Begin as above with the same choice of A1. Notice that the arguments
above not only show that one can choose ni large enough so that

2
[
φ1i (ξI 1

1
) ⊗ p2

i ⊗ · · · ⊗ pn
i

]− [θ1] /∈ K0(Xn
i

)+
,

but also large enough so that

2
[
φ1i (ξI 1

1
) ⊗ p2

i ⊗ · · · ⊗ pin
i

]− [θ1] /∈ K0(Xin
i

)+
.

With the latter choice of ni , one has that K0(A
⊗in) is a perforated ordered group for every natural

number i. It follows that gr(A) = ∞. Now Proposition 3.1 shows that tdg(A) = ∞, proving the
theorem in full.

Finally, in the case where gr(A) � 3, we modify the base spaces Xi to facilitate stable and real
rank calculations in the sequel. Replace Xi with X′

i := Xi × D
id2

i , where D denotes the closed
unit disc in C, and replace the eigenvalue map ωi with the map with a map ω′

i :X′
i+1 → X′

i given

by the Cartesian product of ωi and any co-ordinate projection λi : D(i+1)d2
i+1 → D

id2
i . On the one

hand, these modifications are trivial at the level of K0, whence the proof of the lower bound on
the growth rank of A carries over to our new algebra. On the other hand, our new algebra has

dim(X′
i )

dn+1
i

= dim(Xi) + id2
i

dn+1
i

i→∞−−−→ 0,

since n � 2. Thus, the specified adjustment to the construction of A does not increase the topo-
logical dimension growth. �

We now consider the growth rank of some examples.
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gr = 1gr = 1gr = 1. Let A be a separable, unital, and approximately divisible C∗-algebra. Then gr(A) = 1 by
Theorem 2.3 of [34].

Let A be a simple nuclear C∗-algebra which is neither finite-dimensional nor isomorphic
to the compact operators. Suppose further that A belongs to a class of C∗-algebras for which
Elliott’s classification conjecture is currently confirmed (cf. [28]). It follows from various results
in [34] that A is Z-stable, whence gr(A) = 1.

gr = 2gr = 2gr = 2. Let A be a simple, unital AH algebra given as the limit of an inductive system(
pi

(
C(Xi) ⊗K

)
pi,φi

)
,

where the Xi are compact connected Hausdorff spaces, pi ∈ C(Xi) ⊗K is a projection, and

φi :pi

(
C(Xi) ⊗K

)
pi → pi+1

(
C(Xi+1) ⊗K

)
pi+1

is an unital ∗-homomorphism. Suppose that

dim(Xi)

dim(pi)

i→∞−−−→ c ∈ R, c = 0.

Since dim(pi) → ∞ as i → ∞ by simplicity, we have that 2 � tdg(A) � gr(A). If A is
not Z-stable, then gr(A) = 2. Many of the known examples of non-Z-stable simple, nuclear
C∗-algebras have this form, including the AH algebras of [35] having perforated ordered
K0-groups, those of [36] having finite non-minimal stable rank, the algebra B of [27] which
is not stable but for which M2(B) is stable, and the counterexample to Elliott’s classification
conjecture in [32].

Let A be a simple, nuclear C∗-algebra containing a finite and an infinite projection and sat-
isfying the UCT (the existence of such algebras is established in [29]). Kirchberg proves in [17]
that the tensor product of any two simple, unital and infinite-dimensional C∗-algebras is either
stably finite or purely infinite. It follows that A ⊗ A is purely infinite and hence Z-stable, so
gr(A) = 2.

gr > 2gr > 2gr > 2. The algebras in Theorem 4.1 are the first examples of simple nuclear algebras with finite
growth rank strictly greater than 2. The algebra of [36] having infinite stable rank probably also
has infinite growth rank—it bears a more than passing resemblance to the algebra of infinite
growth rank in Theorem 4.1.

5. Tensor factorisation

A simple C∗-algebra is said to be tensorially prime if it cannot be written as a tensor product
C ⊗ D, where both C and D are simple and non-type-I. It has been surprising to find that the
majority of our stock-in-trade simple, separable, and nuclear C∗-algebras are not tensorially
prime—every class of simple, separable, and nuclear C∗-algebras for which the Elliott invariant
is currently confirmed consists of Z-stable members [16,34]. Kirchberg [17] has shown that
every simple exact C∗-algebra which is not tensorially prime is either stably finite or purely
infinite. Rørdam has produced an example of a simple nuclear C∗-algebra containing both a
finite and an infinite projection which, in light of Kirchberg’s result, is tensorially prime [29].
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The question of whether every simple, nuclear, and non-Z-stable C∗-algebra is tensorially prime
has remained open. Theorem 4.1 settles this question, negatively.

