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On the independence of K-theory and stable rank
for simple C�-algebras
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Abstract. Jiang and Su and (independently) Elliott discovered a simple, nuclear,
infinite-dimensional C �-algebra Z having the same Elliott invariant as the complex num-
bers. For a nuclear C �-algebra A with weakly unperforated K�-group the Elliott invariant
of AnZ is isomorphic to that of A. Thus, any simple nuclear C �-algebra A having a
weakly unperforated K�-group which does not absorb Z provides a counterexample to
Elliott’s conjecture that the simple nuclear C �-algebras will be classified by the Elliott
invariant. In the sequel we exhibit a separable, infinite-dimensional, stably finite in-
stance of such a non-Z-absorbing algebra A, and so provide a counterexample to the
Elliott conjecture for the class of simple, nuclear, infinite-dimensional, stably finite, sepa-
rable C �-algebras.

1. Introduction

Elliott’s classification of AF C �-algebras ([2]) via the scaled, ordered K0-group began
what is now a widespread e¤ort to classify nuclear C �-algebras via the Elliott invariant.
In the case of a stably finite, unital, simple C �-algebra A this invariant consists of the
group K�A ¼ K0AlK1A, the class of the unit of A in K�A, an order structure on
K�A (an element ½p�l x is positive if ½p� is positive in K0A and x can be represented as
the K1-class of a unitary u A MlðAÞ such that uu� is a sub-projection of p), the Choquet
simplex of normalised traces TA, and the pairing between K0A and TA via evaluation.
In this paper the invariant above will be denoted EllðAÞ. Let srðAÞ be the stable rank of
A, as defined by Rie¤el in [9]. Ellð�Þ has been particularly successful in classifying sim-
ple C �-algebras of stable rank one. Until now, it was not known whether this invariant
would su‰ce for the classification of stably finite C �-algebras of stable rank greater than
one.

Recall that an ordered group ðG;GþÞ is said to be weakly unperforated if x B Gþ and
nx A Gþ for some natural number n implies that nx ¼ 0. We recall that the Elliott invariant
of a simple nuclear unital C �-algebra A is isomorphic to that of AnZ whenever K�A is
weakly unperforated ([4]). If AGAnZ, then we say that A is Z-stable. Our main result is
the following:
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Theorem 1.1. For each natural number nf 2 there exists a simple, unital, nuclear,
separable, infinite-dimensional, stably finite, non-Z-stable C �-algebra Bn such that K�Bn is

weakly unperforated and srðBnÞ A fnþ 1; nþ 2g. In particular,

EllðBnÞFEllðBn nZÞ:

Thus, Bn and Bn nZ constitute a counterexample to the Elliott conjecture for
the class of simple, nuclear, infinite-dimensional, stably finite C �-algebras. We note that
the existence of Bn answers Question 1.5 of [4] negatively; the weak unperforation of
the K�-group does not imply that a simple, unital, nuclear, separable, infinite-dimensional
C �-algebra absorbs Z.

The title of this paper derives from the fact that the algebra Bn of Theorem 1.1 has
srðBnÞ A fnþ 1; nþ 2g while, as we shall see, srðBn nZÞe 2. It is possible (but purely
speculative) that finer invariants such as K-theory with coe‰cients, the semigroup of
Murray-von Neumann equivalence classes of projections, or higher algebraic K-theory will
recover stable rank, and so the independence of the title is only with respect to the notion of
K-theory captured by Ellð�Þ.

We conclude this section with an outline of the sequel. Section 2 lists several theorems
from [3], which are applied in section 3 to construct the algebra Bn of Theorem 1.1. The
general ideas of this latter section are also found in [3]. In section 4, Bn is shown to have the
properties claimed in Theorem 1.1.

Acknowledgements. The author would like to thank George Elliott and Ping Wong
Ng for their many helpful comments on earlier drafts of this paper. This research was
funded by both the Israel Halperin Graduate Award at the University of Toronto and by a
Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.

2. Background and essential results

We begin by reviewing the definition of the generalised mapping torus, due to Elliott.
Let C;D be C �-algebras and let f0; f1 be �-homomorphisms from C to D. Then the gen-
eralised mapping torus of C and D with respect to f0 and f1 is

A :¼ fðc; dÞ j d A Cð½0; 1�;DÞ; c A C; dð0Þ ¼ f0ðcÞ; dð1Þ ¼ f1ðcÞg:

We will denote A by AðC;D; f0; f1Þ where appropriate for clarity. We now list (without
proof ) some theorems of [3] which will be used in the sequel.

Theorem 2.1 (Elliott and Villadsen [3], Theorem 2). The index map

b� : K�C ! K1��SD ¼ K�D in the six term periodic sequence for the extension

0 ! SD ! A ! C ! 0

is the di¤erence

K�f1 �K�f0 : K�C ! K�D:
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Thus, the six-term exact sequence may be written as the short exact sequence

0 ! Coker b1�� ! K�A ! Ker b� ! 0:

In particular, if b1�� is surjective, then K�A is isomorphic to its image, Ker b�, in K�C.

