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Abstract Let A be a simple, unital, finite, and exact C∗-algebra which absorbs
the Jiang–Su algebra Z tensorially. We prove that the Cuntz semigroup of
A admits a complete order embedding into an ordered semigroup which is
obtained from the Elliott invariant in a functorial manner. We conjecture that
this embedding is an isomorphism, and prove the conjecture in several cases. In
these same cases—Z-stable algebras all—we prove that the Elliott conjecture
in its strongest form is equivalent to a conjecture which appears much weaker.
Outside the class of Z-stable C∗-algebras, this weaker conjecture has no known
counterexamples, and it is plausible that none exist. Thus, we reconcile the still
intact principle of Elliott’s classification conjecture—that K-theoretic invariants
will classify separable and nuclear C∗-algebras—with the recent appearance of
counterexamples to its strongest concrete form.

1 Introduction

The Elliott conjecture for C∗-algebras operates on two levels: on the one hand,
it is a meta-conjecture asserting that separable and nuclear C∗-algebras will be
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classified up to ∗-isomorphism by K-theoretic invariants; on the other, it is a col-
lection of concrete classification conjectures, where the K-theoretic invariants
in question are specified and depend on the class of algebras being consid-
ered. In the case of stable Kirchberg algebras (simple, nuclear, purely infinite,
and satisfying the Universal Coefficients Theorem), the correct invariant is the
graded Abelian group K0 ⊕ K1 [20,28]. For non-simple algebras of real rank
zero, K-theory with coefficients seems to suffice [6,7]. For a unital, separable,
and nuclear C∗-algebra A, the invariant

I(A) := (
(K0(A), K0(A)+, [1A]), K1(A), T(A), rA

)

—topological K-theory, the (possibly empty) Choquet simplex T(A) of tracial
states, and the pairing rA : T(A) × K0(A) → R given by evaluating a trace at
a K0-class—is known as the Elliott invariant, and has been very successful in
confirming Elliott’s conjecture for simple algebras.

In its most general form, the Elliott conjecture may be stated as follows:

1.1 (Elliott, c. 1989). There is a K-theoretic functor F from the category of sep-
arable and nuclear C∗-algebras such that if A and B are separable and nuclear,
and there is an isomorphism

φ : F(A) → F(B),

then there is a ∗-isomorphism

� : A → B

such that F(�) = φ.

We will let (EC) denote the conjecture above with the Elliott invariant
I(•) substituted for F(•), and with the class of algebras under consideration
restricted to those which are simple and unital. (EC) has been shown to hold in
many situations. An exhaustive list of these results would be impossibly long,
but [8–10,12,20,22] are among the most important works. We refer the reader
to Rørdam’s book [30] for a comprehensive overview of Elliott’s classification
programme.

Recent examples due first to Rørdam and later the second named author
have shown the currently proposed invariants (i.e., the proposed values of F in
Conjecture 1.1) to be insufficient for the classification of all simple, separable,
and nuclear C∗-algebras [31,33,34]. In particular, (EC) does not hold. There
are two options: enlarge the proposed invariants, or restrict the class of algebras
considered.

The Cuntz semigroup of a C∗-algebra A is a positively ordered Abelian semi-
group whose elements are equivalence classes of positive elements in matrix
algebras over A (see Sect. 2 for details). Let W(A) denote this semigroup, and
let 〈a〉 denote the equivalence class of a positive element a ∈ Mn(A). The semi-
group W(A) may be thought of as a generalisation of the semigroup V(A) of
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Murray–von Neumann equivalence classes of projections in matrices over A,
provided that A is stably finite. Theorem 1 of [34] states that there exist sim-
ple, separable, nuclear, and non-isomorphic C∗-algebras which agree on each
continuous and homotopy invariant functor from the category of C∗-algebras,
and which furthermore have the same simplex of tracial states. These algebras
are distinguished by their Cuntz semigroups, whence this invariant is extremely
sensitive. (Indeed, it is already unmanageably large for commutative C∗-alge-
bras with contractible spectrum—see [34, Lemma 5.1].) It thus suggests itself as
the minimum quantity by which the Elliott invariant I(•) ought to be enlarged.
The sequel will be concerned in large part with the relationship between (EC)
and the following statement:

1.2 (WEC). Let A and B be simple, separable, unital, and nuclear C∗-algebras.
If there is an isomorphism

φ : (W(A), 〈1A〉, I(A)) → (W(B), 〈1B〉, I(B)) ,

then there is a ∗-isomorphism � : A → B which induces φ.

There are no known counterexamples to the conjecture (WEC) among stably
finite algebras, and perhaps none exist. But asking for the Cuntz semigroup as
part of the invariant seems strong indeed, given its sensitivity and the fact that
(EC) alone is so often true. The theme of the sequel is that (WEC) and (EC)
are reconciled upon restriction to the largest class of C∗-algebras for which
(EC) may be expected to hold. (WEC) may thus be viewed as the appropriate
specification of the Elliott conjecture for simple, separable, unital, nuclear, and
stably finite C∗-algebras. (We have, for the time being, glossed over what exactly
is meant by isomorphism at the level of invariants in both (EC) and (WEC), so
as not to burden this introduction with technicalities. The appropriate notions
of isomorphism will be introduced in Sect. 4.)

It is generally agreed that the largest restricted class of algebras for which
(EC) can hold consists of those algebras which absorb the Jiang–Su algebra
Z tensorially [19]. Indeed, this fact is obvious if one considers only algebras
with weakly unperforated ordered K0-groups (a condition which holds in every
confirmation of (EC))—by Theorem 1 of [13], the tensor product of such an
algebra, say A, with Z has the same Elliott invariant as A, and so (EC) predicts
that A ∼= A ⊗ Z . If A is any C∗-algebra and the minimal tensor product A ⊗ Z
is isomorphic to A, then we say that A is Z-stable. Our first main result is:

Theorem 1.3 Upon restriction to Z-stable C∗-algebras, (EC) implies (WEC).

Notice that this theorem does not follow from the mere fact that the invari-
ant considered in (WEC) is finer that the Elliott invariant. This is due to the
functorial nature of Elliott-type conjectures: an isomorphism at the level of
the invariant must lift to an isomorphism at the level of C∗-algebras which,
moreover, induces the original isomorphism of invariants.



672 F. Perera, A. S. Toms

More surprising, perhaps, is this:

Theorem 1.4 Let C denote the class of all simple, unital, separable, nuclear, and
Z-stable C∗-algebras A which are either

(i) of real rank zero, or
(ii) have finitely many pure tracial states.

Then, (EC) and (WEC) are equivalent in C. Moreover, there is a functor G from
the category of Elliott invariants to the category of Elliott invariants augmented
by the Cuntz semigroup such that

G(I(A)) = (W(A), 〈1A〉, I(A)) .

In proving Theorem 1.4 we shall see that an algebra A ∈ C has, up to Cuntz
equivalence, relatively few positive elements. This contrasts sharply with the
counterexample to (EC) in [34]. Significant is the fact that A need not be of real
rank zero; it may be projectionless but for zero and the unit. Most progress on
(EC) from a general point of view has so far required the real rank zero assump-
tion. We also outline a proof that Theorem 1.4 holds for Goodearl algebras, so
that conditions (i) and (ii) of the theorem are, in principle, removeable. (Indeed,
we conjecture as much.) The proof of Theorem 1.4 gives the first calculations
of Cuntz semigroups for C∗-algebras without the real rank zero property, and
even in the real rank zero case generalises considerably the earlier results of
Blackadar and Handelman [3].

The paper is organised as follows: in Sect. 2 we recall the definition of the
Cuntz semigroup, and establish several results about its order structure; in
Sect. 3 we compute W(Z), and examine the basic structure of W(A⊗Z); Sect. 4
contains an embedding theorem which establishes Theorem 1.3; Sect. 5 contains
a calculation of the Grothendieck enveloping group of the Cuntz semigroup for
finite Z-stable algebras; Sects. 6 and 7 are devoted to proving Theorem 1.4 in
cases (i) and (ii), respectively; in Sect. 8 we sketch a proof of Theorem 1.4 for
Goodearl algebras; Sect. 9 raises some questions for future research.