Corollary 5.1. There exists a simple, nuclear, and non-Z-stable C∗-algebra which is not tenso-
rially prime.

Proof. Let A be the algebra of growth rank three in Theorem 4.1. A⊗A satisfies the hypotheses
of the corollary, yet is evidently not tensorially prime. �

It is interesting to ask whether simple, unital, and nuclear C∗-algebras which fail to be ten-
sorially prime must in fact have an infinite factorisation, i.e., can be written as

⊗∞
i=1 Ci , where

each Ci is simple, unital, nuclear, and non-type-I. This is trivially true for Z-stable algebras,
since Z ∼= Z⊗∞ (cf. [16]). Rørdam has asked whether every simple, unital, nuclear, and non-
type-I C∗-algebra admits an unital embedding of Z . If this turns out to be true for separable
algebras, then Theorem 7.2.2 of [28] implies that infinite tensor products of such algebras are
always Z-stable. This, in turn, will imply that simple, unital, separable, and nuclear C∗-algebras
which do not absorb Z tensorially cannot have an infinite tensor factorisation.

6. Universal properties and infinite tensor products

Little is known about the extent to which Z is unique, save that it is determined by its K-
theory inside a small class of Z-stable inductive limit algebras [21,34]. The Elliott conjecture,
which may well hold for the class of simple, separable, nuclear, infinite-dimensional and Z-stable
C∗-algebras, predicts that Z will be the unique such algebra which is furthermore unital, projec-
tionless, unique trace, and KK-equivalent to C.

Rørdam has suggested the following universal property, which could conceivably be verified
for Z within the class of separable, unital, and nuclear C∗-algebras having no finite-dimensional
representations.

Universal Property 6.1. Let C be a class of separable, unital, and nuclear C∗-algebras. If A

in C is such that

(i) every unital endomorphism of A is approximately inner, and
(ii) every B in C admits an unital embedding ι :A → B ,

then A is unique up to ∗-isomorphism.

Proof. Elliott’s Intertwining Argument (cf. [9]). �
We propose a second property.

Universal Property 6.2. Let C be a class of unital and nuclear C∗-algebras. If A in C is such
that

(i) A⊗∞ ∼= A, and
(ii) B⊗∞ ⊗ A ∼= B⊗∞ for every B in C,

then A is unique up to ∗-isomorphism.
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Proof. Suppose that A,B in C satisfy (i) and (ii) above. Then,

A
(i)∼= A⊗∞ (ii)∼= A⊗∞ ⊗ B

(i)∼= A ⊗ B⊗∞ (ii)∼= B⊗∞ (i)∼= B. �
Universal Properties 6.1 and 6.2 have the same basic structure. In each case, condition (i)

is intrinsic and known to hold for the Jiang–Su algebra Z , while condition (ii) is extrinsic and
potentially verifiable for Z . Conditions 6.1(i) and 6.2(i) are skew, but not completely so: the
separable, unital C∗-algebras satisfying both conditions are precisely the strongly self-absorbing
C∗-algebras studied in [33]. Any separable, unital, and nuclear C∗-algebra A which admits an
unital embedding of Z then satisfies A⊗∞ ⊗Z ∼= A⊗∞ (cf. Theorem 7.2.2 of Rørdam); if Uni-
versal Property 6.1 is satisfied by Z inside a class C of separable, unital, and nuclear C∗-algebras,
then the same is true of Universal Property 6.2. The attraction of condition 6.2(ii), as we shall
see, is that it can be verified (with A = Z) for a large class of projectionless C∗-algebras; there
is, to date, no similar confirmation of condition 6.1(ii).

An interesting point: if one takes C to be the class of Kirchberg algebras, then Universal Prop-
erties 6.1 and 6.2 both identify O∞; if one takes C to be the class of simple, nuclear, separable,
and unital C∗-algebras satisfying the Universal Coefficients Theorem and containing an infinite
projection—a class which properly contains the Kirchberg algebras—then Universal Property 6.2
still identifies O∞, while Universal Property 6.1 does not (indeed, it is unclear whether 6.1 iden-
tifies anything at all in this case).

