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On the independence of K-theory and stable rank
for simple C*-algebras

By Andrew Toms at Fredericton

Abstract. Jiang and Su and (independently) Elliott discovered a simple, nuclear,
infinite-dimensional C*-algebra % having the same Elliott invariant as the complex num-
bers. For a nuclear C*-algebra 4 with weakly unperforated K ,-group the Elliott invariant
of A® Z is isomorphic to that of 4. Thus, any simple nuclear C*-algebra 4 having a
weakly unperforated K,-group which does not absorb & provides a counterexample to
Elliott’s conjecture that the simple nuclear C*-algebras will be classified by the Elliott
invariant. In the sequel we exhibit a separable, infinite-dimensional, stably finite in-
stance of such a non-Z-absorbing algebra A4, and so provide a counterexample to the
Elliott conjecture for the class of simple, nuclear, infinite-dimensional, stably finite, sepa-
rable C*-algebras.

1. Introduction

Elliott’s classification of AF C*-algebras ([2]) via the scaled, ordered K-group began
what is now a widespread effort to classify nuclear C*-algebras via the Elliott invariant.
In the case of a stably finite, unital, simple C*-algebra A this invariant consists of the
group K,4 =Kp4 @ K4, the class of the unit of 4 in K.A4, an order structure on
K. A4 (an element [p] @ x is positive if [p] is positive in Ko4 and x can be represented as
the K;-class of a unitary u € M;(A4) such that uu* is a sub-projection of p), the Choquet
simplex of normalised traces TA, and the pairing between Ko4 and TA via evaluation.
In this paper the invariant above will be denoted Ell(4). Let sr(4) be the stable rank of
A, as defined by Rieffel in [9]. Ell(—) has been particularly successful in classifying sim-
ple C*-algebras of stable rank one. Until now, it was not known whether this invariant
would suffice for the classification of stably finite C*-algebras of stable rank greater than
one.

Recall that an ordered group (G, GT) is said to be weakly unperforated if x ¢ G and
nx € G* for some natural number r implies that nx = 0. We recall that the Elliott invariant
of a simple nuclear unital C*-algebra A4 is isomorphic to that of 4 ® Z whenever K, A4 is
weakly unperforated ([4]). If 4 @ 4 ® Z, then we say that 4 is Z-stable. Our main result is
the following:
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186 Toms, Simple C*-algebras

Theorem 1.1. For each natural number n = 2 there exists a simple, unital, nuclear,
separable, infinite-dimensional, stably finite, non-% -stable C*-algebra B, such that K.B, is
weakly unperforated and st(B,) € {n + 1,n+ 2}. In particular,

Ell(B,) ~ Ell(B, ® Z).

Thus, B, and B, ® Z constitute a counterexample to the Elliott conjecture for
the class of simple, nuclear, infinite-dimensional, stably finite C*-algebras. We note that
the existence of B, answers Question 1.5 of [4] negatively; the weak unperforation of
the K .-group does not imply that a simple, unital, nuclear, separable, infinite-dimensional
C*-algebra absorbs Z.

The title of this paper derives from the fact that the algebra B, of Theorem 1.1 has
st(B,) € {n+ 1,n+ 2} while, as we shall see, sr(B, ® Z) < 2. It is possible (but purely
speculative) that finer invariants such as K-theory with coefficients, the semigroup of
Murray-von Neumann equivalence classes of projections, or higher algebraic K-theory will
recover stable rank, and so the independence of the title is only with respect to the notion of
K-theory captured by Ell(—).

We conclude this section with an outline of the sequel. Section 2 lists several theorems
from [3], which are applied in section 3 to construct the algebra B, of Theorem 1.1. The
general ideas of this latter section are also found in [3]. In section 4, B, is shown to have the
properties claimed in Theorem 1.1.

Acknowledgements. The author would like to thank George Elliott and Ping Wong
Ng for their many helpful comments on earlier drafts of this paper. This research was
funded by both the Israel Halperin Graduate Award at the University of Toronto and by a
Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.

2. Background and essential results

We begin by reviewing the definition of the generalised mapping torus, due to Elliott.
Let C,D be C*-algebras and let ¢, ¢; be x-homomorphisms from C to D. Then the gen-
eralised mapping torus of C and D with respect to ¢, and ¢, is

4 :={(¢,d)|d e C([0,1]; D), c € C,d(0) = ¢y(c),d(1) = ¢y (c)}.

We will denote 4 by A(C, D, ¢, ¢;) where appropriate for clarity. We now list (without
proof’) some theorems of [3] which will be used in the sequel.