2 The Cuntz semigroup and comparison

Cuntz introduced in [5] a notion of comparison between positive elements in
a C∗-algebra that extends the usual (Murray–von Neumann) comparison for
projections. This allowed him to prove the existence of dimension functions in
stably finite simple C∗-algebras. (The assumption of simplicity was subsequently
removed by Handelman [18].)

Explicitly, if a and b are positive elements in a C∗-algebra A, then we write
a � b provided there is a sequence of elements (xn) in A such that a =
lim

n→∞ xnbx∗
n. This relation can be extended to the (local) C∗-algebra M∞(A)

defined as the inductive limit of Mn(A) via the inclusion mappings Mn(A) ↪→
Mn+1(A) given by x 
→ (

x 0
0 0

)
. Let M∞(A)+ denote the set of positive elements
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in M∞(A). For elements a, b in M∞(A)+, we write a � b provided that a � b in
Mn(A) for some n such that a, b ∈ Mn(A). (If we view a and b in two different
sized matrices over A, the above is equivalent to having a = lim

n→∞ xnbx∗
n where

the xn are suitable rectangular matrices.) If both a � b and b � a, we will write
a ∼ b and call a and b Cuntz equivalent. We shall denote the equivalence class
of an element a in M∞(A)+ by 〈a〉, and we will in this paper denote the set of all
such equivalence classes by W(A) (although this notation is not uniform in the
literature). For a, b ∈ M∞(A)+ we write a⊕b for the element

(
a 0
0 b

) ∈ M∞(A)+.
If 〈a〉, 〈b〉 ∈ W(A), we define 〈a〉 + 〈b〉 = 〈a ⊕ b〉. It is easy to verify that this
operation is does not depend on the representatives chosen and that W(A)
becomes an Abelian semigroup with identity element 〈0〉 (and thus an Abelian
monoid). We shall refer to W(A) as the Cuntz semigroup of A. All semigroups
in this paper will be Abelian and assumed to have an identity element, which
we shall denote by 0.

Recall that projections p, q ∈ M∞(A) are Murray–von Neumann equivalent
(p ∼ q) if there is an element x in M∞(A) such that p = xx∗ and q = x∗x; p is
subequivalent to q (in symbols p � q) if there is a projection q′ ∈ M∞(A) such
that p ∼ q′ and q′ ≤ q. The notions of Murray–von Neumann equivalence and
Cuntz equivalence coincide for the set of projections in matrices over a stably
finite C∗-algebra, but do not coincide in general. Let [p] denote the Murray–
von Neumann equivalence class of p. The set of all such equivalence classes
is denoted V(A), and is also an Abelian semigroup (with identity element [0])
under the operation [p]+ [q] = [p⊕q]. There is a natural semigroup morphism
ϕ : V(A) → W(A), given by [p] 
→ 〈p〉, which is injective if A is stably finite. In
this case, we identify V(A) with its image under ϕ.

Definition 2.1 Let A be a C∗-algebra, and let W(A)+ denote the subset of
W(A) consisting of classes which are not the classes of projections. If a ∈ A+
and 〈a〉 ∈ W(A)+, then we will say that a is purely positive and denote the set
of such elements by A++.

One of the advantages of the relation � is that it allows the decomposition
of elements up to arbitrary approximations. If ε > 0 and a ∈ A+, then (a − ε)+
will denote the positive part of a− ε ·1, that is, (a− ε)+ = f (a), where f : R → R

is given by f (t) = max{t − ε, 0}. It is proved in [29, Proposition 2.4] (see also [21,
Proposition 2.6]) that a � b if and only if for any ε > 0, there exists δ > 0
and x in A such that (a − ε)+ = x(b − δ)+x∗. (This is in turn equivalent to the
statement that, for any ε > 0, there is δ > 0 such that (a − ε)+ � (b − δ)+.)

The next proposition shows that despite the typically non-algebraic ordering
on the Cuntz semigroup, one can always complement projections.

Proposition 2.2 Let A be a C∗-algebra. Let a, p ∈ M∞(A)+ be such that p is a
projection and p � a. Then, there exists b ∈ M∞(A)+ such that p ⊕ b ∼ a.

Proof By passing to a suitable matrix over A, we may assume that actually p,
a ∈ A. Let 0 < ε < 1. Since p � a, we have that p ∼ (p− ε)+ = xax∗, for some x

in pA. Set p′ = a
1
2 x∗xa

1
2 . Then p′ is a projection equivalent to p and p′ ≤ ‖x‖2a,
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which is Cuntz equivalent to a. Therefore we may assume at the outset that
p ≤ a.

We claim now that p ⊕ (1 − p)a(1 − p) ∼ a. By [21, Lemma 2.8], we always
have that a � pap ⊕ (1 − p)a(1 − p). Since pap ≤ ‖a‖2p ∼ p, we obtain that
a � p ⊕ (1 − p)a(1 − p). To establish the converse subequivalence, it will suffice
to show that both p and (1 − p)a(1 − p) belong to the hereditary algebra Aa
generated by a, because then p + (1 − p)a(1 − p) ∈ Aa. From this it follows that
p + (1 − p)a(1 − p) � a.

By our assumption we have that p ≤ a and thus p ∈ Aa. Also, (1 − p)a
1
2 =

a
1
2 − pa

1
2 ∈ Aa, whence (1 − p)a(1 − p) ∈ Aa. ��

Let M be a preordered Abelian semigroup, with order relation denoted by ≤.
Recall that a non-zero element u in M is said to be an order-unit provided that
for any x in M there is a natural number n such that x ≤ nu. A state on a pre-
ordered monoid M with order-unit u is an order preserving monoid morphism
s : M → R such that s(u) = 1. We denote the (convex) set of states by S(M, u).
In the case of a unital C∗-algebra A, the set of states on the Cuntz monoid
W(A) is referred as to the dimension functions on A and denoted by DF(A)
(see also [3,25,29]).

A dimension function s is lower semicontinuous if s(〈a〉) ≤ lim inf
n→∞ s(〈an〉)

whenever an → a in norm. The set of all lower semicontinous dimension func-
tions on A is denoted by LDF(A). Note that any dimension function s induces
a function ds : M∞(A) → R given by ds(a) = s〈a∗a〉. With this notation, lower
semicontinuity of s as defined above is equivalent to lower semicontinuity of
the function ds.

We shall denote by T(A) the simplex of normalised traces defined on a unital
C∗-algebra A, and by QT(A) the simplex of quasitraces. (We will work mostly
with simple unital C∗-algebras in the sequel, and so take the term “quasitrace”
to mean a normalised 2-quasitrace—see [3].) We have T(A) ⊆ QT(A), and
equality holds if A is exact and unital by the main theorem of [17]. Any quasi-
trace τ defines a lower semicontinuous dimension function

dτ (a) = lim
n→∞ τ(a

1/n),

provided that the domain of dτ is restricted to positive elements. In fact, it
was proved in [3, Theorem II.2.2] that if d ∈ LDF(A), then there is a unique
quasitrace τ such that d = dτ . It is clear that if a � b, then for any dimension
function d we have d(a) ≤ d(b).

The next definition is not new (see [2,25]), but bears repeating.

Definition 2.3 Let A be a unital C∗-algebra with a, b ∈ A+\{0}. We say that A
has the Fundamental Comparability Property for Positive Elements, denoted
by (FCQ+), if a � b whenever dτ (a) < dτ (b) for every τ ∈ QT(A).

