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On the classification problem
for nuclear C∗-algebras

By Andrew S. Toms

Abstract

We exhibit a counterexample to Elliott’s classification conjecture for sim-
ple, separable, and nuclear C∗-algebras whose construction is elementary, and
demonstrate the necessity of extremely fine invariants in distinguishing both
approximate unitary equivalence classes of automorphisms of such algebras
and isomorphism classes of the algebras themselves. The consequences for the
program to classify nuclear C∗-algebras are far-reaching: one has, among other
things, that existing results on the classification of simple, unital AH algebras
via the Elliott invariant of K-theoretic data are the best possible, and that
these cannot be improved by the addition of continuous homotopy invariant
functors to the Elliott invariant.

1. Introduction

Elliott’s program to classify nuclear C∗-algebras via K-theoretic invari-
ants (see [E2] for an overview) has met with considerable success since his
seminal classification of approximately finite-dimensional (AF) algebras via
their scaled, ordered K0-groups ([E1]). Classification results of this nature
are existence theorems asserting that isomorphisms at the level of certain in-
variants for C∗-algebras in a class B are liftable to ∗-isomorphisms at the
level of the algebras themselves. Obtaining such theorems usually requires
proving a uniqueness theorem for B, i.e., a theorem which asserts that two
∗-isomorphisms between members A and B of B which agree at the level of
the said invariants differ by a locally inner automorphism.

Elliott’s program began in earnest with his classification of simple circle
algebras of real rank zero in 1989 — he conjectured shortly thereafter that the
topological K-groups, the Choquet simplex of tracial states, and the natural
connections between these objects would form a complete invariant for the class
of separable, nuclear C∗-algebras. This invariant came to be known simply as
the Elliott invariant, denoted by Ell(•). Elliott’s conjecture held in the case of
simple algebras throughout the 1990s, during which time several spectacular
classification results were obtained: the Kirchberg-Phillips classification of sim-
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ple, separable, nuclear, and purely infinite (Kirchberg) C∗-algebras satisfying
the Universal Coefficient Theorem, the Elliott-Gong-Li classification of simple
unital AH algebras of very slow dimension growth, and Lin’s classification of
tracially AF algebras (see [K], [EGL], and [L], respectively).

In 2002, however, Rørdam constructed a simple, nuclear C∗-algebra con-
taining both a finite and an infinite projection ([R1]). Apart from answering
negatively the question of whether simple, nuclear C∗-algebras have a type
decomposition similar to that of factors, his example provided the first coun-
terexample to Elliott’s conjecture in the simple nuclear case; it had the same
Elliott invariant as a Kirchberg algebra — its tensor product with the Jiang-Su
algebra Z, to be precise — yet was not purely infinite. It could, however, be
distinguished from its Kirchberg twin by its (nonzero) real rank ([R4]).

Later in the same year, the present author found independently a sim-
ple, nuclear, separable and stably finite counterexample to Elliott’s conjecture
([T]). This algebra could again be distinguished from its tensor product with
the Jiang-Su algebra Z by its real rank. These examples made it clear that the
Elliott conjecture would not hold at its boldest, but the question of whether the
addition of some small amount of new information to Ell(•) could repair the
defect in Elliott’s conjecture remained unclear. The counterexamples above
suggested the addition of the real rank, and such a modification would not
have been without precedent: the discovery that the pairing between traces
and the K0-group was necessary for determining the isomorphism class of a
nuclear C∗-algebra was unexpected, yet the incorporation of this object into
the Elliott invariant led to the classification of approximately interval (AI)
algebras ([E3]).

The sequel clarifies the nature of the information not captured by the
Elliott invariant. We exhibit a pair of simple, separable, nuclear, and noniso-
morphic C∗-algebras which agree not only on Ell(•), but also on a host of other
invariants including the real rank and continuous (with respect to inductive
sequences) homotopy invariant functors. The Cuntz semigroup, employed to
distinguish our algebras, is thus the minimum quantity by which the Elliott
invariant must be enlarged in order to obtain a complete invariant, but we
shall see that the question of range for this semigroup is out of reach. Any
classification result for C∗-algebras which includes this semigroup as part of the
invariant will therefore lack the impact of the Elliott program’s successes — the
latter are always accompanied by range-of-invariant results. Our aim, however,
is not to discourage work on the classification program. It is to demonstrate
unequivocally the need for a new regularity assumption in Elliott’s program,
as opposed to an expansion of the invariant.

Let F denote the following collection of invariants for C∗-algebras:

• all homotopy invariant functors from the category of C∗-algebras which
commute with countable inductive limits;
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• the real rank (denoted by rr(•));

• the stable rank (denoted by sr(•));

• the Hausdorffized algebraic K1-group;

• the Elliott invariant.