Theorem 2.1 (Elliott and Villadsen [3], Theorem 2). The index map
b, : K.C — K1_,SD = K, D in the six term periodic sequence for the extension

0-SD—-A4—-C—0
is the difference
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Toms, Simple C*-algebras 187
Thus, the six-term exact sequence may be written as the short exact sequence
0 — Cokerb;_, — K.4 — Kerb, — 0.
In particular, if by_, is surjective, then K, A is isomorphic to its image, Ker b,, in K, C.

Suppose that cancellation holds for D—i.e., that cancellation holds in the semigroup of
Murray-von Neumann equivalence classes of projections in D and in matrix algebras over D
(equivalently, in D ® X"). It follows that if by is surjective, so that KoA = K(C, then

(Kod)" = (KoC)" n KA.

The preceding conclusion also holds if cancellation is only known to hold for each pair
of projections in D @ " obtained as the images under the maps ¢, and ¢, of a single pro-
Jection in C @ A . (In other words, if two such projections in D @ A~ have the same K class
then they should be equivalent, assuming as before that by is surjective.)

Theorem 2.2 (Elliott and Villadsen [3], Theorem 3). Let A, and A, be building block
algebras as described above,

A= A(C,D, 4}, ¢1), i=1.2.
Let there be given four maps between the fibres,
7: G — Cy,
0,6 : Dy — Dy, and,
e: Cy — Dy,
such that 6,0' and & have mutually orthogonal images, and
5y +0'd1 + &= ¢,
Oy +0'9y +2= 47
Then there exists a unique map
0:4) — A,

respecting the canonical ideals, giving rise to the map y : C; — C, between the quotients (or
fibres at infinity), and such that for any 0 < s < 1, if e, denotes evaluation at s, and e, the
evaluation at infinity,

e =de; +0'e1_s + ceo.

Theorem 2.3 (Elliott and Villadsen [3], Theorem 4). Let A and A, be building block
algebras as in Theorem 2.1. Let 6 : Ay — Ay be a homomorphism constructed as in Theorem
2.2, from maps y : C; — C», 0,6 : Dy — D>, and ¢ : C; — D».
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188 Toms, Simple C*-algebras

Let there be given a map f§: Dy — Cy such that the composed map [)’¢11 is a direct
summand of the map v, and such that the composed maps ¢§ﬂ and ¢fﬁ are direct summands of
the maps ' and 6, respectively. Suppose that the decomposition of y as the orthogonal sum of
/)’(1511 and another map is such that the image of the second map is orthogonal to the image of f5.
(Note that this requirement is automatically satisfied if Cy, Dy, and the map ﬁ¢11 are unital.)

It follows that, for any 0 <t < 1/2, the map 0: Ay — A, is homotopic to a map
0;: Ay — A, differing from it only as follows: the map e.,0; has the direct summand fe; in-
stead of one of the direct summands ﬂqﬁéew and ﬁ¢llego of e, 0, and for each 0 < s <1 the
map ey, has either the direct summand ¢§ﬁe, instead of the direct summand ¢§[)’es of es0, or
the direct summand ¢12[3e, instead of the direct summand ¢12/)’es of esB, or both.

Furthermore, let o.: Dy — C, be any map homotopic to f§ within the hereditary sub-C*-
algebra of C, generated by the image of p. Then the map 0, is homotopic to a map
0,/ : Ay — A, differing from 0, only in the direct summands mentioned, and such that eOOO; has
the direct summand oe, instead of Be,, and for each 0 < s < 1, e,0; has either ¢§o¢e, instead of

¢§,Be,, or qﬁlzae, instead 0f¢12ﬂe,.

Theorem 2.4 (Elliott and Villadsen [3], Theorem 5). Let
A0
be a sequence of separable building block C*-algebras,
A; = A(Ci, Dy, b 1), i=1,2,...

with each map 0;: A; — A;.1 obtained by the construction of Theorem 2.2 (and thus re-
specting the canonical ideals). For each i =1,2,... let f; : D; — Ciy1 be a map verifying the
hypotheses of Theorem 2.3.

Suppose that for every i = 1,2, ..., the intersection of the kernels of the boundary maps
¢é and ¢, from C; to D; is zero.

Suppose that, for each i, the image of each of ¢(§+1 and (/5{“ generates D;. | as a closed
two-sided ideal, and that this is in fact true for the restriction of (/56“ and qﬁfﬂ to the smallest
direct summand of C;1| containing the image of f;. Suppose that the closed two-sided ideal of
Cit1 generated by the image of B; is a direct summand.