Suppose that cancellation holds for D—i.e., that cancellation holds in the semigroup of

Murray-von Neumann equivalence classes of projections in D and in matrix algebras over D

(equivalently, in DnK). It follows that if b1 is surjective, so that K0ALK0C, then

ðK0AÞþ ¼ ðK0CÞþXK0A:

The preceding conclusion also holds if cancellation is only known to hold for each pair

of projections in DnK obtained as the images under the maps f0 and f1 of a single pro-

jection in CnK. (In other words, if two such projections in DnK have the same K0 class

then they should be equivalent, assuming as before that b1 is surjective.)

Theorem 2.2 (Elliott and Villadsen [3], Theorem 3). Let A1 and A2 be building block

algebras as described above,

Ai ¼ AðC;D; f i
0; f

i
1Þ; i ¼ 1; 2:

Let there be given four maps between the fibres,

g : C1 ! C2;

d; d 0 : D1 ! D2; and;

e : C1 ! D2;

such that d; d 0 and e have mutually orthogonal images, and

df1
0 þ d 0f1

1 þ e ¼ f2
0g;

df1
1 þ d 0f1

0 þ e ¼ f2
1g:

Then there exists a unique map

y : A1 ! A2;

respecting the canonical ideals, giving rise to the map g : C1 ! C2 between the quotients (or
fibres at infinity), and such that for any 0 < s < 1, if es denotes evaluation at s, and ey the

evaluation at infinity,

esy ¼ des þ d 0e1�s þ eey:

Theorem 2.3 (Elliott and Villadsen [3], Theorem 4). Let A1 and A2 be building block

algebras as in Theorem 2.1. Let y : A1 ! A2 be a homomorphism constructed as in Theorem

2.2, from maps g : C1 ! C2, d; d
0 : D1 ! D2, and e : C1 ! D2.
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Let there be given a map b : D1 ! C2 such that the composed map bf1
1 is a direct

summand of the map g, and such that the composed maps f2
0b and f2

1b are direct summands of

the maps d 0 and d, respectively. Suppose that the decomposition of g as the orthogonal sum of

bf1
1 and another map is such that the image of the second map is orthogonal to the image of b.

(Note that this requirement is automatically satisfied if C1;D1, and the map bf1
1 are unital.)

It follows that, for any 0 < t < 1=2, the map y : A1 ! A2 is homotopic to a map

yt : A1 ! A2 di¤ering from it only as follows: the map eyyt has the direct summand bet in-
stead of one of the direct summands bf1

0ey and bf1
1ey of eyy, and for each 0 < s < 1 the

map esyt has either the direct summand f2
0bet instead of the direct summand f2

0bes of esy, or
the direct summand f2

1bet instead of the direct summand f2
1bes of esy, or both.

Furthermore, let a : D1 ! C2 be any map homotopic to b within the hereditary sub-C �-
algebra of C2 generated by the image of b. Then the map yt is homotopic to a map

y 0
t : A1 ! A2 di¤ering from yt only in the direct summands mentioned, and such that eyy 0

t has

the direct summand aet instead of bet, and for each 0 < s < 1, esy
0
t has either f

2
0aet instead of

f2
0bet, or f

2
1aet instead of f2

1bet.

Theorem 2.4 (Elliott and Villadsen [3], Theorem 5). Let

A1 !
y1

A2 !
y2 � � �

be a sequence of separable building block C �-algebras,

Ai ¼ AðCi;Di; f
i
0; f

i
1Þ; i ¼ 1; 2; . . .

with each map yi : Ai ! Aiþ1 obtained by the construction of Theorem 2.2 (and thus re-

specting the canonical ideals). For each i ¼ 1; 2; . . . let bi : Di ! Ciþ1 be a map verifying the

hypotheses of Theorem 2.3.

Suppose that for every i ¼ 1; 2; . . . ; the intersection of the kernels of the boundary maps

f i
0 and f i

1 from Ci to Di is zero.

Suppose that, for each i, the image of each of f iþ1
0 and f iþ1

1 generates Diþ1 as a closed

two-sided ideal, and that this is in fact true for the restriction of f iþ1
0 and f iþ1

1 to the smallest

direct summand of Ciþ1 containing the image of bi. Suppose that the closed two-sided ideal of

Ciþ1 generated by the image of bi is a direct summand.

Suppose that, for each i, the maps d 0i � f i
0bi and di � f i

1bi from Di to Diþ1 are injective.

Suppose that, for each i, the map gi � bif
i
1 takes each non-zero direct summand of Ci

into a subalgebra of Ciþ1 not contained in any proper closed two-sided ideal.