Villadsen gave the first example of a simple C∗-algebra for which (FCQ+)
fails [37]. In his example the positive elements a and b are projections. (FCQ+)
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may hold for all pairs of projections, yet fail in general [34]. The abbrevia-
tion (FCQ+) derives from Blackadar’s Fundamental Comparability Question,
which asks if (FCQ+) holds whenever a and b are projections. In the literature,
however, a C∗-algebra A with (FCQ+) is usually said to have strict comparison
of positive elements or simply strict comparison. The latter terminology will be
employed in the sequel.

Lemma 2.4 Let A be a unital C∗-algebra with a ∈ A+. For any faithful quasitrace
τ and ε, η, δ ∈ σ(a) with ε < η < δ we have dτ ((a − δ)+) < dτ ((a − ε)+).

Proof Since (a − ε)+ and (a − δ)+ belong to the C∗-algebra C∗(a) generated by
a, we may assume that A = C∗(a). Then τ corresponds to a probability measure
µτ on σ(a)which is nonzero on every open set. By [3, Proposition I.2.1] we have
dτ (b) = µτ (Coz(b)), where Coz(b) is the cozero set of a nonnegative function
b in C∗(a).

Put Uε = {(ε, ∞]∩σ(a)}; define Uδ similarly. Let V be an open subset of σ(a)
containing η and such that V ⊆ Uε ∩ Uc

δ . Let b be a nonnegative function on
σ(a) such that Coz(b) = V and b ≤ (a − ε)+. Now b is orthogonal to (a − δ)+
and (a − δ)+ + b ≤ (a − ε)+, so

dτ ((a − δ)+)+ dτ (b) ≤ dτ ((a − ε)+);

dτ (b) = µτ (V) is nonzero, and the lemma follows. ��
Remark 2.5 We will occasionally refer the the spectrum σ(a) of a positive ele-
ment a ∈ M∞(A). Since a may be viewed as an element of arbitrarily large
matrix algebras over A, we always assume that 0 ∈ σ(a) for consistency.

Proposition 2.6 Let A be a simple C∗-algebra with strict comparison of positive
elements. Let a ∈ A++ and b ∈ A+ satisfy dτ (a) ≤ dτ (b) for every τ ∈ QT(A).
Then, a � b.

Proof If A has no quasitrace, then strict comparison of positive elements
reduces to the condition that for any nonzero positive elements a, b ∈ A, there
is a sequence xj in A such that xjbx∗

j → a as j → ∞. Thus, a � b.
Suppose that QT(A) is nonempty. Each quasitrace is faithful since A is sim-

ple. Since a ∈ A++, we have that a �= 0 and 0 ∈ σ(a). Then, there is a strictly
decreasing sequence εn of positive reals in σ(a) converging to zero. We also
know by [2, Sect. 6] (see also [21, Proposition 2.6]) that the set {x ∈ A+ | x � b}
is closed, and since (a − εn)+ → a in norm it suffices to prove that (a − εn)+ � b
for every n ∈ N.

Let τ ∈ QT(A) be given, and apply Lemma 2.4 with ε = 0, η = εn+1, and
δ = εn to see that

dτ ((a − εn)+) < dτ (a) ≤ dτ (b).

Using strict comparison we conclude that (a − εn)+ � b for all n, as desired.
��
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Proposition 2.7 Let A be as in Proposition 2.6. Let p be a projection in A, and
let a ∈ A++. Then, p � a if and only if dτ (p) < dτ (a) for each τ ∈ QT(A).

Proof If A has no quasitrace, then it is purely infinite and p � a [21].
Assume that QT(A) is nonempty. The reverse implication follows from strict

comparison. We prove the contrapositive of the forward implication. Suppose
that dτ (a) ≤ dτ (p) for some τ ∈ QT(A), and let 1 > ε > 0 be given. By [29,
Proposition 2.4] there exists a δ > 0 such that

(p − ε)+ � (a − δ)+.

This implies that

dτ ((p − ε)+) ≤ dτ ((a − δ)+).

But p is a projection, so the functional calculus implies that

dτ ((p − ε)+) = dτ (p).

Now

dτ ((p − ε)+) ≤ dτ ((a − δ)+) < dτ (a) ≤ dτ (p) = dτ ((p − ε)+),

a contradiction. ��
The hypotheses of Propositions 2.6 and 2.7 are satisfied whenever A is simple,

unital, and W(A) satisfies the technical condition of being almost unperforated
(see [32]). In particular, A could be a simple, unital and finite C∗-algebra absorb-
ing the Jiang–Su algebra Z tensorially [32, Corollary 4.6].

Proposition 2.8 Let A be a simple, unital, and stably finite C∗-algebra, and let
a ∈ M∞(A)+. Then, 〈a〉 = 〈p〉 for a projection p in M∞(A)+ if and only if
0 /∈ σ(a) or 0 is an isolated point of σ(a).

Proof If 0 /∈ σ(a) or 0 is an isolated point of σ(a), then 〈a〉 = 〈p〉 for a projection
p in M∞(A)+ by a straightforward functional calculus argument.

Now suppose that 〈a〉 = 〈p〉 for a projection p in M∞(A)+ and 0 is an accu-
mulation point of σ(a). Choose ε ∈ [0, 1) ∩ σ(a) and a (necessarily faithful)
quasitrace τ ∈ QT(A). Using [29, Proposition 2.4], there is 0 < δ ∈ σ(a) such
that (p − ε)+ � (a − δ)+. If δ > ε, then

dτ (a) = dτ (p) = dτ ((p − ε+) ≤ dτ ((a − δ)+) ≤ dτ ((a − ε)+) < dτ (a)

by Lemma 2.4; this is impossible. Thus δ ≤ ε, and by assumption we may find
δ′ ∈ σ(a) such that δ′ < δ. A second application of Lemma 2.4 implies that

dτ (a) = dτ (p) ≤ dτ ((a − δ)+) ≤ dτ ((a − δ′)+) < dτ (a) ;

this, too, is impossible. ��
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If one replaces the assumptions of simplicity and being stably finite with
stable rank one, then Proposition 2.8 is due to Perera [25, Proposition 3.12].

Corollary 2.9 Let A be a unital C∗-algebra which is either simple and stably finite
or of stable rank one. Then:

(i) W(A)+ is a semigroup, and is absorbing in the sense that if one has a ∈
W(A) and b ∈ W(A)+, then a + b ∈ W(A)+;

(ii) V(A) = {x ∈ W(A) | if x ≤ y for y ∈ W(A),
then x + z = y for some z ∈ W(A)}.

Proof For (i), take 〈a〉, 〈b〉 ∈ W(A)+ and notice that the spectrum of a ⊕ b
contains the union of the spectra of a and b. Apply Proposition 2.8.

For (ii), set X = {x ∈ W(A) | if x ≤ y for y ∈ W(A), then x + z = y for some
z ∈ W(A)}. By Proposition 2.2, we already know that V(A) ⊆ X.

Conversely, if 〈x〉 ∈ X, then we may find a projection p (in M∞(A)) such
that 〈x〉 ≤ 〈p〉. But then there is z in M∞(A) for which x ⊕ z ∼ p. Since 0 is an
isolated point in σ(p), the same will be true of σ(x). Invoking Proposition 2.8
or [25, Proposition 3.12] as appropriate, we find a projection q such that q ∼ x,
and so 〈x〉 ∈ V(A). ��

The last proposition of this section, though straightforward, will be quite
important in the sequel.

Proposition 2.10 Let A be a stably finite unital C∗-algebra, and let a ∈ A+. Then,
the map τ 
→ dτ (a) is a lower semicontinuous bounded function on T(A).

Proof Since 〈λa〉 = 〈a〉 for every λ ∈ R
+\{0}, we may assume that ||a|| ≤ 1.