To prove that Z satisfies Universal Property 6.2 among unital and nuclear C∗-algebras, one
must determine whether infinite tensor products of such algebras are Z-stable. Formally, the
question is reasonable. If gr(A⊗gr(A)) = 1 whenever gr(A) < ∞, then why not gr(A⊗∞) = 1
for any A? It follows immediately from Definition 2.1 that one has either gr(A⊗∞) = 0 or
gr(A⊗∞) = ∞.

Recall that for natural numbers p,q,n such that p and q divide n, the dimension drop interval
I[p,n, q] is the algebra of functions

{
f ∈ C

([0,1],Mn

) ∣∣ f (0) = a ⊗ 1n/q, a ∈ Mp, f (1) = b ⊗ 1n/p, b ∈ Mq

}
.

If p and q are relatively prime and n = pq , then we say that I[p,pq,q] is a prime dimension
drop interval. Z is the unique simple and unital inductive limit of prime dimension drop intervals
having

(
K0,K+

0 , [1])∼= (
Z,Z

+,1
)
, K1 = 0, T = {∗},

see [16].
The next two propositions are germane to the results in this section. They follow more or less

directly from Proposition 2.2 and Theorem 2.3 of [34], respectively.

Proposition 6.1. Let A be a separable, nuclear, and unital C∗-algebra. Then, gr(A⊗∞) = 1
if and only if there exists, for any relatively prime natural numbers p and q , an unital
∗-homomorphism ι : I[p,pq,q] → A⊗∞.

Proof. The “only if” part of the proposition is straightforward—every prime dimension drop
interval embeds into Z , which in turn embeds into A⊗∞ ⊗Z ∼= A⊗∞.
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Proposition 2.2 of [34] states: if B is a separable and unital C∗-algebra and there exists, for
each pair of relatively prime natural numbers p and q , an unital ∗-homomorphism

φ : I [p,pq,q] →
∏∞

i=1 B⊕∞
i=1 B

∩ B ′,

where B ′ is the commutant of embedding of B →∏∞
i=1 B/

⊕∞
i=1 B coming from constant se-

quences, then B ⊗Z ∼= B . Equivalently, if one has finite sets F1 ⊆ F2 ⊆ · · · ⊆ B such that
⋃

i Fi

is dense in B and, for any relatively prime natural numbers p and q and i ∈ N an unital ∗-
homomorphisms φp,q : I [p,pq,q] → B such that Im(φp,q) commutes with Fi up to 1/2i , then
B ⊗Z ∼= B .

Put B = A⊗∞, and choose finite sets Fi ⊆ A⊗∞ with dense union. We may write

A⊗∞ ∼= A⊗∞ ⊗ A⊗∞ ⊗ · · · ,
and assume that Fi is contained in the first i tensor factors of A⊗∞ above. By assumption
there exists, for any relatively prime natural numbers p and q , an unital ∗-homomorphism
φ : I [p,pq,q] → A⊗∞. By composing φ with the embedding of A⊗∞ as the (i + 1)th tensor
factor of A⊗∞ ⊗ A⊗∞ ⊗ · · ·, we obtain an unital ∗-homomorphism from I [p,pq,q] to A⊗∞
whose image commutes with Fi , as required. Thus, A⊗∞ ⊗Z ∼= A⊗∞ and gr(A⊗∞) = 1. �
Proposition 6.2. Let A be a separable, nuclear, and unital C∗-algebra. Suppose that A admits
an unital ∗-homomorphism ι : M2 ⊕ M3 → A. Then, gr(A⊗∞) = 1.

Proof. Choose finite sets F1 ⊆ F2 ⊆ · · · ⊆ A⊗∞ with dense union, and with the property that
Fi is contained in the first i tensor factors of A⊗∞. One can then use ι to obtain an unital
∗-homomorphism from M2 ⊕ M3 to the (i + 1)th tensor factor of A⊗∞. In particular, the image
of this homomorphism commutes with Fi . It follows that A⊗∞ is approximately divisible, and
hence Z-stable by Theorem 2.3 of [33]. �
Corollary 6.1. Let A be a separable, nuclear and unital C∗-algebra of real rank zero having no
one-dimensional representation. Then, gr(A⊗∞) = 1.

