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ELLIOTT’S CONJECTURE
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Abstract. Let X be a compact infinite metric space of finite covering dimen-
sion and α : X → X a minimal homeomorphism. We prove that the crossed

product C(X) oα Z absorbs the Jiang-Su algebra tensorially and has finite
nuclear dimension. As a consequence, these algebras are determined up to

isomorphism by their graded ordered K-theory under the necessary condition

that their projections separate traces. This result applies, in particular, to
those crossed products arising from uniquely ergodic homeomorphisms.

0. Introduction

0.1 From its earliest days the theory of operator algebras has been entwined with
dynamics, and some of the most important developments in the subject revolve
around this interaction. The group-measure space construction of Murray and
von Neumann provided the first examples of non-type-I factors; recently we have
seen connections with orbit equivalence and associated rigidity phenomena in the
remarkable works of Popa and Giordano et al. (see [16] and [6], respectively).

In this article we consider crossed product C∗-algebras arising from topological
dynamical systems, and prove a theorem concerning the degree to which they are
determined by their graded ordered K-theory.

Theorem: Let C denote the class of C∗-algebras having the following properties:

(i) A ∈ C has the form C(X)oαZ for some compact, infinite, finite-dimensional
metric space X and minimal homeomorphism α : X → X;

(ii) the projections of A separate traces.

If A,B ∈ C and there is a graded ordered isomorphism φ : K∗(A) → K∗(B), then
there is a ∗-isomorphism Φ : A→ B.

This result was conjectured by G. A. Elliott in 1990 as part of his wider program
to classify separable amenable C∗-algebras. The hypotheses of minimality for α,
finite-dimensionality forX, and the separation of traces by projections are all known
to be necessary; the necessity of finite-dimensionality for X was established recently
by Giol and Kerr in [5]. If one imposes unique ergodicity on α, then condition (ii)
is unnecessary. Our result is the culmination of a sequence of earlier important
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results due to Elliott and Evans ([3]), H. Lin and Phillips ([10]), and the second
named author ([25, 26]).

0.2 Our proof does not employ a decomposition for C(X)oαZ as an inductive limit
of type I C∗-algebras; rather, it implies that one exists! Using [21], we reduce the
problem to a setting similar to the one considered in [10], where an abundance of
projections was assumed. This reduction is made by applying a general classification
result developed by the second named author in [26], the key hypothesis of which
is the condition that the C∗-algebras considered all absorb the Jiang-Su algebra
Z tensorially. (This condition is necessary for K-theoretic rigidity results akin to
Theorem 0.1, both in general and in the case of tracial algebras (see [18] and [22],
respectively). We refer the reader to [4] and to [20] for a complete discussion of the
Jiang-Su algebra and its relevance to Elliott’s program.) The bulk of our effort is
concentrated on proving the following result.

Theorem: Let X be a compact, infinite, finite-dimensional metric space and
α : X → X a minimal homeomorphism. It follows that

(C(X) oα Z)⊗Z ∼= C(X) oα Z.

Notice that we do not require projections to separate traces in this theorem. It
is conjectured that Theorem 0.1 continues to hold in the absence of condition (ii),
provided that one augments the invariant K∗ by the simplex of tracial states (here
identified with the α-invariant measures on X). We expect that Theorem 0.2 will
prove crucial to the solution of this conjecture, too.

0.3 Theorem 0.2 actually follows immediately from a second result.

Theorem: Let X be a compact, infinite, finite-dimensional metric space and
α : X → X a minimal homeomorphism. It follows that the nuclear dimension of
C(X) oα Z is at most 2dim(X) + 1.

We explain a bit more about this in the remark below–technology has improved
dramatically since this article was first written. We note that the C∗-algebras of
Theorem 0.1 have nuclear dimension at most 2, and that the same is most likely
true of the algebras considered in Theorem 0.3. This improved bound, however,
relies on the existence of a special inductive limit decomposition for the crossed
product, and this, in turn, relies on the classification theorem itself.