Then, fn(τ ) := τ(a1/n) is an increasing sequence of continuous functions on
T(A) with pointwise limit f (τ ) := dτ (a). ��

3 Z-stable C∗-algebras

In this section we give a precise description of W(Z) (Theorem 3.1 below),
and establish the important fact that W(•)+ is a R

+-cone for certain finite and
Z-stable C∗-algebras. In the study of the Cuntz semigroup for simple, unital,
and Z-stable C∗-algebras, the finite case is the only interesting one. Indeed, a
simple, unital, and Z-stable C∗-algebra A either has stable rank one or is purely
infinite (see [13, Theorem 3] and also [32, Corollary 5.1 and Theorem 6.7]). If
A is purely infinite, then a � b for all non-zero positive elements (see [23]). It
follows that W(A) = {0, 〈1〉} (〈1〉+ 〈1〉 = 〈1〉), and that the Grothendieck group
K∗

0(A) of W(A) is zero.
We begin with some notation. For a compact convex set K, denote by Aff(K)+

the semigroup of all positive, affine, continuous, and real-valued functions on
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K; LAff(K)+ ⊆ Aff(K)+ is the subsemigroup of lower semicontinuous func-
tions, and LAffb(K)+ ⊆ LAff(K)+ is the subsemigroup consisting of those
functions which are bounded above. The use of an additional “+” superscript
(e.g., Aff(K)++) indicates that we are considering only strictly positive func-
tions together with the zero function. Unless otherwise noted, the order on
these semigroups will be pointwise. Aff(K)+ is algebraically ordered with this
ordering, but LAff(K)+, in general, is not (unless K is, for example, finite
dimensional).

Given two partially ordered semigroups M and N, a homomorphism ϕ : M →
N is said to be an order-embedding provided that ϕ(x) ≤ ϕ(y) if and only if x ≤ y.
A surjective order-embedding will be called an order-isomorphism.

Let ≤R denote the usual order on the real numbers. We equip the disjoint
union Z

+ � R
++ with a semigroup structure by using the usual addition inside

the components Z
+ and R

++ and declaring that x + y ∈ R
++ whenever x ∈ Z

+
and y ∈ R

++. Define an order ≤Z on this semigroup by using the usual order
inside the components Z

+ and R
++, and the following order for comparing

x ∈ Z
+ and y ∈ R

++: x ≤Z y iff x <R y, while x ≥Z y iff x ≥R y. With this
ordering, 1Z+ is an order-unit.

Theorem 3.1 The ordered semigroup (W(Z), 〈1Z 〉) is order-isomorphic (as an
ordered monoid with order-unit) to

(Z+ � R
++, 1Z+ , ≤Z ).

Proof As observed in Corollary 2.9, the Cuntz semigroup of a C∗-algebra A of
stable rank one is always the disjoint union of the monoid V(A) and W(A)+.
Since Z is unital, projectionless, and of stable rank one we have V(Z) ∼= Z

+.
By Proposition 2.6 there is an order-embedding

ι : W(Z)+ → R
++

given by

ι(〈a〉) = dτZ (a),

where τZ is the unique normalised trace on Z . By [32, Theorem 2.1] there
is a unital embedding of C([0, 1]) into Z such that τZ is implemented by the
uniform distribution on [0, 1]. Given λ ∈ (0, 1], let zλ ∈ C([0, 1]) be a positive
function with support (0, λ). It follows that dτZ (zλ) = λ, whence ι is surjective.
We therefore have a bijection

ϕ : W(Z) = V(Z) � W(Z)+ → Z
+ � R

++.

That ϕ is an order-isomorphism follows from the fact that Z has strict com-
parison of positive elements [32, Corollary 4.6] and Propositions 2.7 and 2.6.

��
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Notation 3.2 For each λ ∈ (0, 1] we will use zλ denote any element in Z++ such
that dτZ (zλ) = λ.

Proposition 3.3 Let A be a C∗-algebra of stable rank one for which every trace
is faithful. Then, the map

ι : W(A)+ → LAffb(T(A))
++

given by ι(〈a〉)(τ ) = dτ (a) is a homomorphism. If A has strict comparison of
positive elements, then ι is an order embedding.

Proof The requirement that every trace on A be faithful guarantees that ι(〈a〉)
is strictly positive. A has stable rank one, so W(A)+ is a semigroup by Proposi-
tion 2.8 and ι is a homomorphism.

If A has strict comparison of positive elements, then ι is an order embedding
by Proposition 2.6. ��
Lemma 3.4 Let A be a unital and Z-stable C∗-algebra, with a ∈ A+. Then, a is
Cuntz equivalent to a positive element of the form b ⊗ 1Z ∈ A ⊗ Z ∼= A.

Proof Let ψ : Z ⊗ Z → Z be a ∗-isomorphism, and put φ = (idZ ⊗ 1Z ) ◦ ψ .
By [35, Corollary 1.12], φ is approximately inner, and therefore so also is

idA ⊗ φ : A ⊗ Z⊗2 → A ⊗ Z ⊗ 1Z .

In particular, there is a sequence of unitaries un in A ∼= A ⊗ Z⊗2 such that

||unau∗
n − φ(a)|| n→∞−→ 0.

Approximate unitary equivalence preserves Cuntz equivalence classes, whence
〈a〉 = 〈φ(a)〉. The image of φ(a) is, by construction, of the form b ⊗ 1Z for some
b ∈ A ⊗ Z ∼= A. ��
Lemma 3.5 Let A be a unital, stably finite, and Z-stable C∗-algebra. Suppose
that f ∈ LAff(T(A))++ is equal to dτ (a) for some a ∈ M∞(A)+. Then, the image
of a ⊗ zλ in LAff(T(A ⊗ Z))++ is λf̃ , where f̃ = dτ (a ⊗ 1Z .

Proof For any τ ∈ T(A) one has

dτ (a ⊗ zλ) = lim
n→∞ τ

(
(a ⊗ zλ)1/n

)

= lim
n→∞ τ(a

1/n)τZ (z
1/n
λ )

= dτ (a)dτZ (zλ)

= λdτ (a).

��
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Corollary 3.6 Let A be as in Lemma 3.5. Then, the image of M∞(A)+ under the
map ι of Proposition 3.3 is a cone over R

+

Proof It will be enough to prove that if λ ∈ R
+ and a ∈ A+, then there exists

b ∈ A+ with dτ (b) = λdτ (a). Identify A with A ⊗ Z , and use Lemma 3.4
to find b ∈ A+ such that b ⊗ 1Z and a are Cuntz equivalent. It follows that
dτ (b⊗1Z ) = dτ (a) for each τ ∈ T(A). Now dτ (b⊗zλ) = λdτ (a) by Lemma 3.5.

��
Summarising, we have:

Corollary 3.7 Let A be a simple, unital, exact, finite, and Z-stable C∗-algebra.
Then, the map ι of Proposition 3.3 is an order embedding, and W(A)+ is a
R

+-cone.

Note that exactness is required above in order to identify the image of ι with a
collection of functions on T(A) as opposed to QT(A).

We close this section with an aside on some algebras of particular interest
in Elliott’s classification programme. Recall that a C∗-algebra is said to have
property (SP) if every hereditary subalgebra contains a non-zero projection.
With Theorem 3.1 in hand, we can prove the following proposition:

Proposition 3.8 Let A be a simple, unital, exact, finite, and Z-stable C∗-algebra.
Then A has property (SP) if and only if for every ε > 0 there exists a non-zero
projection p ∈ A such that dτ (p) = τ(p) < ε for every trace on A.

In particular, a projection p is Murray–von Neumann equivalent to a projection
q in a hereditary subalgebra aAa whenever τ 
→ dτ (p) if uniformly sufficiently
small.

Proof For the forward implication, write A ∼= A ⊗ Z , and notice that
dτ (1A ⊗ zλ) = λ, for all τ ∈ T(A). Since A has property (SP), the algebra
(1A ⊗ zλ)A(1A ⊗ zλ) contains a projection p, whence p � 1A ⊗ zλ. Setting
λ = ε/2, we have that

τ(p) ≤ dτ (1A ⊗ zε/2) < ε, for all τ ∈ T(A).