Suppose that, for each i, the map bi : Di ! Ciþ1 can be deformed—inside the heredi-

tary sub-C �-algebra generated by its image—to a map ai : Di ! Ciþ1 with the following

property: There is a direct summand of ai, say ai, such that ai is non-zero on an arbitrary

given element xi of Di, and has image a simple sub-C �-algebra of Ciþ1, the closed two-sided

ideal generated by which contains the image of bi.
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Choose a dense sequence ðtnÞ in the open interval ð0; 1=2Þ, such that t2n ¼ t2n�1,
n ¼ 1; 2; . . . :

Choose a sequence of elements x3 A D3, x5 A D5, x7 A D7; . . . (necessarily non-zero)
with the following property: For some countable basis for the topology of the spectrum of each

of D1;D2; . . . ; and for some choice of non-zero element of the closed two-sided ideal asso-

ciated to each of these (non-empty) open sets, under successive application of the maps

di � f iþ1
1 bi each one of these elements is taken into xj for all j in some set SL f3; 5; 7; . . .g

such that ftj; j A Sg is dense in ð0; 1=2Þ. Choose aj as above such that ajðxjÞ3 0 for some

direct summand aj of aj for each j A f3; 5; 7; . . .g. For each j A f4; 6; 8; . . .g choose aj with

respect to the non-zero element ðd 0j�1 � f
j
0bj�1Þðxj�1Þ of Dj. (If j ¼ 1 or 2, choose aj ¼ bj.)

It follows that, if y 0
i denotes the deformation of yi constructed in Theorem 4, with re-

spect to the point ti A ð0; 1=2Þ and the maps ai and bi (and a fixed homotopy of bi to ai), then
the inductive limit of the sequence

A1 !
y 0
1
A2 !

y 0
2 � � �

is simple.

3. The construction of Bn

We now specify C �-algebras Ai ¼ AiðCi;Di; f
0
i ; f

1
i Þ as in Theorem 2.1, and maps

di; d
0
i ; gi, and bi satisfying the hypotheses of Theorems 2.2, 2.3, and 2.4 in order to construct

an inductive sequence

A1 !
y 0
1
A2 !

y 0
1 � � �

whose limit will be the C �-algebra Bn of Theorem 1.1.

Let D denote the closed unit disc in the complex numbers. Put

Xi ¼ Dn � CPnsð1Þ � CPnsð2Þ � � � � � CPnsðiÞ

—the sðiÞ are natural numbers to be specified—so that

Xiþ1 ¼ Xi � CPnsðiþ1Þ;

and let

p1
iþ1 : Xiþ1 ! Xi; p2

iþ1 : Xiþ1 ! CPnsðiþ1Þ

be the co-ordinate projections.

We will take Ci ¼ pi
�
CðXiÞnK

�
pi, where pi is a projection in CðXiÞnK to be

specified. Let Di ¼ Ci nMki dimðpiÞ, where ki is a positive integer to be specified. Define
maps

mi; ni : Ci ! Ci nMdimðpiÞ
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as follows:

miðaÞ ¼ pi n aðxiÞ;

niðaÞ ¼ an 1dimðpiÞ:

For t A f0; 1g, we will take f t
i to be the direct sum of l ti copies of mi and ki � l ti copies of ni,

where the l ti are non-negative integers to be specified. All that we mention now is that we
should have l1i � l0i 3 0. We need only specify the f t

i up to unitary equivalence, a fact we
shall exploit below.

By Theorem 2.1 we have that for any e A K0ðCiÞ,

b0ðeÞ ¼ ðl1i � l0i Þ
�
K0ðmiÞ �K0ðniÞ

�
¼ ðl1i � l0i Þ

�
dimðeÞ �K0ðpiÞ � dimðpiÞ � e

�
:

Since l1i � l0i 3 0 and since K0Ci is a finitely generated free abelian group, we have that
Ker b0 is the largest subgroup of K0Ci containing K0ðpiÞ and isomorphic to the integers. In
the sequel we will choose pi so that K0ðpiÞ in fact generates said subgroup. Since K1Ci ¼ 0
we have, by Theorem 2.1, that K0Ai is isomorphic as an ordered group to its image, Ker b0,
in K0Ci, considered as a sub ordered group. The latter (with the choice of pi below) is
isomorphic to the integers with the unique unperforated order structure, and the image of
½1Ai

� is ½pi�.

Let p1 be a projection corresponding to the vector bundle

y1 � xnsð1Þ;

over X1, where y1 denotes the trivial line bundle of dimension one over D, xk denotes the
universal line bundle over CPk for every natural number k, and sð1Þ ¼ 1. We now specify,
inductively, the maps gi : Ci ! Ciþ1. Consider first the map

ci :¼ idn 1

from CðXiÞ to CðXiþ1Þ ¼ CðXi � CPnsðiþ1ÞÞ ¼ CðXiÞnCðCPnsðiþ1ÞÞ, where 1 denotes the

unit of CðCPnsðiþ1ÞÞ and id denotes the identity map from CðXiÞ to itself.

Consider also the map

b 0
i :¼ p2�

iþ1ðxnsðiþ1ÞÞ � exi

from CðXiÞ to CðXiþ1ÞnK, where exi denotes evaluation at xi. All that we shall require of
the xi at this stage is that p

1
iþ1ðxiþ1Þ ¼ xi.