Let FR be the subcollection of F obtained by removing those continuous and
homotopy invariant functors which do not have ring modules as their target
category.

Our main results are:

Theorem 1.1. There exists a simple, separable, unital, and nuclear
C∗-algebra A such that for any UHF algebra U and any F ∈ F one has

F (A) ∼= F (A ⊗ U),

yet A and A ⊗ U are not isomorphic. A is moreover an approximately homo-
geneous (AH) algebra, and A ⊗ U is an approximately interval (AI) algebra.

Theorem 1.2. There exist a simple, separable, unital, and nuclear
C∗-algebra B and an automorphism α of B of period two such that α induces
the identity map on F (B) for every F ∈ FR, yet α is not locally inner.

Thus, both existence and uniqueness fail for simple, separable, and nuclear
C∗-algebras despite the scope of F .

Recall that a C∗-algebra A is said to be Z-stable if it absorbs the Jiang-Su
algebra Z tensorially, i.e., A ⊗ Z ∼= A. (Z-stability is the regularity property
alluded to above.) Theorem 1.1, or rather, its proof, has two immediate corol-
laries which are of independent interest.

Corollary 1.1. There exists a simple, separable, and nuclear C∗-algebra
with unperforated ordered K0-group whose Cuntz semigroup fails to be almost
unperforated.

Corollary 1.2. Say that a simple, separable, nuclear, and stably finite
C∗-algebra has property (M) if it has stable rank one, weakly unperforated topo-
logical K-groups, weak divisibility, and property (SP). Then, (M) is strictly
weaker than Z-stability.

Corollary 1.1 follows from the proof of Theorem 1.1, while Corollary 1.2
follows from Corollary 1.1 and Theorem 4.5 of [R3].

The counterexample to the Elliott conjecture constituted by Theorem 1.1
is more powerful and succinct than those of [R1] or [T]: A and A⊗U agree on
the distinguishing invariant for the counterexamples of [R1] and [T] and a host
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of others including K-theory with coefficients mod p, the homotopy groups of
the unitary group, the stable rank, and all σ-additive homologies and coho-
mologies from the category of nuclear C∗-algebras (cf. [B]); A and A ⊗ U are
simple, unital inductive limits of homogeneous algebras with contractible spec-
tra, a class of algebras which forms the weakest and most natural extension
of the very slow dimension growth AH algebras classified in [EGL]; both A

and A⊗U are stably finite, weakly divisible, and have property (SP), minimal
stable rank, and next-to-minimal real rank; the proof of the theorem is elemen-
tary compared to the intricate constructions of [R1] and [T], and demonstrates
the necessity of a distinguishing invariant for which no range results can be ex-
pected. Furthermore, one has in Theorem 1.2 a companion lack-of-uniqueness
result. Together with Theorem 1.1, this yields what might be called a cat-
egorical counterexample — the structure of the category whose objects are
isomorphism classes of simple, separable, nuclear, stably finite C∗-algebras (let
alone just nuclear algebras) and whose morphisms are locally inner equivalence
classes of ∗-isomorphisms cannot be determined by F .

The paper is organized as follows: Section 2 fixes notation and reviews the
definition of the Cuntz semigroup W (•); in Section 3 we prove Theorem 1.1; in
Section 4 we prove Theorem 1.2; Section 5 demonstrates the complexity of the
Cuntz semigroup, and discusses the relevance of Z-stability to the classification
program.

Acknowledgements. The author would like to thank Mikael Rørdam
both for suggesting the search for the automorphisms of Theorem 1.2 and for
several helpful discussions, Søren Eilers and Copenhagen University for their
hospitality in 2003, and George Elliott for his hospitality and comments at the
Fields Institute in early 2004, where some of the work on Theorem 1.2 was
carried out. This work was supported by an NSERC Postdoctoral Fellowship
and by a University of New Brunswick grant.

2. Preliminaries

For the remainder of the paper, let Mn denote the n × n matrices with
complex entries, and let C(X) denote the continuous complex-valued functions
on a topological space X.