For the reverse implication, let a ∈ A+ be given. The compactness of T(A)
and the lower semicontinuity of the function fa : T(A) → R

++ given by fa(τ ) =
dτ (a) (that follows from Proposition 2.10) imply that there exists ε > 0 such that
dτ (a) > ε, for every τ in T(A). Choose a non-zero projection p in A such that
dτ (p) = τ(p) < ε for every trace on A. The hypotheses on A guarantee strict
comparison for positive elements (cf. [32, Corollary 4.6]), so that p � a inside
W(A). Following the proof of Proposition 2.2, we see that there is a projection
q ∈ aAa which is Murray–von Neumann equivalent to p. ��

Let B be a class of unital C∗-algebras. Recall that a unital C∗-algebra A is
said to be tracially approximately B (TAB) if for any ε > 0, finite set F ⊂ A,
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and a ∈ A+ there exists a C∗-subalgebra C of A such that C ∈ B, 1C �= 0, and

1. [f , 1C] < ε, for all f in F;
2. dist(1Cf 1C, C) < ε, for all f in F;
3. 1A − 1C is Murray–von Neumann equivalent to a projection in aAa.

One may wonder why the term “tracially” is used in the description of such
algebras, given that no reference to traces is made in their definition. The reason
is that condition (3) above can sometimes be replaced by the condition

(3)′ τ(1C) > 1 − ε, for all τ in T(A),

provided that the class of TAB algebras is sufficiently well behaved.
TAB algebras are used mainly in Elliott’s classification program. In this set-

ting, it is necessary to assume exactness, and the largest class for which classifi-
cation can be hoped for consists of Z-stable algebras. Since, in the simple case,
the program is more or less complete for purely infinite algebras, we may also
assume finiteness. Taken together, these conditions constitute the hypotheses
of Proposition 3.8, and the proof of the proposition then shows that conditions
(3) and (3)′ above are equivalent. Thus, in most situations where TAB algebras
might be useful, there is no ambiguity in their definition.

4 An embedding theorem

In order to make sense of (EC) and (WEC), we must define the categories in
which the relevant invariants sit.

Let I denote the category whose objects are four-tuples

(
(G0, G+

0 , u), G1, X, r
)

,

where (G0, G+
0 , u) is a simple partially ordered Abelian group with distinguished

order-unit u and state space S(G0, u), G1 is a countable Abelian group, X is a
metrizable Choquet simplex, and r : X → S(G0, u) is an affine map. A morphism


 :
(
(G0, G+

0 , u), G1, X, r
) → (

(H0, H+
0 , v), H1, Y, s

)

in I is a three-tuple


 = (θ0, θ1, γ )

where

θ0 : (G0, G+
0 , u) → (H0, H+

0 , v)

is an order-unit-preserving positive homomorphism,

θ1 : G1 → H1
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is any homomorphism, and

γ : Y → X

is a continuous affine map that makes the diagram below commutative:

Y
γ ��

s
��

X

r
��

S(H0, v)
θ∗

0 �� S(G0, u).

For a simple unital C∗-algebra A the Elliott invariant I(A) is an element of
I, where (G0, G+

0 , u) = (K0(A), K0(A)+, [1A]), G1 = K1(A), X = T(A), and
rA is given by evaluating a given trace at a K0-class. Given a class C of simple
unital C∗-algebras, let I(C) denote the subcategory of I whose objects can be
realised as the Elliott invariant of a member of C, and whose morphisms are all
admissible maps between the now specified objects.

The definition of I removes an ambiguity from the statement of (EC),
namely, what is meant by an isomorphism of Elliott invariants. We now do
the same for (WEC). Let W be the category whose objects are ordered pairs

((W(A), 〈1A〉), I(A)) ,

where A is a simple, unital, exact, and stably finite C∗-algebra, (W(A), 〈1A〉) is
the Cuntz semigroup of A together with the distinguished order-unit 〈1A〉, and
I(A) is the Elliott invariant of A. A morphism

� : ((W(A), 〈1A〉), I(A)) → ((W(B), 〈1B〉), I(B))

in W is an ordered pair

� = (�,
),

where 
 = (θ0, θ1, γ ) is a morphism in I and � : (W(A), 〈1A〉) → (W(B), 〈1B〉)
is an order- and order-unit-preserving semigroup homomorphism satisfying two
compatibility conditions: first,

(V(A), 〈1A〉) �|V(A) ��

ρ

��

(V(B), 〈1B〉)
ρ

��
(K0(A), [1A]) θ0 �� (K0(B), [1B]),

where ρ is the usual Grothendieck map from V(•) to K0(•) (recall that there
is an order-unit-preserving order-embedding of (V(A), 〈1A〉) into (W(A), 〈1A〉),



Recasting the Elliott conjecture 683

and that Cuntz equivalence of projections agrees with Murray–von Neumann
equivalence in stably finite algebras); second,

LDF(B) �∗
��

η

��

LDF(A)

η

��
T(B)

γ �� T(A),

where η is the affine bijection between LDF(•) and T(•) given by η(dτ ) = τ

(see [3, Theorem II.2.2]). These compatibility are automatically satisfied if � is
induced by a ∗-homomorphism ψ : A → B.

Recall that we have previously defined, for a C∗-algebra with stable rank
one, a semigroup homomorphism

ι : W(A)+ → LAffb(T(A))
++

by

ι(〈a〉)(τ ) = dτ (a), for all τ ∈ T(A).

In the following definition we generalise the semigroup and order structure
on Z

+ � R
++ considered in Theorem 3.1. Semigroups of this type have been

considered previously in the study of multiplier algebras (see [26]).

Definition 4.1 Let A be a unital C∗-algebra. Define a semigroup structure on
the set

W̃(A) := V(A) � LAffb(T(A))
++

by extending the natural semigroup operations and setting [p] + f = p̂ + f ,
where p̂(τ ) = τ(p). Define an order ≤ on W̃(A) such that:

(i) ≤ agrees with the usual order on V(A) ;
(ii) f ≤ g for f , g in LAff(T(A))++ if and only if

f (τ ) ≤R g(τ ) for all τ ∈ T(A) ;

(iii) f ≤ [p] for [p] ∈ V(A) and f in LAff(T(A))++ if and only if

f (τ ) ≤R τ(p) for all τ ∈ T(A) ;

(iv) [p] ≤ f for f , [p] as in (iii) whenever

τ(p) <R f (τ ) for all τ ∈ T(A).
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Let W̃ be the category whose objects are of the form (W̃(A), [1A]) for some
exact, unital, and stable rank one C∗-algebra A, and whose morphisms are
positive order-unit-preserving homomorphisms

� : (W̃(A), [1A]) → (W̃(B), [1B])

such that

�(V(A)) ⊆ V(B)

and

�|LAffb(T(A))++ : LAffb(T(A))
++ → LAffb(T(B))

++

is induced by a continuous affine map from T(B) to T(A).
For the next definition, we remind the reader that V(A) ∼= K0(A)+ for a

C∗-algebra of stable rank one.

Definition 4.2 Let C denote the class of simple, unital, exact, and stable rank
one C∗-algebras. Let

F : Obj(I(C)) → Obj(W̃)

be given by

F
(
(K0(A), K0(A)+, [1A]), K1(A), T(A), rA

) = (W̃(A), [1A]).

Define

F : Mor(I(C)) → Mor(W̃)

by sending 
 = (θ0, θ1, γ ) to the morphism

� : (W̃(A), [1A]) → (W̃(B), [1B])

given by θ0 on K0(A)+ = V(A) and induced by γ on LAffb(T(A))++.

The next proposition holds by definition.

Proposition 4.3 With C as in Definition 4.2, the map F : I(C) → W̃ is a functor.

For the theorem below, we remind the reader that the definition of the map
ι is contained in Proposition 3.3.