Now, inductively, let us take gi to be the map from Ci to CðXiþ1ÞnM2ðKÞ consist-
ing of the direct sum of the following two maps: first, the restriction to Ci LCðXiÞnK of
the tensor product of ci with the identity map from K to K, and second, the map from Ci

to CðXiþ1ÞnMqiðKÞ consisting of the composition of the map f1
i from Ci to Di with the
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direct sum of qi copies of the tensor product of the map b 0
i with the identity map from K to

K (restricted to Di LCðXiÞnK), where qi is to be specified. The induction consists in first
considering the case i ¼ 1 (as p1 has already been chosen), then setting p2 ¼ g1ðp1Þ, so that
C2 is specified as the cut-down of CðX2ÞnK by p2, and continuing in this way.

With the maps gi defined as above, we have that pi is a projection in CðXiÞnK
corresponding to the vector bundle

y1 � xn � sð2Þxnsð2Þ � � � � � sðiÞxnsðiÞ;

where

sðiÞ ¼
Qi�1

l¼1

�
multðglÞ � 1

�
:

Notice that by the Künneth formula (in [10], Chapter 5, for instance) the classes ½y1�,
½xnsð1Þ�; . . . ; ½xnsðiÞ� are independent in K0ðXiÞ (we are abusing notation slightly here, using
½xk� to represent the class of the induced bundle p�ðxkÞ, where p is projection from Xi onto
CPk). Suppose that ½pi� ¼ ky for some k A Z, y A K0ðXiÞ. It follows from independence
that we have ½xn� ¼ ky 0, y 0 A K0ðCPnÞ, whence k ¼G1. We conclude that ½pi� itself gen-
erates the subgroup of rational multiples of ½pi� in K0Xi, as desired. Thus gi induces an
isomorphism of ordered groups from Ker b0 at the i

th stage to Ker b0 at the ði þ 1Þth stage.

Note that gi � bif
1
i is non-zero, and so takes Ci into a subalgebra of Ciþ1 not con-

tained in any proper closed two-sided ideal.

Next, we construct the maps di; d
0
i : Di ! Diþ1, with orthogonal images, such that

dif
0
i þ d 0if

1
i ¼ f0

iþ1gi;

dif
1
i þ d 0if

0
i ¼ f1

iþ1gi;

and f0
iþ1bi and f1

iþ1bi are direct summands of d 0i and di, respectively. To do this we shall

have to modify f0
iþ1 and f1

iþ1 by inner automorphisms. This will not a¤ect the K-theory
of A.

Note that, up to unitary equivalence, we have

exiþ1
gi ¼ multðgiÞexi ;

where multðgiÞ denotes the factor by which gi multiplies dimension. It follows that up to
unitary equivalence

miþ1gi ¼ piþ1 n exiþ1
gi

¼ giðpiÞnmultðgiÞexi
¼ multðgiÞgiðpi n exiÞ

¼ multðgiÞgimi;
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and

niþ1gi ¼ gi n 1dimðpiþ1Þ

¼ multðgiÞgi n 1dimðpiÞ

¼ multðgiÞgini:

Take di and d 0i to be ri and si copies of gi, where ri and si are integers to be specified.
The conditions

dif
0
i þ d 0if

1
i ¼ f0

iþ1gi

and

dif
1
i þ d 0if

0
i ¼ f1

iþ1gi;

understood up to unitary equivalence imply that

rigi
�
l ti mi � ðki � l ti Þni

�
þ sigi

�
l1�t
i mi þ ðki � l1�t

i Þni
�
¼

�
l tiþ1miþ1 þ ðkiþ1 � l tiþ1Þniþ1

�
gi;

again, up to unitary equivalence. As K0ðmiÞ and K0ðniÞ are independent, the above equa-
tion is equivalent to the two equations

ril
t
i þ sil

1�t
i ¼ multðgiÞl tiþ1;

ðri þ siÞki ¼ multðgiÞkiþ1:

Choose ri ¼ 2multðgiÞ and si ¼ multðgiÞ, so that

kiþ1 ¼ 3ki;

and

l tiþ1 ¼ 2l ti þ l1�t
i :

Take k1 ¼ 1, l11 ¼ 1, and l01 ¼ 0. Then l1i � l0i 3 0 for all i, as required.

Next, let us show that, up to unitary equivalence preserving the equations
dif

t
i þ d 0if

1�t
i ¼ f t

iþ1gi, f
1
iþ1bi is a direct summand of di ¼ 2multðgiÞgi and f0

iþ1bi is a direct
summand of d 0i ¼ multðgiÞgi.