Let A be a C∗-algebra. We recall the definition of the Cuntz semigroup
W (A) from [C]. (Our synopsis is essentially that of [R3].) Let Mn(A)+ de-
note the positive elements of Mn(A), and let M∞(A)+ be the disjoint union
∪∞

i=nMn(A)+. For a ∈ Mn(A)+ and b ∈ Mm(A)+ set a ⊕ b = diag(a, b) ∈
Mn+m(A)+, and write a � b if there is a sequence {xk} in Mm,n(A) such that
x∗

kbxk → a. Write a ∼ b if a � b and b � a. Put W (A) = M∞(A)+/ ∼, and let
〈a〉 be the equivalence class containing a. Then, W (A) is a positive ordered



ON THE CLASSIFICATION PROBLEM FOR NUCLEAR C∗
-ALGEBRAS 1033

abelian semigroup when equipped with the relations:

〈a〉 + 〈b〉 = 〈a ⊕ b〉, 〈a〉 ≤ 〈b〉 ⇐⇒ a � b, a, b ∈ M∞(A)+.

The relation � reduces to Murray-von Neumann comparison when a and b are
projections.

We will have occasion to use the following simple lemma in the sequel:

Lemma 2.1. Let p and q be projections in a C∗-algebra D such that

||xpx∗ − q|| < 1/2

for some x ∈ D. Then, q is equivalent to a subprojection of p.

Proof. We have that

σ(xpx∗) ⊆ (−1/2, 1/2) ∪ (1/2, 3/2),

and that σ(xpx∗) contains at least one point from (1/2, 3/2). The C∗-algebra
generated by xpx∗ contains a nonzero projection, say r, represented (via the
functional calculus) by the function r(t) on σ(xpx∗) which is zero when
t ∈ (−1/2, 1/2) and one otherwise. This projection is dominated by

2xpx∗ =
√

2xpx∗√2.

By the functional calculus one has ||xpx∗ − r|| < 1/2, so that ||r − q|| < 1.
Thus, r and q are Murray-von Neumann equivalent. By the definition of Cuntz
equivalence we have

√
2xpx∗√2 � p, so that q ∼ r � p by transitivity. Cuntz

comparison agrees with Murray-von Neumann comparison on projections, and
the lemma follows.

3. The proof of Theorem 1.1

Proof. We construct A as an inductive limit limi→∞(Ai, φi) where, for
each i ∈ N, Ai is of the form

Mki
⊗ C

(
[0, 1]6(Πj≤inj)

)
, ni, ki ∈ N,

and φi is a unital ∗-homomorphism. Our construction is essentially that of
[V1]. Put k1 = 4, n1 = 1, and Ni = Πj≤inj . Let

πi
l : [0, 1]6Ni → [0, 1]6Ni−1 , l ∈ {1, . . . , ni},

be the co-ordinate projections, and let f ∈ Ai−1. Define φi−1 by

φi−1(f)(x) = diag
(
f(πi

1(x)), . . . , f(πi
ni

(x)), f(xi−1
1 ), . . . , f(xi−1

mi
)
)
,

where xi−1
1 , . . . , xi−1

mi
are points in Xi−1

def= [0, 1]6Ni−1 . With mi = i, the
xi−1

1 , . . . , xi−1
mi

, i ∈ N, can be chosen so as to make limi→∞(Ai, φi) simple
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(cf. [V2]). The multiplicity of φi−1 is ni +mi by construction. We impose two
conditions on the ni and mi: first, ni � mi as i → ∞, and second, given any
natural number r, there is an i0 ∈ N such that r divides ni0 + mi0 .

Note that (K0Ai,K+
0 Ai, [1Ai

]) = (Z, Z+, ki) since Xi is contractible for all
i ∈ N. The second condition on the ni above implies that

(K0A,K0A
+, [1A]) = lim

i→∞
(K0Ai,K0A

+
i , [1Ai

]) ∼= (Q, Q+, 1).

Since K1Ai = 0, i ∈ N, we have K1A = 0. Thus, A has the same Elliott
invariant as some AI algebra, say B. Tensoring A with a UHF algebra U does
not disturb the K0-group or the tracial simplex (U has a unique normalized
tracial state). The tensor product A ⊗ U is a simple, unital AH algebra with
very slow dimension growth in the sense of [EGL], and is thus isomorphic to
B by the classification theorem of [EGL].

Let us now prove that A and B are shape equivalent. By the range-of-
invariant theorem of [Th] we may write B as an inductive limit of full matrix
algebras over the closed unit interval (as opposed to direct sums of such), say

B ∼= lim
i→∞

(Bi, ψi).

From K-theory considerations we may assume that Bi = Mki
⊗ C([0, 1]), i.e.,

that the dimension of the unit of Bi is the same as the dimension of the unit
of Ai. Let si = multφi = multψi. Define maps

ηi : Ai → Bi+1, ηi(f) =
si⊕

j=1

f((0, . . . , 0))

and

γi : Bi → Ai, γi(g) = g(0).

Both γi+1 ◦ ηi and ηi ◦ γi−1 are diagonal maps, and so are homotopic to φi and
ψi, respectively, since [0, 1] and Xi are contractible.