Suppose that, for each i, the maps J. — ¢3/’?l~ and o; — ¢iﬂl from D; to D, are injective.

Suppose that, for each i, the map y; — ﬁiqﬁf takes each non-zero direct summand of C;
into a subalgebra of Ciy| not contained in any proper closed two-sided ideal.

Suppose that, for each i, the map f3; : D; — Ci+1 can be deformed—inside the heredi-
tary sub-C*-algebra generated by its image—to a map o; : D; — Ciyq with the following
property: There is a direct summand of o;, say &;, such that &; is non-zero on an arbitrary
given element x; of D;, and has image a simple sub-C*-algebra of C;. 1, the closed two-sided
ideal generated by which contains the image of f;.
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Toms, Simple C*-algebras 189

Choose a dense sequence (t,) in the open interval (0,1/2), such that tr, = tay—1,
n=12....

Choose a sequence of elements x3 € D3, x5 € Ds, x7 € D7,... (necessarily non-zero)
with the following property: For some countable basis for the topology of the spectrum of each
of Dy, Dy, ..., and for some choice of non-zero element of the closed two-sided ideal asso-
ciated to each of these (non-empty) open sets, under successive application of the maps
0; — {Hﬁi each one of these elements is taken into x; for all j in some set S < {3,5,7,...}
such that {t;, j € S} is dense in (0,1/2). Choose o; as above such that d;(x;) + 0 for some
direct summand d; of o; for each je {3,5,7,...}. For each je€ {4,6,8,...} choose o; with
respect to the non-zero element (9; | — ¢if;_1)(xj—1) of D;. (If j = 1 or 2, choose o; = ;.)

It follows that, if 0, denotes the deformation of 0; constructed in Theorem 4, with re-
spect to the point t; € (0,1/2) and the maps o; and f; (and a fixed homotopy of p; to o), then
the inductive limit of the sequence

0, 0,
Al = Ay S

is simple.

3. The construction of B,

We now specify C*-algebras 4; = A;(C;, D;, ?,qﬂil) as in Theorem 2.1, and maps
3i,0.,7;, and f; satisfying the hypotheses of Theorems 2.2, 2.3, and 2.4 in order to construct
an inductive sequence

0, 0
Ay = Ay =

whose limit will be the C*-algebra B, of Theorem 1.1.
Let D denote the closed unit disc in the complex numbers. Put
X; = D" x CP"W x P x ... x Cp")
—the o(i) are natural numbers to be specified—so that

Xip1 = X; x CPUth)]
and let

2 | :‘Xi+l _ CPna(H—l)

| S
Tt Xi+1 - )(ia T,

i+1

be the co-ordinate projections.

We will take C; = p;(C(X;) ® A') pi, where p; is a projection in C(X;) ® A to be
specified. Let D; = C; ® My, dgim(p,)» Where k; is a positive integer to be specified. Define
maps

wi,vi: Ci— G ® Mdim(pf)
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190 Toms, Simple C*-algebras

as follows:

wi(a) = pi ® a(x;),
vi(a) = a ® lgim(p)-

For t € {0, 1}, we will take ¢/ to be the direct sum of /! copies of x; and k; — I! copies of v;,
where the // are non-negative integers to be specified. All that we mention now is that we
should have /! —I? & 0. We need only specify the ¢/ up to unitary equivalence, a fact we
shall exploit below.

By Theorem 2.1 we have that for any e € Ko(C;),

bo(e) = (lil - lio) (KO(M‘) - KO(W))
= (lil - lio) (dim(e) -Ko(pi) — dim(p;) ~e).

Since 1! —I? # 0 and since K(C; is a finitely generated free abelian group, we have that
Ker by is the largest subgroup of K(C; containing K((p;) and isomorphic to the integers. In
the sequel we will choose p; so that K(p;) in fact generates said subgroup. Since K;C; = 0
we have, by Theorem 2.1, that K4, is isomorphic as an ordered group to its image, Ker b,
in K(C;, considered as a sub ordered group. The latter (with the choice of p; below) is
isomorphic to the integers with the unique unperforated order structure, and the image of

(4] is [pi].
Let p; be a projection corresponding to the vector bundle
01 X (1)

over X;, where 0; denotes the trivial line bundle of dimension one over D, &, denotes the
universal line bundle over CP* for every natural number k, and a(1) = 1. We now specify,
inductively, the maps y; : C; — C;;1. Consider first the map

Y=id®1

from C(X;) to C(Xi1) = C(X; x CP"+Dy = C(X;) ® C(CP™ 1)) where 1 denotes the
unit of C(CP"*1)) and id denotes the identity map from C(X;) to itself.