Note that ft
iþ1bi is a direct sum of l tiþ1 copies of piþ1 n bi and ðkiþ1 � l tiþ1Þ copies of bi,

whereas di and d 0i contain, respectively, qi multðgiÞ and 2qi multðgiÞ copies of bi. Note also,

that by [5], Theorem 8.1.2, a trivial projection of dimension dimðpiþ1Þ þ
1

2
dimXiþ1

in CðXiþ1ÞnK contains a copy of piþ1. Therefore, 2 dimðpiþ1Þ þ 2 dimXiþ1 copies
of bi contain a copy of piþ1n bi (since 2 dimðpiþ1Þ þ 2 dimXiþ1 copies of xiþ1

contain a trivial projection of dimension dimðpiþ1Þ þ
1

2
dimXiþ1). It follows that
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kiþ1

�
2 dimðpiþ1Þ þ 2 dimXiþ1

�
copies of bi contain a copy of f t

iþ1bi when t is equal to either
0 or 1. By a copy of a given map from Di to Diþ1 we mean another map obtained from it by
conjugating by a partial isometry in Diþ1 with initial projection the image of the unit.

Note that

kiþ1

�
2 dimðpiþ1Þ þ 2 dimXiþ1

�
¼ 6ki multðgiÞ

�
dimðpiÞ þ dimXi

�
;

and that ki; dimðpiÞ, and dimXi have already been specified, and do not depend on qi. It
follows that, with

qi f 6ki
�
dimðpiÞ þ dimXi

�
;

qi multðgiÞ copies of bi contain a copy of f t
iþ1bi ðt A f0; 1gÞ. In particular d 0i and di contain

copies of f0
iþ1bi and f1

iþ1bi, respectively.

With qi as above, let us show that for each t ¼ 0; 1 there exists a unitary ut A Diþ1

such that

ðAd utÞf t
iþ1gi ¼ f t

iþ1gi;

with ðAd u0Þf0
iþ1bi a direct summand of d 0i and ðAd u1Þf1

iþ1bi a direct summand of di. In
other words, for each t ¼ 0; 1, we must show that the partial isometry constructed in the
preceding paragraph, producing a copy of f t

iþ1bi inside di or d
0
i may be chosen in such a

way that it extends to a unitary element of Diþ1—which in addition commutes with the
image of f t

iþ1gi.

Let us consider the case t ¼ 0; the case t ¼ 1 is similar. First note that the unit of the
image of f0

iþ1bi—the initial projection of the partial isometry transforming f0
iþ1bi into a

direct summand of d 0i—lies in the commutant of the image of f0
iþ1gi. Indeed, this projection

is the image by f0
iþ1bi of the unit of Di, which, by construction, is the image of the unit of

Ci by f1
i . The property that bif

1
i is a direct summand of gi implies that the image by bif

1
i of

the unit of Ci commutes with the image of gi. The unit of the image of f0
iþ1bi therefore

commutes with the image of f0
iþ1gi, as desired.

The final projection of the above partial isometry also commutes with the image of
f0
iþ1gi. Indeed, it is the unit of the image of a direct summand of d 0i , and since Di is unital it

is the image of the unit of Di by this direct summand; since Ci is unital and f1
i : Ci ! Di is

unital, the projection in question is the image of the unit of Ci by a direct summand of d 0if
1
i .

But d 0if
1
i is itself a direct summand of f0

iþ1gi, and so the projection in question is the image
of the unit of Ci by a direct summand of f0

iþ1gi, and in particular commutes with the image
of f0

iþ1gi.

Note that both direct summands of f0
iþ1gi under consideration (f0

iþ1bif
1
i and a copy

of it) factor through the evaluation of Ci at the point xi, and so are contained in the
largest such direct summand of f0

iþ1gi; this largest direct summand, say pi, is seen to exist

by inspection of the construction of f0
iþ1gi. Since both projections under consideration (the

images of 1 A Ci by the two copies of f0
iþ1bif

1
i ) are less than pið1Þ, to show that they are

unitarily equivalent in the commutant of the image of f0
iþ1gi (in Diþ1) it is su‰cient to show
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that they are unitarily equivalent in the commutant of the image of pi in pið1ÞDiþ1pið1Þ.
Note that this image is isomorphic to MdimðpiÞðCÞ. By construction, the two projections in
question are Murray-von Neumann equivalent in Diþ1 and hence in pið1ÞDiþ1pið1Þ, but all
we shall use from this is that they have the same class in K0Xiþ1. Note that the dimension
of these projections is

�
kiþ1 dimðpiþ1Þ

��
ki dimðpiÞ

�
, and that the dimension of pið1Þ is at

least l0iþ1

�
dimðpiþ1Þ

�2
. Since the two projections under consideration commute with piðCiÞ,

and this is isomorphic to MdimðpiÞðCÞ, to prove unitary equivalence in the commutant
of piðCiÞ in pið1ÞDiþ1pið1Þ it is su‰cient to prove unitary equivalence of the product of
these projections with a fixed minimal projection of piðCiÞ, say e. Since K0Xiþ1 is torsion
free, the products of the two projections under consideration with e still have the same class
in K0Xiþ1. To prove that they are unitarily equivalent in eDiþ1e, it is su‰cient (and neces-
sary) to prove that both they and their complements inside e are Murray-von Neumann
equivalent. Since both the cut-down projections and their complements inside e have the
same class in K0Xiþ1, to prove that they (i.e., the two pairs) are equivalent it is su‰cient, by

[5], Theorem 8.1.5, to show that all four projections have dimension at least
1

2
dimXiþ1

(note that dimXi is even). Dividing the numbers above by dimðpiÞ (the order of the matrix
algebra), we see that the dimension of the first pair of projections is kiþ1ki multðgiÞ dimðpiÞ,
so that the dimension of the second pair of projections is at least

multðgiÞ
�
l0iþ1 dimðpiþ1Þ � kiþ1ki dimðpiÞ

�
.