0.4 Remark: The authors would like to point out that this article has changed
substantially in one important regard since it was originally posted as a preprint:
we have discarded a direct proof of Z-stability for the crossed products we con-
sider, appealing instead to the second author’s proof of Z-stability in [28] (a proof
which only requires finite nuclear dimension). This is efficient, natural, and bet-
ter represents the state of the art in the classification theory of nuclear separable
C∗-algebras.

0.5 Our paper is organised as follows: Section 1 collects some preliminary results,
in Section 2 we establish simplicity and finite decomposition rank for some natural
subalgebras of C(X)oαZ, and in Sections 3 and 4 we prove Theorems 0.3, 0.2, and
0.1, respectively. We thank the referee for several useful suggestions.
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1. Preliminaries

1.1 Proposition: Let G ⊂ C([0, 1]) be a finite subset of positive functions. Then,
for any η > 0 there is δ > 0 such that the following holds:

If A is a C∗-algebra and h ∈ A is a positive element of norm at most one, then if
b ∈ A satisfies

‖[b, h]‖ < δ,

this implies

‖[b, f(h)]‖ < η

for all f ∈ G.

Proof: It will suffice, by uniform density, to consider the case where G is a finite
set of polynomials. Let k be the largest degree of any f ∈ G. Observe that if
‖[b, h]‖ < δ, then for any natural number i ≤ k we have

bhi ≈δ hbhi−1 ≈δ h2bhi−2 ≈δ · · · ≈δ hib,

where ≈δ denotes the relation of being at norm distance strictly less than δ. It
follows that ‖[b, hi]‖ < iδ ≤ kδ.

Let f(x) = a0 + a1x+ · · · akxk be a generic element of G, and let η > 0 be given.
We set Mf = max{1, |a0|, |a1|, . . . , |ak|} and

M = max
f(x)∈G

Mf .

With δ = η/(k2M) we compute:

‖[b, f(h)]‖ =

∥∥∥∥∥
k∑
i=0

[b, aih
i]

∥∥∥∥∥
≤ M

∥∥∥∥∥
k∑
i=0

[b, hi]

∥∥∥∥∥
≤ M

k∑
i=0

‖[b, hi]‖

≤ Mk(kδ)

< η

1.2 Proposition: Let C be a C∗-algebra, G ⊂ C a self-adjoint subset generating
C as a C∗-algebra, E ⊂ C finite and θ > 0. Then, there is β > 0 and a finite set
G′ ⊆ G such that the following holds:

If B is another C∗-algebra and γ : C → B is a ∗-homomorphism, then if b ∈ B
has norm at most one and satisfies

‖[b, γ(g)]‖ < β

for g ∈ G′
, we have

‖[b, γ(e)]‖ < θ

for e ∈ E.
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Proof: Let θ > 0 be given. Since G generates C, there is a natural number k such
that each e ∈ E is at norm distance strictly less than θ/4 from a sum of at most k
monomials of the form

αx1x2 · · ·xl,
where xj ∈ G, α ∈ C, and l ≤ k. We denote this sum by ge, so that ‖e− ge‖ < θ/4,

and we let G′
denote the set of all elements of G which occur in a monomial of ge

as e ranges over E . Now, for any C∗-algebra B and ∗-homomorphism γ : C → B
we have

‖[b, γ(e)]‖ = ‖[b, γ(ge)− γ(e− ge)]‖
≤ ‖[b, γ(ge)]‖+ ‖[b, γ(e− ge)]‖
≤ ‖[b, γ(ge)]‖+ 2‖b‖ · ‖γ(e− ge)‖
< ‖[b, γ(ge)]‖+ θ/2.

Thus, to complete the proof of the Proposition, we must show that there is β > 0
such that for any γ as above we have the following statement: if

‖[b, γ(g)]‖ < β

for every g ∈ G′
, then

‖[b, γ(ge)]‖ < θ/2

for every e ∈ E . Since ‖[b, ge/η]‖ < θ/(2η) implies ‖[b, ge]‖ < θ/2 for any η > 0, we

may scale the ges and assume that the elements of G′
have norm at most one.