Proof. In Proposition 5.7 of [23], Perera and Rørdam prove that an algebra A as in the hypothe-
ses of the corollary admits an unital embedding of a finite-dimensional algebra F having no
direct summand of dimension one. Apply Proposition 6.2. �

It is not known at present whether every simple and unital AH algebra admits an unital embed-
ding of Z . We will prove that infinite tensor products of such algebras are nevertheless Z-stable
whenever they lack one-dimensional representations.

Lemma 6.1. Given any natural number N , there exists ε > 0 with the following property: if

A := p
(
C(X) ⊗K

)
p,

X a connected finite CW-complex, is such that

dim(X)
< ε,
rank(p)
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then there is an unital ∗-homomorphism

ι : MN ⊕ MN+1 → A.

Proof. Since X is a finite CW-complex, the K0-group of A is finitely generated. Write

K0A ∼= G1 ⊕ G2 ⊕ · · · ⊕ Gk,

where each Gi is cyclic, and G1 = 〈[θ1]〉 is the free cyclic group generated by the K0-class [θ1]
of the trivial complex line bundle θ1 over X.

Let rank(p) be large enough—equivalently, dim(X)/ rank(p) small enough—to ensure the
existence of non-negative integers a and b such that

rank(p) = aN + b(N + 1), a, b � dim(X)/2.

Write

[p] =
k⊕

j=1

gj , gj ∈ Gj, 1 � j � m.

One has, by definition, that g1 = Na[θ1]+ (N +1)b[θ1]. Since N and N +1 are relatively prime
one also has, for every i � 2, elements hi, ri of Gi such that

gi = Nhi + (N + 1)ri .

Set

h := h1 ⊕ · · · ⊕ hk; r := r1 ⊕ · · · ⊕ rk.

Then, g = Nh+ (N + 1)r , and h, r ∈ K0(A)+—the virtual dimension of these elements exceeds
dim(X)/2.

Find pairwise orthogonal projections P1, . . . ,PN in M∞(A) such that [Pi] = h, 1 � i � N .
Similarly, find pairwise orthogonal projections Q1, . . . ,QN+1 such that [Qj ] = r , 1 � j �
N + 1. Since (

⊕
i Pi) ⊕ (

⊕
j Qj ) is Murray–von Neumann equivalent to p, we may assume

that the Pis and Qj s are in A. Furthermore, Pi and Pk are Murray–von Neumann equivalent
for any i and k, and similarly for Ri and Rk . One may then easily find a system of matrix units
for MN and MN+1 using the partial isometries implementing the equivalences among the Pis
and Rj s. It follows that there is an unital embedding of MN ⊕ MN+1 into A. �
Proposition 6.3. Let A be a separable, unital C∗-algebra. Let

B =
n⊕

i=1

pi

(
C(Xi) ⊗K

)
pi

satisfy rank(pi) � 2. If there is an unital ∗-homomorphism φ :B → A, then gr(A⊗∞) = 1.
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Proof. For any natural number k one has an unital ∗-homomorphism

φ⊗k :B⊗k → A⊗k.

Let ιk :A⊗k → A⊗∞ be the map obtained by embedding A⊗k as the first k factors of A⊗∞.
Setting γk = ιk ◦ φ⊗k , one has an unital ∗-homomorphism

γk :B⊗k → A⊗∞.

Recall that

p
(
C(X) ⊗K

)
p ⊗ q

(
C(Y ) ⊗K

)
q ∼= (p ⊗ q)

(
C(X × Y) ⊗K

)
(p ⊗ q) (10)

for compact Hausdorff spaces X and Y and projections p ∈ C(X) ⊗K, q ∈ C(Y ) ⊗K. Let Z be
any connected component of the spectrum of B⊗k , and let pZ ∈ B⊗k be the projection which is
equal to the unit of B⊗k at every point in Z, and equal to zero at every other point in the spectrum
of B⊗k . It follows from Eq. (10) that

dim(Z)

rank(pZ)
� k(max1�i�n dim(Xi))

(min1�i�n rank(pi))k
� k(max1�i�n dim(Xi))

2k

k→∞−−−→ 0.