Theorem 4.4 Let A be a simple, unital, and exact C∗-algebra having stable rank
one and strict comparison of positive elements. Then, there is an order embedding

φ : W(A) → W̃(A)

such that φ|V(A) = idV(A) and φ|W(A)+ = ι.
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Proof The map φ is well-defined, so it will suffice to prove that it is an order
embedding. We verify conditions (i)–(iv) from Definition 4.1: the image of
φ|V(A) is V(A), with the same order, so (i) is satisfied; (ii) and (iii) follow from
Proposition 2.6; (iv) is Proposition 2.7. ��

We are now ready to prove Theorem 1.3. In fact, we can prove a formally
stronger result.

Theorem 4.5 (EC) implies (WEC) for the class of simple, unital, separable, and
nuclear C∗-algebras with strict comparison of positive elements and sr ∈ {1, ∞}.
Proof Algebras in the class under consideration are either purely infinite or sta-
bly finite. The theorem is trivial for the subclass of purely infinite algebras, due
to the degenerate nature of the Cuntz semigroup in this setting. The remaining
case is that of stable rank one.

Let A and B be simple, separable, unital, nuclear, and stably finite C∗-alge-
bras with strict comparison of positive elements, and suppose that (EC) holds.
Let there be given an isomorphism

φ : (W(A), 〈1A〉, I(A)) → (W(B), 〈1B〉, I(B)) .

Then by restricting φ we have an isomorphism

φ|I(A) : I(A) → I(B),

and we may conclude by (EC) that there is a ∗-isomorphism � : A → B such
that I(�) = φ|I(A). � is unital and so preserves the Cuntz class of the unit. The
compatibility conditions imposed on φ (see the discussion preceding Defini-
tion 4.1) together with Theorem 4.4 ensure that φ|W(A) is determined by φ|V(A)
and φ� : T(B) → T(A). Thus, � induces φ, and (WEC) holds. ��

Note that the semigroup homomorphism φ in Theorem 4.4 is an isomorphism
if and only if ι is surjective.

Let (EC)′ and (WEC)′ denote the statements (EC) and (WEC), respectively,
but expanded to apply to all simple, unital, exact, and stably finite C∗-algebras.
Collecting the results of this section we have:

Theorem 4.6 Let C be a class of simple, unital, exact, finite, and Z-stable C∗-alge-
bras. Suppose that ι is surjective for each member of C. Then, (EC)′ and (WEC)′
are equivalent in C. Moreover, there is a functor G : I(C) → W such that

G(I(A)) def= (F(I(A)), I(A)) = ((W̃(A), [1A]), I(A)) ∼= ((W(A), 〈1A〉), I(A)).

Even in situations where (EC) holds, there is no inverse functor which recon-
structs C∗-algebras from Elliott invariants. (This is not the same as saying that
one cannot reconstruct the algebra from the Elliott invariant at all—this is
always possible when one has a range result for a class of algebras satisfying
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(EC).) Contrast this with Theorem 4.6, where G reconstructs the finer invariant
from the coarser one functorially.

We now see that (EC) and (WEC) are equivalent among simple, unital, sep-
arable, nuclear, finite, and Z-stable C∗-algebras whenever ι is surjective. (It is
not clear whether the converse holds.) In Sects. 6, 7, and 8 we will prove that ι
is surjective for algebras satisfying hypotheses (i), (ii), or (iii) of Theorem 1.4,
respectively, thereby proving the theorem.

We note that if ι is surjective and A satisfies the hypotheses of Theorem 4.6,
then the invariant

((W(A), 〈1A〉), I(A))

carries redundant information. A has stable rank one, so one may, by using
Corollary 2.9, recover V(A) ∼= K0(A)+, and hence (K0(A), K0(A)+, [1A]), from
(W(A), 〈1A〉). The convex affine space T(A) is identified with LDF(A) (although
we cannot, in general, recover the topology on T(A)—see the discussion fol-
lowing Corollary I.2.2 of [3]). The pairing rA can be recovered by applying the
elements of LDF(A) to V(A) ∼= K0(A)+.

We close this section by observing that if ι is surjective, then the failure of
the order on W(•) to be algebraic in general is easily explained.

Proposition 4.7 Let A be an exact C∗-algebra with strict comparison of positive
elements. Suppose that ι is surjective and that each τ ∈ T(A) is faithful. Let
a � b in M∞(A)++. Then, there exists a positive element c ∈ M∞(A)++ such
that a ⊕ c ∼ b if and only if the difference

dτ (b)− dτ (a) : T(A) → R
+

is in LAffb(T(A))++.

Proof If b ∼ a ⊕ c, then dτ (b)− dτ (a) = dτ (c) and dτ (c) ∈ LAffb(T(A))++ by
Proposition 2.10.

Suppose that f (τ ) := dτ (b)−dτ (a) ∈ LAffb(T(A))++. Choose, by the surjec-
tivity of ι, an element c ∈ M∞(A)++ for which dτ (c) = f (τ ). Then dτ (a ⊕ c) =
dτ (b), whence a ⊕ c ∼ b by Proposition 2.6. ��

5 The structure of K∗
0

The Grothendieck enveloping group of W(A) is denoted K∗
0(A), and its struc-

ture has been previously analysed in [3,5,18,25]. Because W(A) carries its own
order coming from the Cuntz comparison relation, K∗

0(A)may be given two nat-
ural (partial) orderings. For an abelian semigroup M with a partial order ≤ that
extends the algebraic order, we use G(M) to denote its enveloping group. Write
γ : M → G(M) for the natural Grothendieck map. We define the following
cones:

G(M)+ = γ (M),
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and

G(M)++ = {γ (x)− γ (y) | x, y ∈ M and y ≤ x}.

Since M is partially ordered, so is (G(M), G(M)++). Clearly, G(M)+ ⊆ G(M)++,
and the inclusion may be strict. Therefore, (G(M), G(M)+) is also partially
ordered. For the reader’s convenience, we offer a short argument which shows
the cone G(M)++ to be strict (compare with [18] and [3]). Assume that γ (x)−
γ (y) ∈ G(M)++ ∩ (−G(M)++). Then there are elements s, t, u, v in M such that

x + z ≤ y + z, t + v ≤ s + v, x + s + u = y + t + u,

so that γ (y)− γ (x) = γ (s)− γ (t) ∈ G(M)++. Set w = u + v + z + t and check
that x + w = y + w, whence γ (x) = γ (y).

Recall that a partially ordered Abelian group with order-unit (G, G+, u) is
Archimedean provided that nx ≤ y for x, y ∈ G and for all natural numbers n
only if x = 0 (see [14, p. 20]). This is equivalent (by [14, Theorem 4.14]) to saying
that the order on G is determined by its states, i.e., G+ = {x ∈ G | s(x) ≥ 0
for all s ∈ S(G, u)}. (Recall that a state s on (G, G+, u) is a positive group
homomorphism into R such that s(u) = 1 — s need not be order preserving,
in contrast with a state on a positive ordered Abelian semigroup.) We say that
(G, G+) is unperforated if nx ≥ 0 implies that x ≥ 0 (see [14]). Archimedean
directed groups are unperforated (cf. [14, Proposition 1.24]).

For an element a in M∞(A)+, we shall denote by [a] the class of 〈a〉 in K∗
0(A).

Lemma 5.1 Let A be a simple C∗-algebra with strict comparison of positive
elements. Suppose that M∞(A)++ �= ∅. Then:

K∗
0(A)

++ = {[a] − [b] | a, b ∈ M∞(A)+ and dτ (a) ≥ dτ (b) for all τ ∈ QT(A)}.

Proof By the properties of dimension functions, it is clear that if a, b ∈ M∞(A)+
and b � a, we have dτ (b) ≤ dτ (a) for any τ ∈ QT(A).

For the converse inclusion, let [a] − [b] ∈ K∗
0(A) be such that dτ (b) ≤ dτ (a)

for each τ ∈ QT(A). Then, for any 0 �= c ∈ M∞(A)++ we have a ⊕ c, b ⊕ c ∈
M∞(A)++ and

dτ (b ⊕ c) ≤ dτ (a ⊕ c).