Let γ : C → B be given, and let

αx1x2 · · ·xl
be a monomial appearing in the sum which constitutes some ge. Set yj = γ(xj),

and note that ‖yj‖ ≤ 1. The assumption ‖[b, y]‖ < β for every y ∈ γ(G′
) then

yields

‖(y1y2 · · · yj−1byj · · · yl)− (y1y2 · · · yjbyj+1 · · · yl)‖ = ‖(y1 · · · yj)[b, yj ](yj+1 · · · yl)‖
≤ ‖[b, yj ]‖
< β.

It follows that

y1y2 · · · ylb ≈β y1y2 · · · yl−1byl
≈β y1y2 · · · yl−2byl−1yl
· · ·
≈β by1y2 · · · yl,

and so
‖[b, y1y2 · · · yl]‖ < kβ.

We have

γ(ge) =

k∑
j=1

αjyj,1yj,2 · · · yj,lj ,

where αj ∈ C and yj,t ∈ γ(G′
). (Recall that k does not depend on e, and that

lj ≤ k regardless of i.) Set Me = max{1, |α1|, . . . , |αk|}, and

M = max
e∈E

Me
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Set β = θ/(2k2M), and observe that β does not depend on γ. Now, we compute:

‖[b, γ(ge)]‖ =

∥∥∥∥∥∥
k∑
j=1

[b, αjyj,1yj,2 · · · yj,lj ]

∥∥∥∥∥∥
≤ M

∥∥∥∥∥∥
k∑
j=1

[b, yj,1yj,2 · · · yj,lj ]

∥∥∥∥∥∥
≤ M

k∑
j=1

‖[b, yj,1yj,2 · · · yj,lj ]‖

< Mk(kβ)/2 = θ/2,

as required.

2. Local simplicity

2.1 The arguments in this and the next section will employ the notion of a recursive
subhomogeneous C∗-algebra. We refer the reader to [15] for the basic definitions
and terminology related to these algebras. We will also use heavily certain natural
subalgebras of crossed product C∗-algebras, which arise as follows. Let X be a
compact metric space, α : X → X a homeomorphism, Y a closed subset of X, and
u the unitary implementing the action of α in A = C(X) oα Z; we define

(1) AY = C∗(C(X), uC0(X\Y )).

2.2 Proposition: Let X be an infinite, compact, metrizable, finite-dimensional
space with a minimal homeomorphism α. If x0, x1 ∈ X have disjoint orbits under
α, then the subalgebras A{x0}, A{x0,x1} and A{x1} are all simple and have finite
decomposition rank. Moreover, any algebra of the form AY for closed Y ⊆ X has
nuclear dimension at most dim(X).

Proof: Let us first prove the statement about finite decomposition rank. Use Y
to denote any of {x0}, {x1}, or {x0, x1}. Let Ym be a decreasing sequence of closed
subsets of X such that int(Ym) 6= ∅ and ∩∞m=1Ym = Y . It is immediate that

AY = C∗(C(X), uC0(X\Y )) = lim
m→∞

C∗(C0(X), uC(X\Ym)) = lim
m→∞

AYm

(see (1)). It is proved in [12] that AYm is a recursive subhomogeneous C∗-algebra
of topological dimension at most dim(X). It then follows from the main theorem of
[27] that each AYm has decomposition rank at most dim(X). Decomposition rank
is lower semicontinuous with respect to inductive limits, whence AY has decompo-
sition rank at most dim(X), too (see [8]).

The simplicity of AY is established by [10, Proposition 2.5] in the case that Y
is a singleton. We adapt their proof to establish the simplicity of A{x0,x1}. Let
I ⊆ A{x0,x1} be a nonzero ideal. It follows that C(X) ∩ I is an ideal of C(X), and
therefore has the form C0(U) for some open subset U . Explicitly,

U = {x ∈ X | ∃f ∈ C(X) ∩ I : f(x) 6= 0}.
The proof of [10, Proposition 2.5] shows that U 6= ∅.
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We claim that α−1(U\{α(x0), α(x1)}) ⊆ U . To see this, fix z ∈ U\{α(x0), α(x1)}.
Choose f ∈ C(X)∩ I such that f(z) 6= 0, and choose g ∈ C0(X\{x0, x1}) such that
g(α−1(z)) 6= 0. Now ug ∈ A{x0,x1}, and so

(ug)∗f(ug) = gu∗fug = |g|2(f ◦ α)

is in C(X) ∩ I. Since |g|2(f ◦ α) is not zero at α−1(z), we see that α−1(z) ∈ U .