Finally, A has stable rank one and real rank one by [V2], and therefore so
also does B.

To complete the proof of the theorem, we must show that A and B are
nonisomorphic. Since B is approximately divisible, we have that W (B) is
almost unperforated, i.e., if mx � ny for natural numbers m > n and elements
x, y ∈ W (B), then x � y ([R2]). We claim that the Cuntz semigroup of A fails
to be almost unperforated. We proceed by extending Villadsen’s Euler class
obstruction argument (cf. [V1], [V2]) to positive elements of a particular form.

To show that W (A) fails to be almost unperforated, it will suffice to exhibit
positive elements x, y ∈ A1 such that, for all i ∈ N, for some δ > 0

m〈φ1i(x)〉 � n〈φ1i(y)〉, m > n, m, n ∈ N
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and

||rφ1i(y)r∗ − φ1i(x)|| > δ, ∀r ∈ Ai, ∀i ∈ N.

The second statement is stronger than the requirement that 〈φ1i(x)〉 is not less
than 〈φ1i(y)〉 in W (Ai), since W (•) does not commute with inductive limits.
Clearly, we need only establish this second statement over some closed subset
Y of the spectrum of Ai.

If a ∈ Mn⊗C(X) is a constant positive element and X is compact, then 〈a〉
is the class of a projection in W (Mn ⊗C(X)). Indeed, a is unitarily equivalent
(hence Cuntz equivalent) to a diagonal positive element:

uau∗ = diag(a1, . . . , am, 0, . . . , 0), some u ∈ U(Mn),

where al �= 0, l ∈ {1, . . . , m}. Let r = diag(a−1
1 , . . . , a−1

m , 0, . . . , 0). Then,

r1/2uau ∗ r1/2 = (r1/2u)a(r1/2u)∗ = diag(1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0).

Set

S
def=

{
x ∈ [0, 1]3 :

1
8

< dist
(

x,

(
1
2
,
1
2
,
1
2

))
<

3
8

}
.

Note that M4(C0(S × S)) is a hereditary subalgebra of A1. Let ξ be a line
bundle over S2 with nonzero Euler class (the Hopf line bundle, for instance).
Let θ1 denote the trivial line bundle. By Lemma 1 of [V2], we have that θ1 is
not a sub-bundle of ξ × ξ over S2 × S2. Both ξ × ξ and θ1 can be considered as
projections in M4(S2 × S2). By Lemma 2.1 we have

||x(ξ × ξ)x∗ − θ1|| ≥ 1/2, ∀x ∈ M4(S2 × S2).

On the other hand, the stability properties of vector bundles imply that

11〈θ1〉 ≤ 10〈ξ × ξ〉.
Consider the closure S− of S ⊆ [0, 1]3, and let τ be the projection of S−

onto

S1/4
def=

{
x ∈ S : dist

(
x,

(
1
2
,
1
2
,
1
2

))
=

1
4

}
⊆ [0, 1]3

along rays emanating from (1/2, 1/2, 1/2) ∈ [0, 1]3. Let τ∗(ξ) be the pullback
of ξ via τ . Fix a positive scalar function f ∈ A1 of norm one which is equal to
1 ∈ M4 on S1/4 × S1/4 and has support S × S. It follows that f(τ∗(ξ)× τ∗(ξ))
∈ A1. By Lemma 2.1 we have

||xf(τ∗(ξ) × τ∗(ξ))x∗ − fθ1|| ≥ 1/2

for any x ∈ A1 — one simply restricts to S1/4 × S1/4 ⊆ S × S. We may pull
the inequality

11〈θ1〉 ≤ 10〈ξ × ξ〉.
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back via τ to conclude that

11〈θ1〉 ≤ 10〈τ∗(ξ) × τ∗(ξ)〉.

This last inequality is equivalent to the existence of a sequence (rj) in the
appropriately sized matrix algebra over C(S− × S−) with the property that

rj

(
⊕10

i=1τ
∗(ξ) × τ∗(ξ)

)
r∗j

j→∞−→ θ11.

Since f is central in C0(S × S), we have that

rj

(
⊕10

i=1f(τ∗(ξ) × τ∗(ξ))
)
r∗j

j→∞−→ fθ11.