Thus, for a fixed N ∈ N, there is some k ∈ N such that every homogeneous direct summand
of B⊗k with connected spectrum satisfies the hypothesis of Lemma 6.1 for the corresponding
value of ε. It follows that there is an unital ∗-homomorphism

ψ : MN ⊕ MN+1 → B⊗k.

The composition γk ◦ ψ yields an unital ∗-homomorphism from MN ⊕ MN+1 to A⊗∞ (we may
assume that N � 2). It follows that there is an unital ∗-homomorphism from M2 ⊕ M3 to MN ⊕
MN+1, and hence an unital ∗-homomorphism from M2 ⊕ M3 to A⊗∞. Apply Proposition 6.2 to
conclude that (A⊗∞)⊗∞ ∼= A⊗∞ is Z-stable. �

An algebra B as in the statement of Proposition 6.3 need not have any non-trivial projections.
Take, for instance, the algebra p(C(S4) ⊗K)p, where p is the higher Bott projection; p has no
non-zero Whitney summands by a Chern class argument. On the other hand, the proof of Propo-
sition 6.3 shows that if A satisfies the hypotheses of the same, then A⊗∞ has many projections.

Theorem 6.1. Let A be an unital AH algebra having no one-dimensional representation. Then,
gr(A⊗∞) = 1.

Proof. Write

A = lim
i→∞

(
Ai :=

ni⊕
l=1

pi,l

(
C(Xi,l) ⊗K

)
pi,l, φi

)
,

where φi :Ai → Ai+1 is unital. Define Ji := {l ∈ N | rank(pi,l) = 1}, and put

Bi :=
⊕

pi,l

(
C(Xi,l) ⊗K

)
pi,l .
l∈Ji
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Define ψi :Bi → Bi+1 by restricting φi to Bi , then cutting down the image by the unit of Bi+1.
Put ψi,j := ψj−1 ◦· · ·◦ψi . Notice that for reasons of rank, each ψi is unital—the only summands
of Ai whose images in Bi+1 may be non-zero are the summands which already lie in Bi .

If, for some i ∈ N, one has ψi,j = 0 for every j > i, then one may find, for every j > i, a rank
one projection qj ∈ {pj,l}nj

l=1 such that the cut-down of the image of ψj |qj Bj qj
by qj+1 gives

an unital ∗-homomorphism from qjBjqj to qj+1Bj+1qj+1. Let Yj be the spectrum of qjBjqj .
There is a continuous map θj :Yj+1 → Yj such that ψj(f )(y) = f (θj (y)) for every y ∈ Yj+1 and
f ∈ qjBjqj . Choose a sequence of points yj ∈ Yj , j > i, with the property that θj (yj+1) = yj .
Let γj :Aj → C be given by γj (f ) = f (yj ). Then (γj )j>i defines an unital inductive limit
∗-homomorphism γ :A → C; A has a one-dimensional representation. We conclude that for
every i ∈ N there exists j > i such that ψi,j = 0. It follows that Bj = {0}, so that Aj has no
one-dimensional representations. Apply Proposition 6.3 to conclude that gr(A⊗∞) = 1. �

Theorem 6.1 is interesting in light of the fact that there are unital AH algebras which are not
weakly divisible (every algebra constructed in [36] has this deficiency, for instance), so Proposi-
tion 6.2 cannot be applied to them.

In the case of simple, unital AH algebras, infinite tensor products are not only Z-stable, but
classifiable as well. The next proposition has been observed independently by Bruce Blackadar
and the author.

Proposition 6.4. Let A be a simple, unital AH algebra. Then, A⊗∞ has very slow dimension
growth in the sense of [14].

Proof. Write A = limi→∞(Ai,φi) where, as usual,

Ai =
mi⊕
i=1

pi,l

(
C(Xi,l) ⊗K

)
pi,l .

Define

ni := min
1�l�mi

{
rank(pi,l)

}
, ki := max

1�l�mi

{
dim(Xi,l)

}
.

Let ε1, ε2, . . . be a sequence of positive tolerances converging to zero. Set r1 = 1, and choose for
each i ∈ N a natural number ri ∈ N satisfying

n
ri
i

(kiri)3
< εi.

A⊗∞ can be decomposed as follows:

A⊗∞ = lim
i→∞

(
A

⊗ri
i , φ

⊗ri
i ⊗ 1⊗ri+1−ri

Ai+1

)
.