By construction, dimðpiÞ ¼
1

2
dimXi. Since kiþ1ki is non-zero for all i, the first inequality

holds. Since l0iþ1, the second inequality holds if multðgiÞ is strictly greater than kiþ1ki. Since
kiþ1ki ¼ 3k2

i , and ki was chosen before qi, we may modify our choice of qi to ensure that
multðgiÞ is su‰ciently large.

This shows that the two projections in Diþ1 under consideration are unitarily equi-
valent by a unitary in the commutant of the image of f0

iþ1gi. Replacing f0
iþ1 by its compo-

sition with the corresponding inner automorphism, we may suppose that the two projec-
tions in question are equal. In other words f0

iþ1bi is unitarily equivalent to the cut-down of
d 0i by the projection f0

iþ1bið1Þ.

Now consider the compositions of these two maps with f1
i , i.e., f

0
iþ1bif

1
i and the cut-

down of d 0if
1
i by the projection f0

iþ1bið1Þ. Since both of these maps can be viewed as the cut-

down of f0
iþ1gi by the same projection, they are in fact the same map.

Therefore, any unitary inside the cut-down of Diþ1 by f0
iþ1bið1Þ taking f0

iþ1bi into the
cut-down of d 0i by this projection—such a unitary is known to exist—must commute with
the image of f0

iþ1bif
1
i , and hence with the image of f0

iþ1gi—since this commutes with the
projection f0

iþ1bið1Þ. The extension of such a partial unitary to a unitary u0 in Diþ1 equal to
one inside the complement of this projection then belongs to the commutant of the image
of f0

iþ1gi, and transforms f0
iþ1bi into the cut-down of d 0i by this projection, as desired.

Inspection of the construction will show that the maps d 0i � f0
i bi and di � f1

i bi are
injective, as required in the hypotheses of Theorem 2.4.
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Replacing ft
iþ1 with ðAd utÞf t

iþ1 and deforming the bi to other point evalua-
tions ai which are non-zero on a given element (as we may, since Xi is connected), we
have completed the construction of the desired inductive system ðAi; yiÞ satisfying the
hypotheses of Theorem 2.4. Thus, the limit Bn of the inductive system with deformed finite
stage maps, ðAi; y

0
i Þ, is simple. Notice that ðK0Bn; ½1Bn

�Þ ¼ ðZ; 1Þ—the y 0
i are unital and

ðK0Ai; ½1Ai
�Þ ¼ ðZ; 1Þ for every i—and that Bn is separable, nuclear and stably finite since

each of the Ai is ([1]).

4. The main result

In this section we prove Theorem 1.1 through a series of lemmas. We establish that
srðBnÞ A fnþ 1; nþ 2g (Lemma 4.1), that K� is weakly unperforated (Lemma 4.3), and that
Bn does not absorb Z (Lemma 4.4). Taken together, these results show that Bn is as
claimed in Theorem 1.1.

Lemma 4.1.

srðBnÞ A fnþ 1; nþ 2g:

The proof will depend on some definitions and results which we review below.

For a unital C �-algebra A we let

LgsðAÞ ¼ fða1; . . . ; asÞ A As j a1Aþ � � � þ asA ¼ Ag

for every natural number s, and recall that the stable rank of A; srðAÞ, is the least natural
number s such that LgsðAÞ is dense in As. If no such natural number exists, we set
srðAÞ ¼ y ([9]). Note that if ðck; dkÞ are elements of a generalised mapping torus
AðC;D; f0; f1Þ for k A f1; 2; . . . ; ng such that

dist
�
ðc1; c2; . . . ; cnÞ;LgnðCÞ

�
f d;

then

dist
��
ðc1; d1Þ; ðc2; d2Þ; . . . ; ðcn; dnÞ

�
;LgnðAÞ

�
f d:

Indeed, one can check that

kðc; dÞk :¼ max
n
kck; sup

t A ½0;1�
kdðtÞk

o

defines the unique C �-norm on AðC;D; f0; f1Þ. Thus, if distðc; c 0Þf d for c; c 0 A C, then
dist

�
ðc; dÞ; ðc 0; d 0Þ

�
f d for any ðc; dÞ; ðc 0; d 0Þ A AðC;D; f0; f1Þ.