We also claim that α(U\{x0, x1}) ⊆ U . Let z ∈ U\{x0, x1}, and choose f ∈
C(X) ∩ I and g ∈ C0(X\{x0, x1}) to be nonzero at z. Now ug ∈ A{x0,x1}, and so

(ug)f(ug)∗ = u(|g|2f)u∗ = (|g|2f) ◦ α−1

is in C(X) ∩ I. Since (|g|2f) ◦ α−1 is not zero at α(z), we see that α(z) ∈ U .

Set Z = X\U . We will prove that Z = ∅ by contradiction.

First suppose that z ∈ Z and z /∈ Orb(x0)∪Orb(x1). Suppose that αk(z) ∈ U for
some k. If k > 0 then, since αk(z) 6= α(x0), α(x1), we use the first of the two claims
above to conclude that αk−1(z) ∈ U\{α(x0), α(x1)}. Iterating this procedure k
times yields z ∈ U , contradicting z ∈ Z. We conclude that αk(z) ∈ Z. Similarly,
suppose that αk(z) ∈ U for some k < 0. Since αk(z) 6= x0, x1, we can use the
second of the two claims above to conclude that αk+1(z) ∈ U\{x0, x1}. Iterating
this procedure k times yields z ∈ U , contradicting z ∈ Z. We conclude again that
αk(z) ∈ Z. We have proved that Orb(z) ⊆ Z, but this contradicts the minimality
of α. We conclude that if z ∈ Z, then z ∈ Orb(x0) ∪Orb(x1).

Suppose, without loss of generality, that z = αk(x0). Assume that k > 0, and that
αn(x0) ∈ U for some n > k. Using Orb(x0) ∩ Orb(x1) = ∅ and n > 1 we see that
in fact αn(x0) ∈ U\{α(x0), α(x1)}. Applying the first of our two claims above, we
see that αn−1(x0) ∈ U\{α(x0), α(x1)}. Iterating this argument yields αk(x0) ∈ U ,
a contradiction, so we must have {αn(x0) | n ≥ k} ⊆ Z. This, however, violates
minimality. Similarly, suppose that k ≤ 0, and that αn(x0) ∈ U for some n < k.
Using Orb(x0) ∩ Orb(x1) = ∅ and n < 0 we see that in fact αn(x0) ∈ U\{x0, x1}.
Applying the second of our two claims above, we see that αn+1(x0) ∈ U\{x0, x1}.
Iterating this argument yields αk(x0) ∈ U , a contradiction, so we conclude that
{αn(x0) | n ≤ k} ⊆ Z. This again violates minimality.

Since every possible choice of z ∈ Z leads to a contradiction, we conclude that
Z = ∅, U = X, and so 1A ∈ I. It follows that A{x0,x1} is simple, as desired.

3. Nuclear dimension

3.1 Recall the following definition from [29].

Definition: A C∗-algebra A has nuclear dimension at most n, dimnucA ≤ n, if
there exists a net (Fλ, ψλ, ϕλ) of finite-dimensional c.p. approximations for A (i.e.,
Fλ are finite dimensional C∗-algebras, and ψλ : A → Fλ and ϕλ : Fλ → A are
completely positive maps for all λ) such that

(i) ϕλ ◦ ψλ(a)→ a uniformly on finite subsets of A
(ii) ‖ψλ‖ ≤ 1 for each λ
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(iii) each Fλ decomposes into n + 1 ideals, Fλ = F
(0)
λ ⊕ . . . ⊕ F (n)

λ , such that
ϕλ|F (i)

λ

is an order zero contraction (i.e., it is c.p.c. and preserves orthog-

onality) for i = 0, . . . , n.