Consider also the map
ﬂl/ = nizil (éllﬂ(i+1)) 2

from C(X;) to C(X;;1) ® A", where e,, denotes evaluation at x;. All that we shall require of
the x; at this stage is that z), | (x;41) = x;.

Now, inductively, let us take y; to be the map from C; to C(X;y1) ® Ma(A") consist-
ing of the direct sum of the following two maps: first, the restriction to C; = C(X;) ® A~ of
the tensor product of y; with the identity map from ¢ to ", and second, the map from C;
to C(Xiy1) ® M, (") consisting of the composition of the map ¢i1 from C; to D; with the
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Toms, Simple C*-algebras 191

direct sum of ¢; copies of the tensor product of the map f; with the identity map from 4 to
A (restricted to D; = C(X;) ® ), where g; is to be specified. The induction consists in first
considering the case i = 1 (as p; has already been chosen), then setting p, = y,(p1), so that
C; is specified as the cut-down of C(X;) ® 4 by p,, and continuing in this way.

With the maps y; defined as above, we have that p; is a projection in C(X;) ® A
corresponding to the vector bundle

01 X én X U(Z)éna(Z) X X a(i)éna(i)v

where

i—1

o(i) = T (mult(y;) — 1).

=1

Notice that by the Kiinneth formula (in [10], Chapter 5, for instance) the classes [0;],
[Eno1)]s - - - » [no(i)] are independent in K°(X;) (we are abusing notation slightly here, using
(€] to represent the class of the induced bundle 7*(&; ), where 7 is projection from X; onto
CP"). Suppose that [p,] = ky for some k € Z, y e K'(X;). It follows from independence
that we have [£,] = ky’, 3’ € K’(CP"), whence k = +1. We conclude that [p;] itself gen-
erates the subgroup of rational multiples of [p;] in K°X;, as desired. Thus y; induces an
isomorphism of ordered groups from Ker by at the i" stage to Ker by at the (i + 1)th stage.

Note that y; — ﬁiqﬁil is non-zero, and so takes C; into a subalgebra of C;.; not con-
tained in any proper closed two-sided ideal.

Next, we construct the maps 51‘,5,{ : D; — D;., with orthogonal images, such that

0 + 01} = 4% v,
5i¢i1 +51{¢? = ¢z'l+1Vi7

and ¢?+1/3,- and ¢i1+1ﬂi are direct summands of §; and J;, respectively. To do this we shall

have to modify ¢;,, and ¢/,, by inner automorphisms. This will not affect the K-theory
of 4.

Note that, up to unitary equivalence, we have

ey,,,y; = mult(y;)ey,,

where mult(y;) denotes the factor by which y; multiplies dimension. It follows that up to
unitary equivalence

Hiv1?i = Div1 @ ex,,V;
= 7,(pi) ® mult(y;)ey,
= mult(y,)y;(p: ® ex,)
= mult(y;);sy;,
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192 Toms, Simple C*-algebras
and

Vir1y; =7 @ ldim(ml)
= mult(y,)y; ® 1dim(m)

= mult(y;)y,vi.

Take J; and 51{ to be r; and s; copies of y;, where r; and s; are integers to be specified.
The conditions

51‘{15? + 5,-/¢,~1 = ¢?+1Vi
and
Gy +0ii = by
understood up to unitary equivalence imply that
riyi (e — (i = 1vi) + siyy (1 g + G = 1) = (Hpattign + (kiey = 1) vin) v,

again, up to unitary equivalence. As Ko(y;) and K(v;) are independent, the above equa-
tion is equivalent to the two equations

rilf + sil] 7' = mult(y,)1

(ri 4 si)ki = mult(y; ki1
Choose r; = 2mult(y;) and s; = mult(y,), so that
kiy1 = 3ki,
and
Iy =21+ 1.
Take ky = 1, /} =1,and /) = 0. Then /! — [? + 0 for all i, as required.

Next, let us show that, up to unitary equivalence preserving the equations
Sipl + 019!~ = Bl i #1141 By is a direct summand of §; = 2mult(y;)y; and ¢, B is a direct
summand of §; = mult(y;)y;.