The maximum dimension of a connected component of the spectrum of A
⊗ri
i is riki , while the

minimum rank of the unit of a homogeneous direct summand of A
⊗ri
i corresponding to such a

connected component is n
ri . It follows that the decomposition for A⊗∞ above has very slow
i
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dimension growth, whence the limit is approximately divisible [10], Z-stable (Theorem 2.3
of [34]), and classifiable via the Elliott invariant [12].

Certain infinite tensor products of C∗-algebras of real rank zero are also classifiable. The
proposition below is direct consequence of recent work by Brown [5].

Proposition 6.5. Let A be a simple, unital, inductive limit of type-I C∗-algebras with a unique
tracial state. If there is an unital ∗-homomorphism φ : M2 ⊕ M3 → A, then A⊗∞ is tracially AF.

Proof. A⊗∞ is Z-stable by an application of Proposition 6.2, whence it has weakly unperforated
K0-group (Theorem 1 of [15]) and stable rank one (Theorem 6.7 of [30]). Since the proof of
Proposition 6.2 actually shows that A⊗∞ is approximately divisible, we conclude that it has real
rank zero by the main theorem of [3]. We have thus collected the hypotheses of Corollary 7.9
of [5], whence A⊗∞ is tracially AF. �

Notice that algebras satisfying the hypotheses of Proposition 6.5 need not be tracially AF,
even if one excludes the trite example of a finite-dimensional algebra with no one-dimensional
representation. Examples include M2(A) for any of the algebras produced in Theorem 4.1 or any
algebra constructed in [36], hence algebras of arbitrary growth rank or stable rank.

The infinite tensor products considered so far have all contained non-trivial projections. We
turn now to certain potentially projectionless infinite tensor products.

Definition 6.1. Let there be given a homogeneous C∗-algebra Mk(C(X)) (X is not necessarily
connected) and closed pairwise disjoint sets X1, . . . ,Xn ⊆ X. Let F be a finite-dimensional
C∗-algebra, and let ιi :F → Mk , 1 � i � n, be unital ∗-homomorphisms. Define

φi :F → Mk

(
C(Xi)

)∼= C(Xi) ⊗ Mk

by φi := 1 ⊗ ιi , and put

A := {
f ∈ Mk

(
C(X)

) ∣∣ f |Xi
∈ Im(φi)

}
.

We call A a generalised dimension drop algebra.

Separable and unital direct limits of direct sums of generalised dimension drop algebras are,
in general, beyond the scope of current methods for classifying approximately subhomogeneous
(ASH) algebras via K-theory. The only such algebras which are known to admit an unital em-
bedding of Z are those for which classification theorems exist, and these form a quite limited
class. But for infinite tensor products, we can prove the following:

Theorem 6.2. Let A be a separable, unital, and nuclear C∗-algebra. Suppose that for every
n ∈ N there is a finite direct sum of generalised dimension drop algebras Bn having no rep-
resentation of dimension less than n, and an unital ∗-homomorphism γn :Bn → A. Then,
A⊗∞ ⊗Z ∼= A⊗∞.

Theorem 6.2 follows directly from Proposition 6.1 and Lemma 6.2.
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Lemma 6.2. Let I [p,pq,q] be a fixed prime dimension drop interval, and let B be a gener-
alised dimension drop algebra. There exists N ∈ N such that if every non-zero finite-dimensional
representation of B has dimension at least N , then there is a unital ∗-homomorphism
γ : I [p,pq,q] → B .

Proof. Let N � pq − p − q . It is well known that for any natural number M � N there
are non-negative integers aM and bM such that aMp + bMq = M . Since B has no represen-
tations of dimension less than N , we may assume that every simple direct summand of the
finite-dimensional algebra F associated to B has matrix size at least N . There is an unital
∗-homomorphism ψ : I [p,pq,q] → F defined as follows: given a simple direct summand Mkj

of F , 1 � j � m, define a map

ψj : I [p,pq,q] → Mkj

by

ψj (f ) =
akj⊕
l=1

f (0) ⊕
bkj⊕
r=1

f (1);

put

ψ :=
m⊕

j=1

ψj .

Adopt the notation of Definition 6.1 for B . Find pairwise disjoint open sets Oi ⊇ Xi , 1 �
i � n, and put C = (

⋃
i Oi)

c . Since X is normal, there is a continuous function f :X → [0,1]
such that f = 0 on C and f = 1 on

⋃
i Xi . Define a map

γ1 : I [p,pq,q] → Mk

(
C(C ∪ O1)

)
by

γ1 := (1Mk(C(C∪O1)) ⊗ ι1) ◦ ψ.