3.2 Proposition: Let X be an infinite, compact, metrizable, space with a minimal
homeomorphism α. It follows that for any δ > 0 and F ⊂ C(X) oα Z finite, there
are a positive normalized element h ∈ C(X) and distinct points x0, x1 ∈ X such
that

h(x0) = 0, h(x1) = 1

and
‖[h, b]‖ < δ

for all b ∈ F . We may moreover arrange that Orb(x0) ∩Orb(x1) = ∅.
Proof: Let u be the unitary operator in A := C(X)oαZ implementing α. Applying
Proposition 1.2 with γ = idA, G = {C(X), u, u∗}, E = F , and θ = δ, we see that
there is 0 < η < δ such that if h ∈ C(X) is positive with the property that

‖[h, u∗]‖ = ‖[h, u]‖ < η,

then ‖[h, b]‖ < δ for every b ∈ F . Thus, to establish the commutator estimate of
this Proposition, we need only show that h can be chosen to commute with u to
within η.

Set n = d1/ηe + 1, and fix some x0 ∈ X. By minimality and the fact that X
is infinite, we can find an open neighbourhood U of x0 such that the sets αi(U)
are pairwise disjoint for i ∈ {0, 1, . . . , 2n}. Let f ∈ C0(U) be a positive function of
norm one with the property that f ≡ 1 on an open neighbourhood V of x0 such
that V ⊆ U . Now define h ∈ C0(U ∪ α(U) ∪ · · · ∪ α2n(U)) via the formula

h|αi(U) =

{
(i/n)(f ◦ α−i), i ≤ n
(2− i/n)(f ◦ α−i), n < i ≤ 2n

.

Our assumptions on X and α imply that there is more than one orbit under α.
By minimality we can find x1 ∈ αn(V ) such that Orb(x0) ∩ Orb(x1) = ∅, so that
h(x1) = 1 and h(x0) = 0. Clearly, h is positive and of norm one.

It remains to prove that ‖uh− hu‖ < η. This is equivalent to showing that

‖uhu∗ − h‖ < η.

Now
uhu∗ = h ◦ α−1 ∈ C0(U ∪ α(U) ∪ · · · ∪ α2n(U))

is given by the formula

uhu∗|αi(U) =

 0, i = 2n
(2− (i+ 1)/n)(f ◦ α−i), n− 1 < i ≤ 2n− 1
((i+ 1)/n)(f ◦ α−i), 0 ≤ i ≤ n− 1

,

and comparing this with the formula for h we see that

‖uhu∗ − h‖ = (1/n)‖f‖ = 1/n < η,

as required.

3.3 Theorem: Let X be an infinite, compact, metrizable, finite-dimensional space
with a minimal homeomorphism α. Then,

dimnuc(C(X) oα Z) ≤ 2 dimX + 1.
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Proof: Set A = C(X)oαZ, and let there be given a finite subset F = {a1, . . . , an}
of A and a tolerance ε > 0. We must find a c.p. approximation for F to within ε
which has the form described in Definition 3.1.

Since C(X) and the implementing unitary u together generate A, there is a finite

set F ′
= {a′

1, . . . , a
′

n} with the following properties:

(i) ‖ai − a
′

i‖ < ε/24, for each i ∈ {1, . . . , n};
(ii) there exists k ∈ N such that each a

′

i is the sum of at most k monomials of
the form

f1u
j1f2u

j2 · · · fkujk , jl ∈ {−1, 0, 1}, fl ∈ C(X), 1 ≤ l ≤ k.

We assume, without loss of generality, that the fl are contractions.

Apply Proposition 3.2 to the singleton {u} and a value of δ so small that the
resulting function h has the property that

‖[u∗, hi/k]‖ = ‖[u, hi/k]‖ < ε/(24k2)

and

‖[u∗, (1− h)i/k]‖ = ‖[u, (1− h)i/k]‖ < ε/(24k2)

for each i ∈ {1, . . . , k} (this is possible by Proposition 1.1). Now for any monomial
as in (ii) above, we have

(2) ‖(f1uj1f2uj2 · · · fkujk)h− (f1u
j1h1/kf2h

1/kuj2 · · · fkujkh1/k)‖ < ε/24k,

where we have inserted h1/k to the left of ujl if jl = −1, and to the right if jl = 0, 1.
To see why this is so, observe that we may pass from

(3) (f1u
j1f2u

j2 · · · fkujk)h

to

(4) (f1u
j1h1/kf2h

1/kuj2 · · · fkujkh1/k)

in at most k steps, each of which involves passing a function of the form hl/k from
one side of a u or u∗ to the other. Keep in mind that hl/k commutes with each
ft for all sensible l and t. Each such step has a cost in norm which is less than or
equal to

‖[u∗, hi/k]‖ = ‖[u, hi/k]‖ < ε/(24k2).