Note that ¢/, ,f; is a direct sum of //,, copies of p;+1 @ f; and (ki1 — I/, ;) copies of 8,
whereas 6; and ] contain, respectively, ¢; mult(y;) and 2¢; mult(y;) copies of ;. Note also,
that by [5], Theorem 8.1.2, a trivial projection of dimension dim(p;;;) + 3 dim X;
in C(X;11) ® # contains a copy of p;. Therefore, 2dim(p;y1) + 2dim X;;; copies
of B, contain a copy of pi ®p; (since 2dim(p;y)+ 2dim X;y; copies of &y

contain a trivial projection of dimension dim(p;;;) —|—§ dim X;;;). It follows that
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Toms, Simple C*-algebras 193

ki1 (2dim(p;y1) + 2dim X;,1) copies of ; contain a copy of ¢/, f; when ¢ is equal to either
0 or 1. By a copy of a given map from D; to D;;; we mean another map obtained from it by
conjugating by a partial isometry in D;,; with initial projection the image of the unit.

Note that
ki1 (2 dim(p;+1) + 2dim Xi+1) = 6k; mult(y;) (dirn(p,-) + dim X,-),

and that k;, dim(p;), and dim X; have already been specified, and do not depend on ¢;. It
follows that, with

¢;mult(y;) copies of f; contain a copy of ¢/ ,f; (1 € {0,1}). In particular 6; and J; contain
copies of ¢?+1 p; and (15,-1 1 B;, respectively.

With ¢; as above, let us show that for each = 0,1 there exists a unitary u, € D,
such that

(Ad ”t)(éitﬂ Vi—= ¢z‘t+1 Vis

with (Ad uo)qﬁ&lﬂi a direct summand of ¢, and (Ad ul)(/ﬁil“/)’i a direct summand of ¢;. In
other words, for each ¢t = 0, 1, we must show that the partial isometry constructed in the
preceding paragraph, producing a copy of ¢/, ,f; inside d; or J; may be chosen in such a
way that it extends to a unitary element of D;,;—which in addition commutes with the
image of ¢/, ;.

Let us consider the case ¢ = 0; the case ¢ = 1 is similar. First note that the unit of the
image of ¢l +1B—the initial projection of the partial 1sometry transforming ¢l 1B; into a
direct summand of 6;—lies in the commutant of the image of ¢, 17 Indeed, this projection
is the i 1mage by ¢ 1 ﬁ‘, of the unlt of D;, which, by construction, is the image of the unlt of
C; by ¢ The property that ﬂl¢ is a direct summand of y; implies that the i 1mage by ﬂlgb of
the unit of C; commutes with the image of y,. The unit of the image of ¢’ ,f; therefore
commutes with the image of ¢, 117> as desired.

i+1

The final projection of the above partial isometry also commutes with the image of
¢l .17 Indeed, it is the unit of the image of a direct summand of J;, and since D is unital it
is the image of the unit of D; by this direct summand; since C; is unltal and ¢ C;— Djis
unital, the projection in question is the i 1mage of the unit of C; by a direct summand of J; ¢1
But §/ ¢ is itself a direct summand of (,151 +1Vz: and so the projection in question is the image
of the unit of C; by a direct summand of ¢ 17> and in particular commutes with the image

Of ¢]+1 yl

Note that both direct summands of ¢5?+1y,- under consideration (¢?+1 ﬁ[qﬁil and a copy
of it) factor through the evaluation of C; at the point x;, and so are contained in the
largest such direct summand of ¢l +ly,, this largest direct summand, say 7;, is seen to exist
by inspection of the construction of ¢ 1yl Since both projections under consideration (the
images of 1 € C; by the two copies of ¢, +lﬁ,¢ ) are less than 7;(1), to show that they are
unitarily equivalent in the commutant of the image of ¢, .17 (in Djyp) it is sufficient to show
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194 Toms, Simple C*-algebras

that they are unitarily equivalent in the commutant of the image of 7; in 7;(1)D;17;(1).
Note that this image is isomorphic to Mgim(p,)(C). By construction, the two projections in
question are Murray-von Neumann equivalent in D;;; and hence in 7;(1)D;;17;(1), but all
we shall use from this is that they have the same class in KOXiH. Note that the dimension
of these projections is (k,-+1 dim( p,~+1)) (ki dim( pi)), and that the dimension of 7;(1) is at
least [, | (dim(piy ))2. Since the two projections under consideration commute with 7;(C;),
and this is isomorphic t0 Mgim(,,)(C), to prove unitary equivalence in the commutant
of 7;(C;) in 7;(1)D;y7;(1) it is sufficient to prove unitary equivalence of the product of
these projections with a fixed minimal projection of 7;(C;), say e. Since K°X,, is torsion
free, the products of the two projections under consideration with e still have the same class
in K’X;,,. To prove that they are unitarily equivalent in eD;, e, it is sufficient (and neces-
sary) to prove that both they and their complements inside e are Murray-von Neumann
equivalent. Since both the cut-down projections and their complements inside e have the
same class in K’ X, |, to prove that they (i.e., the two pairs) are equivalent it is sufficient, by

L . . I ..
[5], Theorem 8.1.5, to show that all four projections have dimension at least 2 dim X

(note that dim X; is even). Dividing the numbers above by dim(p;) (the order of the matrix
algebra), we see that the dimension of the first pair of projections is k;1k; mult(y;) dim(p;),
so that the dimension of the second pair of projections is at least

mult(y;) (1}11 dim(piy1) — kiy1k; dim(py)).