For the remainder of this proof, any notation with subscript i refers, where applica-
ble, to the corresponding object in section 3. In order to show that Bn has stable rank
greater than n, we must exhibit n sequences of elements Ai C ai; j ¼ y 0

i1ða1; jÞ ¼ ðci; j; di; jÞ,
1e je n, i A N, such that
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dist
��
ðci;1; di;1Þ; ðci;2; di;2Þ; . . . ; ðci;n; di;nÞ

�
;LgnðAiÞ

�
f d > 0

for all i. From this it follows that

dist
��
y 0
y1

�
ðc1;1; d1;1Þ

�
; . . . ; y 0

y1

�
ðc1;n; d1;nÞ

��
;LgnðBnÞ

�
f d;

so that srðBnÞ > n by definition. (Here y 0
y1 denotes the inclusion of Ai into Bn.) By the

definition of the norm on the Ai, it will be enough to show that

dist
�
ðci;1; ci;2; . . . ; ci;nÞ;LgnðCiÞ

�
f d > 0

for all i.

We now review Theorem 7 of [11]. Let eð�Þ denote the Euler class of a vector bundle.
Suppose that C is a C �-algebra of the form

ðrþ qÞ
�
CðM �DnÞnK

�
ðrþ qÞ;

where M is a smooth oriented manifold, and r and q are orthogonal projections in
CðM �DnÞnK such that r corresponds to the trivial line bundle and q corresponds to a
vector bundle a for which eðaÞn 3 0. Let p : M �Dn ! Dn be projection onto Dn, and let
fj : D

n ! D be the j th co-ordinate projection.

Theorem 4.2 (Villadsen [11], Theorem 7). Let C; p and fj be as above, and

let ~cc ¼ ðc1; . . . ; cnÞ A Cn be such that rcjr ¼ ð fj � pÞr for all 1e je n. Then,
dist

�
~cc;LgnðCÞ

�
f 1.

Proof of Lemma 4.1. We wish to apply Theorem 4.2 above to the algebras Ci, if 1.
The sequel is similar to the proof of Theorem 8 in [11]. For all i, let ri denote the sub-
projection of the unit of Ci corresponding to the one-dimensional trivial sub-bundle of
y1 � xn � � � � � sðiÞxnsðiÞ. Note that pi considered as a vector bundle over Xi is the Whitney
sum of ri and a second vector bundle, say qi, and this second vector bundle has eðqiÞn 3 0.
Indeed,

qi ¼ xn � sð2Þxnsð2Þ � � � � � sðiÞxnsðiÞ;

and eðol gÞ ¼ eðoÞeðgÞ for any two vector bundles o and g over a fixed base space so that

eðqiÞn ¼ eðxnÞneðxnsð2ÞÞnsð2Þ � � � eðxnsðiÞÞnsðiÞ:

(We are, as before, abusing notation slightly, using xk to represent the bundle induced on
Xi by xk via projection from Xi onto CPk.) Since the integral cohomology ring H�ðCPkÞ is
generated by eðxkÞ with the relation eðxkÞkþ1 ¼ 0, we may conclude by the Künneth The-
orem that eðqiÞn 3 0, as claimed. Each Xi is of the form Mi �Dn for some smooth oriented
manifold Mi, so the Ci have the same form as the algebra C of Theorem 4.2.

Note that for any element c A Ci there exists an element ðc; dÞ A Ai for some suitable
d A Cð½0; 1�;DÞ. Let pi : Xi ! Dn be the co-ordinate projection, and let fj : D

n ! D be
projection onto the j th co-ordinate. Let a1; j ¼ ðc1; j; d1; jÞ be elements of A1 such that
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c1; j ¼ ð fj � p1Þr1, 1e je n. For each if 2, put ai; j ¼ y 0
i�1 � y

0
i�2 � � � � � y

0
1ða1; jÞ. Write

ai; j ¼ ðci; j; di; jÞ.

In section 3, the map gi was constructed as the direct sum of ci and a second map. Let
ci1 denote the composition ci � ci�1 � � � � � c1. Note that ci1ðr1Þ ¼ riþ1. By Theorem 2.3,

ciþ1; j ¼ ciðci; jÞl c 0iþ1; j;

where c 0iþ1; j is an element of the cut down of Ci by qi; the deformation of yi to y 0
i is visible in

the fibre at infinity only in the perturbation of the image of the second direct summand of
gi—the image of ci remains unchanged. Thus, by construction

riþ1ciþ1; jriþ1 ¼ ci1ðr1Þciþ1; jci1ðr1Þ ¼ ci1ðc1; jÞ ¼ ð fj � piÞci1ðr1Þ ¼ ð fj � piÞriþ1:

By Theorem 4.2 we conclude that

dist
�
ðciþ1;1; ciþ1;2; . . . ; ciþ1;nÞ;LgnðCiþ1Þ

�
f 1:

As noted above, this implies that the simple limit Bn has stable rank strictly greater than n.

We now show that srðBnÞe nþ 2. Given an exact sequence B ! A ! C of C �-
algebras, [9], Corollary 4.12, states that

srðAÞemaxfsrðBÞ; srðCÞ þ 1g:

Applying this formula to the exact sequence SDi ! Ai ! Ci we have

srðAiÞemaxfsrðSDiÞ; srðCiÞ þ 1g:

It is known that

sr
�
p
�
CðXÞnK

�
p
�
¼ dddimX=2e=dim pe þ 1

whenever X a compact Hausdor¤ space and p is a projection in CðX ÞnK ([8]). Thus,
srðCiÞ ¼ sr

�
pi
�
CðXiÞnK

�
pi
�
¼ nþ 1 by inspection of the dimensions of the pi and Xi.