Each of fl, h
1/ku−1, and uh1/k is contained in

A{x0} = C∗(C(X), uC0(X\{x0}).

The monomial of (4) is a product of such elements, hence also in A{x0}. Since

each a
′

ih is a sum of at most k monomials as in (3) above, and since each such
monomial is at distance strictly less that ε/(24k) from a monomial as in (4), we

conclude that a
′

ih is at distance at most ε/24 from an element b
(0)
i of A{x0}. Set

G0 = {b(0)1 , . . . , b
(0)
n }. An argument similar to the one just presented shows that

a
′

i(1− h) is at distance at most ε/24 from some

b
(1)
i ∈ A{x1} = C∗(C(X), uC0(X\{x1})).
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Set G1 = {b(1)1 , . . . , b
(1)
n }. Using the fact that ‖ai − a

′

i‖ < ε/24, and also that we
may assume that h commutes with each ai to within an arbitrarily small tolerance,
we conclude that

‖h1/2aih1/2 − b(0)i ‖, ‖(1− h)1/2ai(1− h)1/2 − b(1)i ‖ < ε/12.

From Proposition 2.2, we know that both A{x0} and A{x1} have decomposition

rank d = dim(X) < ∞. We can therefore find finite-dimensional C∗-algebras F (0)

and F (1) and c.p. contractions φ(j) : A{xj} → F (j) and ψ(j) : F (j) → A{xj} with
the property that

‖ψ(j) ◦ φ(j)(b(j)i )− b(j)i ‖ < ε/12, j ∈ {0, 1}, i ∈ {1, . . . , n}.

We may moreover take the ψ(j) to be d-decomposable in the sense of [8]. By
Arveson’s Extension Theorem, the φ(j) may be extended to c.p. contractions

φ(j) : A→ F (j), j = 0, 1,

and we can thus define a c.p. contraction φ : A→ F (0) ⊕ F (1) by the formula

φ(x) = φ(0)
(
h1/2xh1/2

)
⊕ φ(1)

(
(1− h)1/2x(1− h)1/2

)
.

We also define a c.p. map ψ : F (0) ⊕ F (1) → A by the formula

ψ(x) = ψ(0)(x) + ψ(1)(x),

assuming that ψ(0)|F (1) ≡ 0 and ψ(1)|F (0) ≡ 0. By the d-decomposability of the
ψ(j), we can write

F (j) = F
(j)
0 ⊕ F (j)

1 ⊕ · · · ⊕ F (j)
d

so that ψ(j)|
F

(j)
l

is an order zero contraction for each l ∈ {0, 1, . . . , d} and j ∈ {0, 1}.
It follows immediately that the restriction of ψ to any of the direct summands of

F
(0)
0 ⊕ F (0)

1 ⊕ · · · ⊕ F (0)
d ⊕ F (1)

0 ⊕ F (1)
1 ⊕ · · · ⊕ F (1)

d (= F (0) ⊕ F (1))

is an order zero contraction, so that ψ is (2d+ 1)-decomposable.

Now we estimate:

‖ψ ◦ φ(ai)− ai‖
= ‖ψ(0) ◦ φ(0)(h1/2aih1/2) + ψ(1) ◦ φ(1)((1− h)1/2ai(1− h)1/2)− ai‖
< ‖ψ(0) ◦ φ(0)(b(0)i ) + ψ(1) ◦ φ(1)(b(1)i )− ai‖+ ε/6

≤ ‖b(0)i + b
(1)
i − ai‖+ ε/3

< ‖a
′

ih+ a
′

i(1− h)− ai‖+ ε/2

= ‖a
′

i − ai‖+ ε/2

< ε

Since ‖φ‖ ≤ 1 and ψ is (2d + 1)-decomposable, we conclude that the nuclear di-
mension of A is at most 2d+ 1, as desired.