By construction, dim(p;) = 2 dim X;. Since k;.1k; is non-zero for all i, the first inequality

holds. Since ll.(ﬁrl, the second inequality holds if mult(y,) is strictly greater than k;k;. Since
kiv1ki = 3ki2, and k; was chosen before ¢;, we may modify our choice of ¢; to ensure that

mult(y,) is sufficiently large.

This shows that the two projections in D;,; under consideration are unitarily equi-
valent by a unitary in the commutant of the image of qﬁ?ﬂyi. Replacing ¢,(-)+1 by its compo-
sition with the corresponding inner automorphism, we may suppose that the two projec-
tions in question are equal. In other words ¢?+1 f; 1s unitarily equivalent to the cut-down of
J! by the projection ¢!, ,f;(1).

Now consider the compositions of these two maps with (15,.1, Le., ¢?+1 ﬁiqﬁ} and the cut-
down of 5f¢} by the projection ¢?+1 p:(1). Since both of these maps can be viewed as the cut-

down of ¢?+1y,- by the same projection, they are in fact the same map.

Therefore, any unitary inside the cut-down of D, by qﬁ?H p.(1) taking ¢?+1 p; into the
cut-down of J; by this projection—such a unitary is known to exist—must commute with
the image of ¢?+1 ﬂ,»(/ﬁl-l, and hence with the image of ¢?+1yl-—since this commutes with the
projection ;15?+1 f:(1). The extension of such a partial unitary to a unitary u in D, equal to
one inside the complement of this projection then belongs to the commutant of the image

of ¢?+1y,-, and transforms ¢?+1ﬂl- into the cut-down of J; by this projection, as desired.

Inspection of the construction will show that the maps J; — ¢?ﬁi and 0; — (/5} p; are
injective, as required in the hypotheses of Theorem 2.4.
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Toms, Simple C*-algebras 195

Replacing ¢;,, with (Adu,)¢/,, and deforming the f; to other point evalua-
tions o; which are non-zero on a given element (as we may, since X; is connected), we
have completed the construction of the desired inductive system (A;,0;) satisfying the
hypotheses of Theorem 2.4. Thus, the limit B, of the inductive system with deformed finite
stage maps, (4;,0!), is simple. Notice that (KoB,,[lp,]) = (Z,1)—the 0. are unital and

(Kod;,[14,]) = (Z,1) for every i—and that B, is separable, nuclear and stably finite since
each of the 4; is ([1]).

4. The main result

In this section we prove Theorem 1.1 through a series of lemmas. We establish that
st(By) € {n+ 1,n+ 2} (Lemma 4.1), that K, is weakly unperforated (Lemma 4.3), and that
B, does not absorb Z (Lemma 4.4). Taken together, these results show that B, is as
claimed in Theorem 1.1.

Lemma 4.1.
st(B,) € {n+1,n+2}.
The proof will depend on some definitions and results which we review below.
For a unital C*-algebra 4 we let
Lg,(A4) ={(a1,...,a,) e A*|ayA+ -+ a,A = A}

for every natural number s, and recall that the stable rank of A4,sr(A), is the least natural
number s such that Lg(A) is dense in A°. If no such natural number exists, we set
sr(A) = oo ([9]). Note that if (cx,dx) are elements of a generalised mapping torus
A(C,D, ¢y, ¢,) for k e {1,2,...,n} such that

dist((Cl,Cz,'--,Cn)7Lgn(C)) 29,
then

dist(((c1,d1), (c2,da), -, (Cny dy)), Lg,(A4)) = 6.