For each 2 � i � n define similar maps

γi : I [p,pq,q] → Mk

(
C(Xi)

)
by

γi := (1Mk(C(Xi)) ⊗ ιi) ◦ ψ.

Lemma 2.3 of [16] shows that the space of unital ∗-homomorphisms from I [p,pq,q] to Mk is
path connected. Choose, then, for each 2 � i � n, a homotopy

ωk : [0,1] × I [p,pq,q] → Mk
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such that ωi(0, g) = γ1(g) and ωi(1, g) = γi(g), ∀g ∈ I [p,pq,q]. Define an unital
∗-homomorphism γ : I [p,pq,q] → B by

γ (g)(x) =
{

γ1(g), x ∈ C ∪ O1
γi(g), x ∈ Xi, 2 � i � n,

ωi(t, g), x ∈ Oi\Xi and f (x) = t. �
The hypotheses of Theorem 6.2 are less general than one would like—replacing generalised

dimension drop algebras with recursive subhomogeneous algebras would be a marked improve-
ment. On the other hand, they do not even require that the algebra A be approximated locally
on finite sets by generalised dimension drop algebras, and are satisfied by a wide range of
C∗-algebras:

(i) simple and unital limits of inductive sequences (Ai,φi), i ∈ N, where each Ai is a finite
direct sum of generalised dimension drop algebras—these encompass all approximately
subhomogeneous (ASH) algebras for which the Elliott conjecture is confirmed;

(ii) for every weakly unperforated instance of the Elliott invariant I , an unital, separable, and
nuclear C∗-algebra AI having this invariant (see the proof of the main theorem of Section 7
in [11]);

(iii) simple, unital, separable, and nuclear C∗-algebras having the same Elliott invariant as Z for
which there are no classification results (the main theorem in Section 7 of [11] provides a
construction of a simple, unital, separable, and nuclear C∗-algebra with the same Elliott in-
variant as Z ; there are no ASH classification results which cover this algebra, yet it satisfies
the hypotheses of Theorem 6.2).

7. The growth rank and other ranks

In this last section we explore the connections between the growth rank and other ranks for
nuclear C∗-algebras: the stable rank (sr(•)), the real rank (rr(•)), the tracial topological rank
(tr(•)), and the decomposition rank (dr(•)).

Growth rank one is the condition that A absorbs Z tensorially. If, in addition, A simple and
unital, then it is either stably finite or purely infinite by Theorem 3 of [15]. If A is purely infinite,
then it has infinite stable rank and real rank zero (see [28], for instance). If A is finite, then it has
stable rank one by Theorem 6.7 of [30]. The bound rr(A) � 2 sr(A) − 1 holds in general, so one
also has rr(A) � 1 [4].

As mentioned at the end of Section 4, the AH algebras of [35] with perforated ordered
K0-groups of bounded perforation and those of [36] having finite stable rank all have growth
rank two. For each natural number n there is an algebra from either [35] or [36] with stable
rank n. Thus, there is no restriction on the stable rank of a C∗-algebra with growth rank two
other than the fact that it is perhaps not infinite. The algebra in [36] of stable rank n � 2 has real
rank equal to n or n − 1, so algebras of growth rank two may have more or less arbitrary finite
non-zero real rank.

We can compute the stable rank, real rank, decomposition rank, and tracial topological rank
of the algebras constructed in Theorem 4.1.

Proposition 7.1. Let An be the algebra of Theorem 4.1 such that gr(A) = n ∈ N ∪ {∞}. Then,

(1) sr(A1) = 1, sr(A2) < ∞, and sr(An) = ∞ for all n � 3;
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(2) rr(A1) = 1, rr(A2) < ∞, and rr(An) = ∞ for all n � 3;
(3) tr(A1) = 0 and tr(An) = ∞ for all n � 2;
(4) dr(A1) = 0 and dr(An) = ∞ for all n � 2.