It follows from Proposition 2.6 that

b ⊕ c � a ⊕ c,

and thus [a] − [b] = [a ⊕ c] − [b ⊕ c] ∈ K∗
0(A)

++. ��
Corollary 5.2 Let A be a C∗-algebra satisfying the hypotheses of Lemma 5.1.
Then (K∗

0(A), K∗
0(A)

++) is Archimedean, and in particular is unperforated.
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Proof The second conclusion follows from the first since, as observed above,
archimedean groups are unperforated. (Notice that K∗

0(A) is directed since A
is unital.)

We only need to show that if [a]−[b] ∈ K∗
0(A) is such that s([a]−[b]) ≥ 0 for

any state s on K∗
0(A) (i.e. s([b]) ≤ s([a])), then [a] − [b] ∈ K∗

0(A)
++. Recalling

that the states on K∗
0(A) are precisely the dimension functions, we have that in

particular dτ (b) ≤ dτ (a) for any quasitrace τ , hence we may use Lemma 5.1.
��

We shall show below that K∗
0(A) is also unperforated when endowed with

the ordering defined by taking as positive cone K∗
0(A)

+ = γ (W(A)), that is, the
image of W(A) under the Grothendieck map.

A partially ordered semigroup (M, ≤) is said to be almost unperforated if
for all x, y in M and n ∈ N with (n + 1)x ≤ ny, one has that x ≤ y. A simple
partially ordered group (G, G+) is weakly unperforated if nx ∈ G+ \ {0} implies
that x ∈ G+ \ {0} [32, Lemma 3.4].

Proposition 5.3 Let A be a simple, unital, exact, and finite C∗-algebra which
absorbs the Jiang–Su algebra Z tensorially. Then, the partially ordered Abelian
group (K∗

0(A), K∗
0(A)

+) is weakly unperforated.

Proof We have already noticed that A has strict comparison of positive ele-
ments, by Corollary 4.6 of [32]. The simplicity of A guarantees that each trace
on A is faithful. Since 1A ⊗z1 ∈ A⊗Z ∼= A, we have that M∞(A)++ �= ∅. Thus,
A satisfies the hypotheses of Lemma 5.1.

Given [a] ∈ K∗
0(A)

+, for a ∈ M∞(A)+, we may assume that a ∈ M∞(A)++.
To see this, first identify A with A ⊗ Z , and replace a with a Cuntz equivalent
element b ⊗ 1Z (see Lemma 3.4). Now for each τ ∈ T(A) we have

dτ (a) = dτ (b ⊗ 1Z ) = dτ (b ⊗ z1)

(see Notation 3.2 and Lemma 3.5). Now [a] = [b ⊗ z1] by Lemma 5.1 and the
proof of the fact that K∗

0(A)
++ is strict. We have z1 ∈ Z++ by construction,

and a straighforward functional calculus argument then shows that b ⊗ z1 ∈
M∞(A)++.

Suppose that [a], [b] ∈ K∗
0(A)

+ are such that

(n + 1)[a] ≤ n[b], for some n ∈ N.

This means that there is c ∈ M∞(A)+ such that (n + 1)[a] + [c] = n[b].
Assume that a, b ∈ M∞(A)++. By Lemma 5.1, we have (n+1)dτ (a)+dτ (c) =

ndτ (b), whence dτ (a)+ 1
n dτ (a⊕c) = dτ (b). Invoke Corollary 3.6 to find a (purely

positive) element c′ such that 1
n dτ (a ⊕ c) = dτ (c′). Now, Proposition 2.6 implies

that a⊕c′ ∼ b, whence [a]+[c′] = [b]. This shows that K∗
0(A)

+ is almost unper-
forated. Apply Lemma 3.4 of [32] and the discussion thereafter to conclude that
(K∗

0(A), K∗
0(A)

+) is weakly unperforated. ��
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Note that if A is simple, then (K∗
0(A), K∗

0(A)
+) is a simple group. This raises

the question of whether (K∗
0(A), K∗

0(A)
++) will also be simple for a simple C∗-

algebra A. We give a criterion below to decide when a given (positive) element
in K∗

0(A)
++ is an order-unit. If a ∈ M∞(A)+, write n · a to mean a ⊕ · · · ⊕ a

(n times).

Proposition 5.4 Let A be a unital, simple, stably finite, exact C∗-algebra with
strict comparison of positive elements. Suppose that M∞(A)++ is non-empty.
Then, an element [a]−[b] ∈ K∗

0(A)
++ is an order-unit if and only if there is ε > 0

such that dτ (a)− dτ (b) > ε for all traces τ .

Proof If [a] − [b] is an order-unit, then clearly [a] �= 0. If b = 0 then

dτ (a)− dτ (b) = dτ (a) > 0

for each τ ∈ T(A). The function τ 
→ dτ (a) is lower semicontinuous on a com-
pact set, and therefore achieves a minimum δ > 0. Setting ε = δ/2 gives the
desired conclusion.

Now suppose that b �= 0. There is a natural number n such that [a] ≤
n[a] − n[b], hence we can find c ∈ M∞(A)+ such that a ⊕ c ⊕ n · b � n · a ⊕ c.
Therefore, for any τ ∈ T(A), we have dτ (a)+ ndτ (b) ≤ ndτ (a). Since b �= 0 we
conclude that

(n − 1)(dτ (a)− dτ (b)) > dτ (b) > 0.

Using the same argument as in the b = 0 case, we conclude that there is
some ε > 0 such that dτ (b) > (n − 1)ε for every τ ∈ T(A). It follows that
dτ (a)− dτ (b) > ε, as desired.

Conversely, if dτ (a) − dτ (b) > ε for all τ , choose n such that dτ (n · a) −
dτ (n · b) = n(dτ (a)− dτ (b)) > 1 = dτ (1A). Let c ∈ M∞(A)++. Then

dτ (n · a ⊕ n · c)− dτ (n · b ⊕ n · c) > dτ (1A),

whence dτ (n · a ⊕ n · c) > dτ (n · b ⊕ n · c ⊕ 1A) for all τ . If follows now from
Proposition 2.6 that n ·b⊕n ·c⊕1A � n ·a⊕n ·c. This implies that n([a]−[b]) ≥
[1A], whence [a] − [b] is an order-unit. ��

Lemma 5.5 Let A be a C∗-algebra with stable rank one and such that the semi-
group W(A)+ of purely positive elements is non-empty. Then there exists an
ordered group isomorphism

α : (K∗
0(A), K∗

0(A)
++) → (G(W(A)+), G(W(A)+)+).

If, furthermore, A is simple and Z-stable, then α([1A]) = ([1 ⊗ z1]).
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Proof Recall from Sect. 2 that if A has stable rank one, then W(A) = V(A) �
W(A)+. Denote by γ : W(A)+ → G(W(A)+) the Grothendieck map, and
choose any element c ∈ W(A)+. Then, define

α : W(A) → G(W(A)+)

by α(〈a〉) = γ (〈a〉) if 〈a〉 ∈ W(A)+, and by α(〈p〉) = γ (〈p〉 + c) − γ (c) for any
projection in M∞(A).

Note that α is a well defined semigroup homomorphism. Indeed, since A
has stable rank one, 〈p〉 + c ∈ W(A)+ whenever c ∈ W(A)+ (Lemma 2.9), and
if c′ ∈ W(A)+ is any other element, then one has that γ (〈p〉 + c) − γ (c) =
γ (〈p〉 + c′)− γ (c′).

In order to check that α is a homomorphism, let p, q and a be elements in
M∞(A)+ with p and q projections and a purely positive. Then,

α(〈p〉 + 〈q〉) = γ (〈p ⊕ q〉 + 2c)− γ (2c)

= γ (〈p〉 + c)− γ (c)+ γ (〈q〉 + c)− γ (c)

= α(〈p〉)+ α(〈q〉).