Indeed, one can check that

(.l = max{ Jell, sup [ld(2)]}

te(0,1

defines the unique C*-norm on A(C, D, ¢, ¢;). Thus, if dist(c,c’) =0 for ¢,¢’ € C, then
diSt((C7 d)7 (C/, d/)) z o for any (C, d)7 (Cla dl) € A(C7 Da ¢07 ¢1)

For the remainder of this proof, any notation with subscript i refers, where applica-
ble, to the corresponding object in section 3. In order to show that B, has stable rank
greater than n, we must exhibit n sequences of elements A4; > a;; = 0, (a1 ;) = (¢i, d; ),
1 £j<n,ieN,such that
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196 Toms, Simple C*-algebras
dist(((ci,1,di1), (Ci2,di2), - - (Cinydin)), Lg,(4i) 20 >0
for all i. From this it follows that

diSt((@:ﬁl ((6'171761171))7 .. ,9:@1 ((617,1,d1,n)))7Lgn(Bn)) >0,

so that sr(B,) > n by definition. (Here 6’ , denotes the inclusion of 4; into B,.) By the
definition of the norm on the 4;, it will be enough to show that

dist((ciﬁl,chz, ce s Cin),s Lgn(C,-)) 20>0
for all i.

We now review Theorem 7 of [11]. Let ¢(+) denote the Euler class of a vector bundle.
Suppose that C is a C*-algebra of the form

(r+q)(C(M xD") @ ') (r+ q),

where M is a smooth oriented manifold, and r and ¢ are orthogonal projections in
C(M x D") ® A such that r corresponds to the trivial line bundle and ¢ corresponds to a
vector bundle o for which e(a)” 0. Let 7 : M x D" — D" be projection onto D", and let
f; : D" — D be the j™ co-ordinate projection.

Theorem 4.2 (Villadsen [11], Theorem 7). Let C,m and f; be as above, and
let ¢=(c1,...,cn) €C" be such that rcjr= (fjon)r for all 1=j=<n. Then,
dist(¢,Lg,(C)) = 1.

Proof of Lemma 4.1. 'We wish to apply Theorem 4.2 above to the algebras C;, i = 1.
The sequel is similar to the proof of Theorem 8 in [11]. For all i, let r; denote the sub-
projection of the unit of C; corresponding to the one-dimensional trivial sub-bundle of
01 x &, X - -+ X 0(i)&,q(;)- Note that p; considered as a vector bundle over X; is the Whitney
sum of r; and a second vector bundle, say ¢;, and this second vector bundle has e(g;)" # 0.
Indeed,

qi = & X 0(2)p2) X - X (1) Epo(i

and e(w @ y) = e(w)e(y) for any two vector bundles w and y over a fixed base space so that

e(ql,)n — e(én)ne(éng(z))nﬂ(ﬁ .. e(fna(i))nﬂ(i)'

(We are, as before, abusing notation slightly, using &, to represent the bundle induced on
X; by & via projection from X; onto CP¥.) Since the integral cohomology ring H*(CP¥) is
generated by e(&;) with the relation e(ék)k 1 =0, we may conclude by the Kiinneth The-
orem that e(q;)" #+ 0, as claimed. Each X; is of the form M; x D" for some smooth oriented
manifold M;, so the C; have the same form as the algebra C of Theorem 4.2.

Note that for any element ¢ € C; there exists an element (c,d) € A; for some suitable

d € C([0,1]; D). Let m; : X; — D" be the co-ordinate projection, and let f;: D" — D be

projection onto the j™ co-ordinate. Let ai; = (c1,d; ;) be elements of 4; such that
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cij=(fiom)r, 1 £j<n. For each i=2, put a;; =0, 00, ,0---00)(ay;). Write
aij = (¢ij, dij)-

In section 3, the map y; was constructed as the direct sum of i; and a second map. Let
; denote the composition y; o ;_; o ---oy;. Note that y,;(r;) = ri11. By Theorem 2.3,

civry = Wilei)) @iy

where ¢/ ny is an element of the cut down of C; by ¢;; the deformation of ; to 9; is visible in

the fibre at infinity only in the perturbation of the image of the second direct summand of
y;—the image of i/, remains unchanged. Thus, by construction

Fig1Civt et = Wi (1) v i (1) = ¥ lery) = (fo ma)wi (r) = (fj o mirig.
By Theorem 4.2 we conclude that
dist((Civ1,15 Cia1,2, - -+ Civ1,n)s L, (Cir)) 2 1.
As noted above, this implies that the simple limit B, has stable rank strictly greater than 7.