Proof. Since A1 was taken to be a UHF algebra, it has stable rank one. Inspection of the con-
struction of A2 shows that the ratio

dim(Xi)

dim(pi)

is bounded above by a constant K ∈ R
+. In [22], Nistor proves that

sr
(
p
(
C(X) ⊗K

)
p
)=

⌈�dim(X)/2�
rank(p)

⌉
+ 1,

where X is a compact Hausdorff space. It follows that each building block in the inductive se-
quence for A2 has stable rank less than K , whence sr(A2) < K < ∞ by Theorem 5.1 of [26]. For
n � 2 the algebra An is similar to the algebra of infinite stable rank constructed in Theorem 12
of [36]. In fact, the proof of the latter can be applied directly to show that sr(An) = ∞—one
only needs to know that e(ξ

I
j
1
)j = 0, which follows from Proposition 3.2 of [29] and the fact that

|I j

1 | � j .
The case of the real rank is similar to that of the stable rank. A1 is UHF, and so rr(A0) = 0.

Since the bound rr(•) � 2 sr(•) − 1 holds in general, we have rr(A2) < ∞. Finally, in a manner
analogous to the stable rank case, the proof of Theorem 13 of [36] can be applied directly to An

whenever n � 2 to show that rr(An) = ∞.
All UHF algebras have tr = 0, whence tr(A1) = 0 [19]. Theorem 6.9 of [19] asserts that an

unital simple C∗-algebra A with tr(A) < ∞ must have stable rank one. Since sr(An) > 1 for
all n � 2, we conclude that tr(An) = ∞ for all such n. The proof of Theorem 8 of [36] can be
applied directly to A2 to show that sr(A2) � 2, whence tr(A2) = ∞.

All UHF algebras have dr = 0 by Corollary 6.3 of [37], whence dr(A1) = 0. The same corol-
lary implies that dr(An) = ∞ for all n � 1 since, by construction, these Ans have unique trace
and contain projections of arbitrarily small trace. �

Thus, the growth rank is able to distinguish between simple C∗-algebras which are undiffer-
entiated by other ranks. We offer a brief discussion of these other ranks as they relate to Elliott’s
classification program for separable nuclear C∗-algebras, and argue that the growth rank meshes
most naturally with this program. It must be stressed, however, that these other ranks have been
indispensable to the confirmation of Elliott’s conjecture over the years.

Simple, nuclear, unital and separable C∗-algebras of real rank zero have so far confirmed
Elliott’s conjecture, but as the conjecture has also been confirmed for large classes of simple,
nuclear C∗-algebras of real rank one, one must conclude that real rank zero is at best too strong
to characterise the simple, separable and nuclear C∗-algebras satisfying the Elliott conjecture.
There is a counterexample to Elliott’s conjecture having rr = sr = 1 in [32], so the conditions
rr � 1 and sr = 1 also fail to characterise classifiability.

The condition tr = 0 has been shown to be sufficient for the classification of large swaths of
simple, separable, nuclear C∗-algebras of real rank zero, but the fact that algebras with tr < ∞
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must have small projections means that this condition will not characterise classifiability—the
Elliott conjecture has been confirmed for large classes of projectionless C∗-algebras.

The condition dr < ∞ is so far promising as far as characterising classifiability is concerned
at least in the stably finite case. It may be true that

dr < ∞ ⇔ gr = 1

for simple, separable, nuclear, and stably finite C∗-algebras. On the other hand it remains unclear
whether the decomposition rank takes more than finitely many values for such algebras, and it is
unlikely to distinguish non-Z-stable algebras.

The growth rank has strong evidence to recommend it as the correct notion of rank vis a
vis classification: all simple, separable, nuclear and non-elementary C∗-algebras for which the
Elliott conjecture is confirmed have gr = 1; all known counterexamples to the conjecture have
gr > 1; the growth rank achieves every possible value in its range on simple, nuclear and sep-
arable C∗-algebras and is well behaved with respect to common operations. Furthermore, the
classification results available for Z-stable C∗-algebras are very powerful. Let E denote the
class of simple, separable, nuclear, and unital C∗-algebras in the bootstrap class N which are
Z-stable. (In light of known examples, E is the largest class of simple unital algebras for which
one can expect the Elliott conjecture to hold.) Then:

(i) the subclass of Einf of E consisting of algebras containing an infinite projection satisfies the
Elliott conjecture [17,24];

(ii) the subclass of E\Einf consisting of algebras with real rank zero and locally finite decompo-
sition rank satisfies the Elliott conjecture [38].
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