3.4

Corollary: Let X be an infinite, compact, metrizable, finite-dimensional space
with a minimal homeomorphism α. It follows that C(X) oα Z is Z-stable.
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Proof. Finite nuclear dimension implies Z-stability by Corollary 6.3 of [28]. �

4. Classification by K-theory: Elliott’s conjecture

4.1 Our proof of Theorem 0.1 will be an application of a general classification result,
due to the second named author (Theorem 7.1 of [26]). To avoid the task of deriving
a succinct and useful form of this theorem for our purpose (although such derivation
is not difficult), we state here a generalisation of [26, Theorem 7.1] due to Lin and
Niu ([9]). First we fix some notation: if l is a prime, then set

Ul :=

∞⊗
i=1

Ml.

Theorem: [26, 9] Let A,B be unital simple separable nuclear C∗-algebras which
absorb the Jiang-Su algebra Z tensorially. Suppose that for any prime l, the ten-
sor products Ul ⊗ A and Ul ⊗ B have tracial rank zero and satisfy the Univer-
sal Coefficient Theorem. Also suppose that there is a graded ordered isomorphism
φ : K∗(A)→ K∗(B). It follows that there is a ∗-isomorphism Φ : A→ B.

4.2 The crossed products considered in Theorem 0.1 are simple unital separable
nuclear C∗-algebras satisfying the Universal Coefficient Theorem, and were shown
in Corollary 3.4 to be Z-stable. Thus, we see that the proof of Theorem 0.1 is
reduced to the problem of showing that for any prime l and C∗-algebra A as in the
said theorem, the tensor product Ul ⊗A has tracial rank zero.

This task will be accomplished in two steps: First, we will employ known results
to show that, under the hypotheses of Theorem 0.1 and with notation as in 2.1,
algebras of the form Ul ⊗ A{y} are TAF. This is the content of Proposition 4.3
below.

Second, we need to conclude that if Ul⊗A{y} is TAF, then so is Ul⊗(C(X)oαZ).
This will be a special case of a result by Strung and the second named author,
Theorem 4.4; we will outline the proof at least in the special case we need, cf.
Proposition 4.7 below.

4.3 So, let us turn to the first step of 4.2.

Proposition: Let X be a compact infinite metric space of finite covering dimen-
sion, and α : X → X a minimal homeomorphism. Suppose further that the projec-
tions of C(X) oα Z separate traces. It follows that for any prime l and any y ∈ X,
the C∗-algebra By := Ul ⊗A{y} has tracial rank zero.

Proof: By Proposition 2.2, A{y} is a simple, Z-stable C∗-algebra with decom-
position rank at most d := dim(X). The properties of the decomposition rank,
established in [8], include the following: decomposition rank is insensitive to tak-
ing tensor products with full matrix algebras over C; decomposition rank is lower
semicontinuous with respect to inductive limits. Since Ul is an inductive limit
of full matrix algebras over C, we conclude that By has decomposition rank at
most d. The inclusion A{y} ↪→ A induces isomorphisms γ1 : K0(A{y}) → K0(A)
and γ2 : T(A) → T(A{y}) (see Theorem 4.1 (3) of [14] and [11, Proposition 16],
respectively—a sketched proof of the latter result can be found in [12]). It follows
that projections separate traces in A{y}. Using the fact that By is unital, simple,
and absorbs Ul tensorially, we may appeal to [17] to conclude that By has real rank
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zero. We have now collected the hypotheses of [24, Theorem 4.1]. We conclude
that By has tracial rank zero, as desired.

This settles the first step of 4.2 above. Let us now take care of the second step.

4.4 Theorem: [21] Let X be an infinite compact metric space, and α : X → X
a minimal homeomorphism. Let y ∈ X and set A{y} = C∗(C(X), uC0(X \ {y})).
Let l be a prime, and suppose that Ul ⊗ A{y} is TAS, where S is some class of
unital semiprojective C∗-algebras which is closed under taking quotients. Then,
Ul ⊗ (C(X) oα Z) is TAS as well.