Since SDi is an ideal in Di nCð½0; 1�Þ, we have

srðSDiÞe sr
�
Di nCð½0; 1�Þ

�
e srðDiÞ þ 1

by [9], Corollary 7.2. [9], Theorem 6.1 states that

sr
�
MnðAÞ

�
e

��
srðAÞ � 1

�
=n
�
þ 1;

so that srðDiÞ ¼ srðMki dim pi nCiÞe nþ 1 for all i. We conclude that srðAiÞe nþ 2, so
that srðBnÞe nþ 2 by [9], Theorem 5.1. Combining this with the fact that srðBnÞf nþ 1
yields Lemma 4.1. r

Lemma 4.3. The ordered group K�Bn ¼ K0Bn lK1Bn is weakly unperforated.

Its order structure is the strict one coming from the first direct summand

ðK0Bn;K0B
þ
n Þ ¼ ðZ;ZþÞ.
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Proof. Since ðK0Bn;K0B
þ
n Þ is weakly unperforated it will be enough to show

that every element in K1Bn is the K1-class of a unitary element in Bn. Since K�Bn is
the inductive limit of the K�Ai, it will su‰ce to prove this assertion for all Ai with i su‰-
ciently large. By the formulas and discussion in the proof of Lemma 4.1, we know that
sr
�
Mdim piðSCiÞ

�
¼ 2 for all i su‰ciently large. Assume that i is so large for the remainder

of the proof.

From [1] and [9] we know that there is a bijection between elements of K1SDi and

the K1-classes of unitaries in M3 n gMdim piðSCiÞMdim piðSCiÞ. Furthermore, any unitary in this latter

algebra is homotopic to a unitary in gM3dim piðSCiÞM3dim piðSCiÞ. Unitaries in gM3dim piðSCiÞM3dim piðSCiÞ give rise to
unitaries in SDi, since 3e ki for all i. Thus, every element of K1SDi can be represented as
the K1-class of a unitary. The map K1i induced by the inclusion i : SDi ! Ai is surjective
(as K1Ci ¼ 0) and the desired conclusion for Ai follows from functoriality. r

Lemma 4.4. For nf 2, Bn and Bn nZ are not isomorphic.

Proof. We proceed by showing that srðBnnZÞe 2, so that srðBnÞ3 srðBn nZÞ.

The algebra Z is an inductive limit of prime dimension drop algebras I½pi; piqi; qi�,
i ¼ 1; 2; . . . ; where pi ! y and qi ! y as i ! y (cf. [6]). For any C �-algebra A the al-
gebra I½pi; piqi; qi�nA is a full algebra of operator fields, so by [8], Theorem 1.1, we have

srðI½pi; piqi; qi�nAÞe sup
t A ½0;1�

�
sr
�
At nCð½0; 1�Þ

��
;

where At is the fibre of I½pi; piqi; qi�nA at t A ½0; 1�. Since each such fibre is one of
MpiðAÞ;MqiðAÞ, or MpiqiðAÞ we may rewrite our estimate above as

srðI½pi; piqi; qi�nAÞemax
�
sr
�
Mpiqi

�
AnCð½0; 1�Þ

��
;

sr
�
Mqi

�
AnCð½0; 1�Þ

��
; sr

�
Mpi

�
AnCð½0; 1�Þ

���
:

By [9], Corollary 7.2, we have srðAnC½0; 1�Þe srðAÞ þ 1. By [9], Theorem 6.1,
we have that sr

�
MnðAÞ

�
e

��
srðAÞ � 1

�
=n
�
þ 1. Thus, there exists i0 A N such that

sr
�
Mpiqi

�
AnCð½0; 1�Þ

��
; sr

�
Mqi

�
AnCð½0; 1�Þ

��
and sr

�
Mpi

�
AnCð½0; 1�Þ

��
are all less

than or equal to two for if i0. We conclude that

srðI½pi; piqi; qi�nAÞe 2

for all if i0. Finally, Bn nZ is an inductive limit of algebras of the form
I½pi; piqi; qi�nBn, all but finitely many of which have stable rank less than or equal to two.
By [9], Theorem 5.1, the limit Bn nZ must have stable rank less than or equal to two, as
claimed. r

Thus, we have established Theorem 1.1. In closing, we note that given two natural
numbers n and m one may carry out the construction of section 3 to produce algebras
Bn and Bm which, if the parameters qi are chosen to be the same for both constructions,
will have isomorphic Elliott invariants. This shows that one can produce simple, nuclear,
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infinite-dimensional, stably finite counterexamples to the Elliott conjecture which lie en-
tirely outside the class of Z absorbing C �-algebras. The explicit calculation of EllðBnÞ and
EllðBmÞ is long and not particularly illuminating. We leave it to the reader.
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