In other words,

11〈fθ1〉 ≤ 10〈f(τ∗(ξ) × τ∗(ξ))〉

and W (A1) fails to be weakly unperforated.
Since

11〈φ1i(fθ1)〉 ≤ 10〈φ1i(f(τ∗(ξ) × τ∗(ξ)))〉

via φ1i(rj), we need only show that

||xφ1i(f(τ∗(ξ) × τ∗(ξ)))x∗ − φ1i(fθ1)| | ≥ 1/2

for each natural number i and any x ∈ Ai. Fix i. One can easily verify that
the restriction of φ1i(f · τ∗(ξ) × τ∗(ξ)) to (S−)2Ni ⊆ [0, 1]6Ni is

(τ∗(ξ) × τ∗(ξ))×Ni ⊕ fθl
,

where fθl
is a constant positive element of rank l (hence Cuntz equivalent

to θl), and the direct sum decomposition separates the summands of φi−1

which are point evaluations from those which are not. The similar restricted
decomposition of φ1i(f · θ1) is

θk−l/2 ⊕ gθl/2 ,

where gθl/2 is a constant positive element Cuntz equivalent to a trivial projec-
tion of dimension l/2, and k is greater than 3l/2 (this last inequality follows
from the fact that ni � mi). Suppose that there exists x ∈ Ai|(S−)2Ni such
that

||x((τ∗(ξ) × τ∗(ξ))×Ni ⊕ fθl
)x∗ − θk−l/2 ⊕ gθl/2 || < 1/2.

Recall that

(τ∗(ξ) × τ∗(ξ))×Ni ⊕ fθl
= a((τ∗(ξ) × τ∗(ξ))×Ni ⊕ θl)a

for some positive a ∈ Ai. Cutting down by θk−l/2, we have

||θk−l/2xa((τ∗(ξ) × τ∗(ξ))×Ni ⊕ θl)ax∗θk−l/2 − θk−l/2|| < 1/2.
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By Lemma 2.1, we must conclude that

θk−l/2 � (τ∗(ξ) × τ∗(ξ))×Ni ⊕ θl

over (S−)2Ni . But this is impossible by Lemma 1 of [V2]. Hence

||x(φ1i(f · τ∗(ξ) × τ∗(ξ)))x∗ − φ1i(f · θ1)|| ≥ 1/2 ∀x ∈ Ai,

as desired.

4. The proof of Theorem 1.2

Proof. We perturb the construction of a simple, unital AH algebra by
Villadsen ([V1]) to obtain the algebra B of Theorem 1.2, and construct α as an
inductive limit automorphism. Let X and Y be compact connected Hausdorff
spaces, and let K denote the C∗-algebra of compact operators on a separable
Hilbert space. Projections in the C∗-algebra C(Y ) ⊗ K can be identified with
finite-dimensional complex vector bundles over Y , and two such bundles are
stably isomorphic if and only if the corresponding projections in C(Y ) ⊗ K
have the same K0-class.

Given a set of mutually orthogonal projections

P = {p1, . . . , pn} ⊆ C(Y ) ⊗K
and continuous maps λi : Y → X, 1 ≤ i ≤ n, one may define a ∗-homomorphism

λ : C(X) → C(Y ) ⊗K, f →
n⊕

i=1

(f ◦ λi)pi.

A ∗-homomorphism of this form is called diagonal. We say that λ comes from
the set {(λi, pi)}n

i=1.
Let I denote the closed unit interval in R, and put

Xi = I × CPσ(1) × CPσ(2) × · · · × CPσ(i),

where the σ(i) are natural numbers to be specified. Let

π1
i+1 : Xi+1 → Xi; π2

i+1 : Xi+1 → CPσ(i+1)

be the co-ordinate projections. Let Bi = pi(C(Xi)⊗K)pi, where pi is a projec-
tion in C(Xi)⊗K to be specified. The algebra B of Theorem 1.2 will be realized
as the inductive limit of the Bi with diagonal connecting ∗-homomorphisms
γi : Bi → Bi+1.

Let p1 be a projection corresponding to the vector bundle

θ1 × ξσ(1),

over X1, where θ1 denotes the trivial complex line bundle, ξk denotes the
universal line bundle over CPk for a given natural number k, and σ(1) = 1.
Put ηi = π2∗

i (ξσ(i)).
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We now specify, inductively, the maps γi : Bi → Bi+1. Let ψ̃ be the
homeomorphism of I given by

ψ̃(x) = 1 − x.

Abusing notation, we will also take ψ̃ to be the homeomorphism of Xi
def= I×Yi

given by (x, y) �→ (ψ̃(x), y). Choose a dense sequence (zl
i)
∞
l=1 in Xi and choose

for each j = 1, 2, . . . , i + 1 a point yj
i ∈ Xi such that yi+1

i = z1
i , yi

i = z2
i and

π1
j+1 ◦ π1

j ◦ · · · ◦ π1
i (y

j
i ) = zi−j+2

j for 1 ≤ j ≤ i − 1. Let

γ̃i : C(Xi ⊗K) −→ C(Xi+1 ⊗K)

be a diagonal ∗-homomorphism coming from

(π1
i+1, θ1) ∪ {(yj

i , ηi+1)}i+1
j=1 ∪ {(ψ̃(yj

i ), ηi+1)}i+1
j=1.