We now show that sr(B,) < n+ 2. Given an exact sequence B — 4 — C of C*-
algebras, [9], Corollary 4.12, states that

sr(4) < max{sr(B),sr(C) + 1}.
Applying this formula to the exact sequence SD; — 4; — C; we have
sr(A;) < max{sr(SD;),sr(C;) + 1}.
It is known that
st(p(C(X) ® #")p) = [[dim X /2] /dim p] + 1
whenever X a compact Hausdorff space and p is a projection in C(X) ® #" ([8]). Thus,
st(C;) = sr(pi(C(X;) ® A7) p;) = n—+ 1 by inspection of the dimensions of the p; and X;.
Since SD; is an ideal in D; ® C([0, 1]), we have
sr(SD;) < sr(D; @ C([0,1])) < sr(D;) + 1
by [9], Corollary 7.2. [9], Theorem 6.1 states that
st(M,,(A4)) < [(st(4) — 1) /n] +1,
so that sr(D;) = st(Mg, dimp, ® C;) = n+1 for all i. We conclude that sr(4;) <n+2, so
that sr(B,) < n+ 2 by [9], Theorem 5.1. Combining this with the fact that sr(B,) = n+ 1
yields Lemma 4.1. []
Lemma 4.3. The ordered group K.B, =KoB, ® KB, is weakly unperforated.
Its order structure is the strict one coming from the first direct summand

(KoBn, KoB) = (2,27).
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198 Toms, Simple C*-algebras

Proof. Since (K(B,,K(B, ) is weakly unperforated it will be enough to show
that every element in KB, is the K;-class of a unitary element in B,. Since K,B, is
the inductive limit of the K. A4;, it will suffice to prove this assertion for all 4; with i suffi-
ciently large. By the formulas and discussion in the proof of Lemma 4.1, we know that
sr(Mdim [,l.(SC,-)) = 2 for all i sufficiently large. Assume that i is so large for the remainder
of the proof.

From [1] and [9] we know that there is a bijection between elements of K;SD; and
the K-classes of unitaries in M3 ® Mimp,(SC;). Furthermore, any unitary in this latter

algebra is homotopic to a unitary in M3 gimp, (SC;). Unitaries in M3 gim p,(SC;) give rise to
unitaries in SD;, since 3 < k; for all i. Thus, every element of K;SD; can be represented as
the K;-class of a unitary. The map K;: induced by the inclusion z : SD; — A; is surjective
(as K;C; = 0) and the desired conclusion for A; follows from functoriality. []

Lemma 44. Forn =2, B, and B, ® & are not isomorphic.
Proof:  We proceed by showing that sr(B, ® &) < 2, so that sr(B,) #+ sr(B, ® Z).

The algebra Z is an inductive limit of prime dimension drop algebras I[p;, pigi, qi],
i=1,2,..., where p; — o0 and ¢; — o0 as i — oo (cf. [6]). For any C*-algebra A the al-
gebra 1[p;, pigi, ;] ® A is a full algebra of operator fields, so by [8], Theorem 1.1, we have

sc(Ipi, pigi, 41l @ A) = Sl[?)pu{sr(A, ® C([0,1])) },
telo,

where A, is the fibre of I[p;, pigi,q:] ® A at t€[0,1]. Since each such fibre is one of
M,,(4),M,,(A4), or M, ,,(4) we may rewrite our estimate above as

st(I[pi, pigi, qi] ® A) < max{sr( pidi (A ® C([0,1]))),
st(M,, (4 ® C(0. 1)), sr(M,, (4 ® C([0. 1]))) }.

By [9], Corollary 7.2, we have sr(4® C[0,1]) <sr(4)+ 1. By [9], Theorem 6.1,
we have that sr(M ,,(A)) [(sr(4) —1)/n] + 1. Thus, there exists iy € N such that
s1(M,,q, (4 ® C([0,1]))),sr(My, (4 ® C([0,1]))) and sr(M,,(4® C([0,1]))) are all less
than or equal to two for i = iy. We conclude that

st(I[pi, pigi, i) @ A) <2

for all i=i,. Finally, B,® % 1is an inductive limit of algebras of the form
1[pi, Piqi,qi] ® By, all but finitely many of which have stable rank less than or equal to two.
By [9], Theorem 5.1, the limit B, ® Z must have stable rank less than or equal to two, as
claimed. [

Thus, we have established Theorem 1.1. In closing, we note that given two natural
numbers n and m one may carry out the construction of section 3 to produce algebras
B, and B,, which, if the parameters ¢g; are chosen to be the same for both constructions,
will have isomorphic Elliott invariants. This shows that one can produce simple, nuclear,
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Toms, Simple C*-algebras 199

infinite-dimensional, stably finite counterexamples to the Elliott conjecture which lie en-
tirely outside the class of 2 absorbing C*-algebras. The explicit calculation of Ell(B,) and
Ell(B,,) is long and not particularly illuminating. We leave it to the reader.

RSN
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