When we take S to be the class of finite dimensional C∗-algebras, the theorem
indeed settles the second step of 4.2 above. Since we will only need this special
case, for the convenience of the reader we briefly outline its proof in the sequel (cf.
Proposition 4.7 below). We refer to [21] for full details, and for a discussion of the
more general Theorem 4.4 and its implications for the classification program.

4.5 The key step in the proof of Theorem 4.4 is the following generalisation of [10,
Lemma 4.2], which will be derived in [21]; here we only need it in the case of real
rank zero.

Lemma: Let X be an infinite compact metric space, and α : X → X a minimal
homeomorphism. Let y ∈ X and set A{y} = C∗(C(X), uC0(X\{y})). Let l be a
prime, and set By = Ul ⊗ A{y}. It follows that for any ε > 0 and any finite subset
F of B := Ul ⊗ (C(X) oα Z), there is a projection p ∈ By such that the following
statements hold:

(i) ‖pa− ap‖ < ε for all a ∈ F ;
(ii) dist(pap, pByp) < ε for all a ∈ F ;

(iii) τ(1− p) < ε for all τ ∈ T(B).

The proof is a modification of that of [10, Lemma 4.2]. In fact, when we replace
Ul by C in the above (i.e., we take l = 1), and assume in addition that A{y} has real
rank zero and stable rank one, the lemma is exactly [10, Lemma 4.2]. Now if Ul is
nontrivial, and if By has real rank zero, then the proof of [10, Lemma 4.2] carries
over almost verbatim, at least in the case where F is a subset of 1Ul ⊗ A{y}. The
case of general F can be reduced to the situation where F is in 1Ul ⊗ Ul ⊗ 1A{y} ∪
1Ul ⊗ 1Ul ⊗ A{y} (using the fact that Ul ∼= Ul ⊗ Ul); the proof in this situation is
essentially the same as in the first case.

4.6 Next, we recall another result from [10].

Lemma: [10, Lemma 4.4] Let C be a simple unital C∗-algebra. Suppose that for
every finite subset F ⊆ C, every ε > 0, and every nonzero positive element b ∈ C,
there exists a projection p ∈ C and a simple unital subalgebra D ⊆ pCp with tracial
rank zero such that:

(i) ‖pa− ap‖ < ε for all a ∈ F ;
(ii) dist(pap,D) < ε for all a ∈ F ;

(iii) p is Murray-von Neumann equivalent to a projection in bCb.

It follows that A has tracial rank zero.
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4.7 Using essentially the same technique as in [10, Theorem 4.5], we may now use
the two preceding lemmas to prove Theorem 4.4, at least in the case where S is the
class of finite-dimensional C∗-algebras.

Proposition: Let X be a compact infinite metric space of finite covering dimen-
sion, and α : X → X a minimal homeomorphism. Suppose further that, for some
prime l and y ∈ X, the C∗-algebra By := Ul⊗A{y} has tracial rank zero. It follows
that the C∗-algebra B := Ul ⊗ (C(X) oα Z) has tracial rank zero.

Proof: Since By has tracial rank zero, so too does pByp for any projection p ∈ By.
Using this fact and Lemma 4.5 we may apply [10, Lemma 4.4] (stated as Lemma
4.6 above) with C replaced by B := Ul ⊗ (C(X) oα Z) and D replaced by our
pByp, where p ∈ By is the projection provided by the conclusion of Lemma 4.5.
To conclude that B has tracial rank zero, we need to show that the projection p
in the conclusion of Lemma 4.5 is Murray-von Neumann equivalent to a projection
in bBb (we assume that ε, F , and b as in the hypotheses of Lemma 4.6 are given).
By shrinking ε, however, the existence of this projection follows from the second
part of [13, Proposition 3.8]—this proposition applies since B is unital, simple, and
Z-stable. We conclude, finally, that B has tracial rank zero, as desired.

We have thus completed the two steps of 4.2, hence the proof of Theorem 0.1.
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