Let γ̃1i be the composition γ̃i◦· · ·◦γ̃1, and put pi+1 = γ̃1i(p1) for all natural
numbers i. Let γi : Bi → Bi+1 be the restriction of γ̃i. Let B = lim→(Bi, γi).
It follows from [V1] that B is a simple, unital AH-algebra. (Apart from the
choice of point evaluations in the γ̃i, the construction above is precisely that
of [V1]. The reason for the specific choice of point evaluations will be made
clear shortly.)

Straightforward calculation shows that the projection pi ∈ Bi corresponds
to a complex vector bundle over Xi of the form θ1⊕ωi. In fact, with Xi = I × Yi

and with τ i
1, τ i

2 the co-ordinate projections, we have that ωi = τ i∗
2 (ω̃i) for a

vector bundle ω̃i over Yi. Thus, the homeomorphism ψ̃ of Xi fixes pi, and so
induces an automorphism ψi of Bi.

Let π1
im be the composition π1

m ◦ · · · ◦ π1
i+1. Let f ∈ Bi. Then, with (x, y)

an element of Xi+1 = Xi × CPσ(i+1), we have

γi(f)(x, y) = f(π1
i+1(x)) ⊕

⎛
⎝ i+1⊕

j=1

f(ψ̃(yj
i )) ⊗ ηi+1 ⊕ f(yj

i ) ⊗ ηi+1

⎞
⎠ ,

so that

ψi+1 (γi(f)(x, y)) = f
(
ψ̃(π1

i+1(x))
)
⊕

⎛
⎝ i+1⊕

j=1

f(ψ̃(yj
i )) ⊗ ηi+1 ⊕ f(yj

i ) ⊗ ηi+1

⎞
⎠ .

On the other hand,

γi ◦ ψi(f)(x, y) = f
(
ψ̃(π1

i+1(x))
)
⊕

⎛
⎝ i+1⊕

j=1

f(ψ̃(yj
i )) ⊗ ηi+1 ⊕ f(yj

i ) ⊗ ηi+1

⎞
⎠ .

Thus, γi◦ψi and ψi+1◦γi differ only in the order of their direct summands, and
so are unitarily equivalent. The unitary element implementing this equivalence
squares to the identity. Conjugating ψi+1 by said unitary element, we may
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assume that γi ◦ ψi = ψi+1 ◦ γi. This process may be repeated inductively for
ψm, m > i, yielding an inductive limit automorphism α of B via the ψi.

We now show that α is not locally inner, yet induces the identity map
on InvF for any F ∈ F . Recall that the Euler class e(ω) of a complex vector
bundle ω over a connected finite CW-complex X is an element of H2dimω(X).
For a trivial complex vector bundle θl of dimension l ∈ N we have e(θl) = 0. We
also have e(ω1 ⊕ ω2) = e(ω1) · e(ω2) for two complex vector bundles ω1 and ω2

over X, where the product is the cup product in the integral cohomology ring
H∗(X). Thus, if e(ω) �= 0, then ω has no trivial sub-bundles. Alternatively, ω

does not admit an everywhere-nonzero cross section.
It follows from the construction of the pi = θ1 ⊕ τ i∗

2 (ω̃i) that ω̃i is a vector
bundle over Yi with nonzero Euler class ([V2]).

It will suffice to find an element f of Bi such that ||α(f) − f || ≥ 1 and

||Ad(u) ◦ α ◦ γim(f) − γim(f)|| ≥ 1

for all unitaries u ∈ Bm and natural numbers m ∈ N.
Let f̃ be a continuous function on I taking values in [0, 1] such that f̃(0)

= 0 and f̃(1) = 1. Pull this function back to a function on Xi = I× Yi via the
co-ordinate projection onto I, keeping the same notation. Put f = f̃ θ1 ∈ Bi.
Thus chosen, the element f ∈ Bi has the desired property:

||α(f) − f || ≥ 1.

Notice that θ1γim(f)θ1 = (f̃ ◦πim)θ1 inside Bm for all natural numbers m ≥ i,
and that α|Bi

(θ1) = θ1 for every i ∈ N.
Let u be a unitary element in Bm. We claim that there is a y0 ∈ Ym such

that conjugation by u fixes the corner

θ1(C(Xm) ⊗K)θ1

of Bm at (0, y0) ∈ Xm = I × Ym, i.e.,

(u∗θ1gθ1u)(0, y0) = (θ1gθ1)(0, y0)

for all g ∈ C(Xm ⊗ K). Let Γ = (x, y) �→ v(x,y) be an everywhere nonzero
cross section of θ1 over {0}× Ym ⊆ Xm. Suppose that there is no point (0, y0)
as above. Let R(x,y) denote the fibre of the vector bundle corresponding to
pm|{0}×Ym

at (0, y), and let W(x,y) denote the subspace of R(x,y) corresponding
to ω̃m. By assumption, the angle between v(x,y) and u∗v(x,y) is nonzero for
every (0, y) ∈ {0} × Ym. But this implies that the projection of u∗v(x,y) onto
W(x,y) is an everywhere nonzero cross section of ω̃i+1, contradicting e(ω̃i+1) �= 0
and proving the claim.

Let (0, y0) be a point in {0} × Ym at which u fixes the corner

θ1(C(Xm) ⊗K)θ1.
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Then,

(Ad(u) ◦ α ◦ γim(f))(0, y0) = θ1α ◦ γim(f)(0, y0)θ1 ⊕ g(0, y0),

where g ∈ ωmBmωm. We conclude that

||γim(f) − Adu ◦ α ◦ γim(f)||

is bounded below by

||f̃(πim(0, y0))θ1 − α(f̃(πim(0, y0)θ1)||= ||f̃(0, y
′
) − f̃(ψ̃(0, y

′
))||

= 1,

as desired.
Note that ψi is homotopic to the identity map on Bi via unital endomor-

phisms of Bi for all i ∈ N — it is the composition two maps: the first is an
automorphism of Bm induced by a map on Xm, which is itself homotopic to
the identity map on Xm; the second is an inner automorphism implemented by
a unitary in the connected component of 1 ∈ Bm. Thus, α induces the iden-
tity map on any F ∈ FR — the restriction to functors whose target category
consists of R-modules is sufficient to ensure that an inductive limit morphism
in the target category uniquely determines an automorphism of a fixed limit
object. Since B has a unique trace, α also induces the identity map on Ell(B).

Following [NT], one sees that the absence of topological K1 and the fact
that α induces the identity map on the Elliott invariant force α to induce the
identity map at the level of the Hausdorffized algebraic K1-group. The KK-
class of α is the same as that of the identity map on B by virtue of its inducing
the identity map on topological K-theory — since B is in the bootstrap class,
K0B is free, and K1B = 0 we have that

KK∗(B, B) � Hom(K∗B,K∗B)

by the Universal Coefficient Theorem ([RS]).
The stable and the real rank of a C∗-algebra are not relevant to the prob-

lem of distinguishing automorphsims of the algebra. The automorphism α

squares to the identity map on B, whence the various notions of entropy for
automorphisms of C∗-algebras cannot distinguish it from the identity map.

It is not clear to the author whether the Cuntz semigroup can distinguish
α from the identity map on B, although it seems plausible. One can, with
some industry, modify the construction of B so that there exists an embedding
ι : S∞ → Aut(B) with the following properties: the induced map

ι : S∞ → Out(B) := Aut(B)/Inn(B)

is a monomorphism, and, for each g ∈ S∞, ι(g) acts trivially on each F ∈ FR.
The information which goes undetected by FR is thus complicated indeed.
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5. Some remarks on the classification problem

A classification theorem for a category C amounts to proving that C is
equivalent to a second concrete category D whose objects and morphisms are
well understood. Take, for instance, the case of AF algebras: the category
C has AF algebras as its objects and approximate unitary equivalence classes
of isomorphisms as its morphisms, while the equivalent (classifying) category
D has dimension groups as its objects and order isomorphisms of such as its
morphisms. If one does not understand D any better than C, then one has
achieved little; the range of a classifying invariant is an essential part of any
classification result.

Theorems 1.1 and 1.2 show that any classifying invariant for simple nu-
clear separable C∗-algebras will either be discontinuous with respect to induc-
tive limits, or not homotopy invariant even modulo traces. A discontinuous
classifying invariant would all but exclude the possibility of obtaining its range;
existing range results for Ell(•) require its continuity. The only current can-
didates for nonhomotopy invariant functors from the category of C∗-algebras
which are not captured by F are the Cuntz semigroup W (•) or its Grothendieck
enveloping group. Neither of these invariants is continuous with respect to in-
ductive limits, but this defect can perhaps be repaired by considering these
invariants as objects in the correct category. An invariant obtained in this
manner would, while exceedingly fine, have at least the advantage of continu-
ity with respect to countable inductive limits. On the other hand, the question
of range for such an invariant remains daunting, as the following lemma shows.

Lemma 5.1. Let Sn1 , . . . , Snk be a finite collection of spheres. Put

Y = Sn1 × · · · × Snk , N = k +
k∑

i=1

ni,

and let D(Y ) be the semigroup of Murray-von Neumann equivalence classes of
projections in M∞(C(Y )). Then, there is an order embedding

ι : D(Y ) → W
(
C

(
[0, 1]N

))
.

Proof. Sni can be embedded more or less canonically into [0, 1]ni+1 as the
ni-sphere with centre

(
1
2 , 1

2 , . . . , 1
2

)
and radius 1

4 . Let Sni

0 ⊆ [0, 1]ni+1 be the
hollow ball

Sni

0
def=

{
x ∈ [0, 1]ni+1 :

1
8

< dist
(

x,

(
1
2
,

1
2
, . . . ,

1
2

))
<

3
8

}
,

and let

πi : Sni

0 → Sni
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be the projection along rays emanating from
(

1
2 , 1

2 , . . . , 1
2

)
∈ [0, 1]ni+1. Put

Y0 = Sn1
0 × · · · × Snk

0 ⊆ [0, 1]N ; π = π1 × · · · × πk.

Notice that for every natural number n, Mn ⊗ C0(Y0) is a hereditary sub-
algebra of Mn ⊗ C

(
[0, 1]N

)
. Let p, q ∈ Mn ⊗ C(Y ) be projections, and let

π∗(p), π∗(q) be their pullbacks to Y0. Let f ∈ Mn ⊗ C
(
[0, 1]N

)
be a scalar

function taking values in [0, 1] which vanishes off Y0 and is equal to one on Y .
Then, fπ∗(p), fπ∗(q) are positive elements of C

(
[0, 1]N

)
. If fπ∗(p) and fπ∗(q)

are Cuntz equivalent, then upon restriction to Y we have that p and q are
Cuntz equivalent. This in turn implies that p and q are Murray-von Neumann
equivalent. Now suppose that p and q are Murray-von Neumann equivalent.
Since this implies Cuntz equivalence, there exist sequences (xi) and (yi) in
Mn ⊗ C(Y ) such that

xipx∗
i

i→∞−→ q; yiqy
∗
i

i→∞−→ p.

Let (gi) be an approximate unit of scalar functions for Mn ⊗C0(Y0). It follows
that

giπ
∗(xi)fπ∗(p)π∗(x∗

i )gi
i→∞−→ fπ∗(q)

and

giπ
∗(yi)fπ∗(q)π∗(y∗i )gi

i→∞−→ fπ∗(p),

whence π∗(p) and π∗(q) are Cuntz equivalent. The desired embedding is

ι([p]) def= 〈fπ∗(p)〉.

Lemma 5.1 shows that the problem of determining W
(
C

(
[0, 1]N

))
for

general N ∈ N is at least as difficult as determining the isomorphism classes of
all complex vector bundles over an arbitrary Cartesian product of spheres; this,
in turn, is a difficult unsolved problem in its own right. Any attempt to use
W (•) to prove a classification theorem for, say, all simple, unital AH algebras —
even, as Theorem 1.1 shows, if one restricts to limits of full matrix algebras over
contractible spaces, a class for which the ranges of Ell(•), sr(•), rr(•), K-theory
with coefficients, and the Hausdorffized algebraic K1-group are known — will
not enjoy a salient advantage over the slow dimension growth case: the luxury
of building blocks whose invariants can be easily and concretely described.
(Other technical obstacles are also sure to be much more complicated than
those faced in the work of Elliott, Gong, and Li, and their proof already runs
to several hundred pages.) The Cuntz semigroup is at once necessary for
classification, and unlikely to admit a range result.

But rather than end on a pessimistic note, we enjoin the reader to view our
results as further evidence that the Elliott invariant will turn out to be com-
plete for a sufficiently well behaved class of C∗-algebras. We have proved that
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the moment one relaxes the slow dimension growth condition for AH algebras
(and therefore, a fortiori for ASH algebras), one obtains counterexamples to
the Elliott conjecture of a particularly forceful nature, so that slow dimension
growth is connected essentially to the classification problem. There is evidence
that slow dimension growth and Z-stability are equivalent for ASH algebras —
in the case of simple and unital AH algebras with unique trace this has recently
been proved ([TW1], [TW2]). Optimistically, Z-stability is an abstraction of
slow dimension growth, and the Elliott conjecture will be confirmed for all
simple, separable, and nuclear C∗-algebras having this property.

York University, Toronto, Ontario, Canada

E-mail address: atoms@mathstat.yorku.ca
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