Also

α(〈p〉 + 〈a〉) = γ (〈p ⊕ a〉)
= γ (〈p ⊕ a〉 + c)− γ (c)

= γ (〈p〉 + c)− γ (c)+ γ (〈a〉)
= α(〈p〉)+ α(〈a〉).

By definition,

G(W(A)+)+ = {[x] − [y] | x, y ∈ W(A)+, y + r ≤ x + r for some r ∈ W(A)+},

whence α(W(A)+) = γ (W(A)+) ⊆ G(W(A)+)+ by construction. If p ∈ M∞(A)
is a projection, then its image under alpha is γ (〈p〉+ c)−γ (c). Since c ≤ 〈p〉+ c,
we conclude that α(〈p〉) ∈ G(W(A)+)+, too. Thus, α(W(A)) ⊆ G(W(A)+)+,
and so α extends to an ordered group homomorphism

α : K∗
0(A) = G(W(A)) → G(W(A)+),

given by the rule α([a] − [b]) = α(〈a〉) − α(〈b〉). Evidently, α is surjective and
satisfies

α(K∗
0(A)

++) ⊆ G(W(A)+)+

To prove injectivity, assume that α(〈a〉) = α(〈p〉) for 〈a〉 ∈ W(A)+ and p a
projection. This means that γ (〈a〉) = γ (〈p〉+ c)− γ (c), and hence 〈a〉+ c + c′ =
〈p〉 + c + c′ for some c′ ∈ W(A). Thus [a] = [p] in K∗

0(A). If, for projections p
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and q, we have that α(〈p〉) = α(〈q〉), then γ (〈p〉 + c)− γ (c) = γ (〈q〉 + c)− γ (c).
It follows that [p] = [q] in K∗

0(A).
Finally, if A is simple and Z-stable, we may apply Proposition 2.6 to conclude

that

(1A ⊗ 1Z )⊕ (1A ⊗ z1) ∼ (1A ⊗ z1)⊕ (1A ⊗ z1).

Thus, there is an identification of A with A ⊗ Z for which

α([1A]) = γ (〈(1A ⊗ 1Z )⊕ (1A ⊗ z1)〉)− γ (〈1A ⊗ z1〉)
= γ (〈1A ⊗ z1〉) = α([1A ⊗ z1]).

(Note that the 1As on the far right and far left are, strictly speaking, not the
same.) ��
Corollary 5.6 Let A be simple, unital, and exact C∗-algebra having stable rank
one and strict comparison of positive elements. Suppose further that M∞(A) �= ∅.
Then, K∗

0(A) is the Grothendieck enveloping group of ι(W(A)+), where ι is the
map defined in Proposition 3.3.

Proof Under the hypotheses, ι is an order-embedding (see Theorem 4.4). The
result then follows from Lemma 5.5. ��

Corollary 5.6 gives a version of Theorem III.3.2 of [3] for C∗-algebras which
may lack non-trivial projections.

We close this section summarizing our findings in the following:

Theorem 5.7 Let A be a simple, unital, nuclear and finite C∗-algebra which is
Z-stable. Then,

(i) (K∗
0(A), K∗

0(A)
++) is an Archimedean partially ordered Abelian group.

(ii) (K∗
0(A), K∗

0(A)
+) is a simple and weakly unperforated partially ordered

Abelian group.
(iii) K∗

0(A) = G(ι(W(A)+), where ι : W(A)+ → LAffb(T(A))++ is defined as
in 3.3.

6 Z-stable algebras with finitely many pure tracial states

In the final sections of the paper, we study the surjectivity of the order-
embedding ι. In this section we study algebras which satisfy the hypotheses
of Theorem 1.4 by way of having finitely many pure tracial states. We begin by
establishing a closure property for the image of ι.

Lemma 6.1 Let A be a simple, unital, exact, finite, and Z-stable C∗-algebra:

A
φ∼= A ⊗ Z ,
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where φ is as in the proof of Lemma 3.4. Suppose that a ∈ M∞(A)+ is such that
dτ (a) ≤ r, for some r ∈ R

++ and for all τ ∈ T(A). Then, for any z in Z such that
z ∼ zr, there exists ã ∈ M∞(A)+ such that

a ∼ ã ≤ (1A ⊕ 1A)⊗ z ∈ M∞(A ⊗ Z)+ φ≡ M∞(A)+.

Proof We assume throughout the proof that whenever elementary tensors in
A ⊗ Z are mentioned, they are being identified with elements of A via φ.

Suppose first that a ∼ p for some projection p ∈ M∞(A). Since

dτ (a) ≤ r < 2r = dτ ((1A ⊕ 1A)⊗ z), for all τ ∈ T(A),

we have that a ∼ p � (1A ⊕ 1A)⊗ z by Proposition 2.7. Applying [29, Proposi-
tion 2.4] we may find x ∈ M∞(A) such that

x∗ ((1A ⊕ 1A)⊗ z) x = (p − ε)+ ∼ p ∼ a,

so that ã := (1A ⊕ 1A)xx∗(1A ⊕ 1A) has the desired properties.
Now assume that a ∈ M∞(A)++. Use Lemma 3.4 to find representative

a′ ⊗ 1Z ∈ A ⊗ Z of 〈a〉. Put b := a′ ⊗ z1/r ∈ M∞(A ⊗ Z)+, so that dτ (b) ≤ 1.
We now identify A with A ⊗ Z via φ. Our hypotheses ensure that A has strict
comparison of positive elements (Corollary 4.6 of [32]), whence b � 1A by
Proposition 2.6. We apply [29, Proposition 2.4] to b + ε · 1A � b ⊕ ε � 1A ⊕ 1A,
and obtain x ∈ M∞(A)+ such that

x∗(1A ⊕ 1A)x = (b + ε − ε)+ = b.

It follows that

b ∼ b̃ := (1A ⊕ 1A)xx∗(1A ⊕ 1A) ≤ ‖x‖21A ⊕ 1A.

Now (1/‖x‖2)b̃ ∼ b̃ — Cuntz equivalence is robust under multiplication by
elements of R

++—and so

b ∼ (1/‖x‖2)b̃ ≤ 1A ⊕ 1A.

It follows that

(1/‖x‖2)(b̃ ⊗ z) ≤ (1A ⊕ 1A)⊗ z,

and that

(1/‖x‖2)(b̃ ⊗ z) ∼ b ⊗ z = (a′ ⊗ z1/r)⊗ z

[32, Lemma 4.1]. Put ã := (1/‖x‖2)(b̃⊗z). The last equation shows that dτ (ã) =
dτ (a), whence a ∼ ã by Proposition 2.6. ��
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Proposition 6.2 Let A be a simple, unital, exact, and finite C∗-algebra absorb-
ing the Jiang–Su algebra Z tensorially. Let there be given a sequence (ai)

∞
i=1 ⊆

M∞(A)+, and put

hi(τ ) := dτ (ai); gi :=
i∑

j=1

hj.

If

lim
i→∞ gi = g;

∞∑

i=1

‖hi‖ < ∞,

then there exists a ∈ M∞(A)++ such that dτ (a) = g(τ ), for all τ ∈ T(A).

Proof We may assume that ai ∈ M∞(A)++, since dτ (ai) = dτ (ai ⊗ z1), for all
τ ∈ T(A). We may also assume that

∑∞
i=1 ‖hi‖ < 1 by scaling the ai (using

Corollary 3.6).
Using the embedding of C[0, 1] into Z as in Theorem 3.1 we may choose, for

each i ∈ N, a representative yi of 〈z‖hi‖〉 inside Z such that yiyj = yjyi = 0 for
all i �= j. By Lemma 6.1, ai is equivalent to ãi ≤ (1A ⊕ 1A)⊗ yi. It follows that
the ãis are pairwise orthogonal, and that dτ (ãi) = hi. Put

a :=
∞∑

i=1

1
2i ãi ∈ M2(A ⊗ Z).

Then, dτ (a) = g(τ ), as desired. ��
Let A be a C∗-algebra with finitely many pure tracial states. In this situation

we make the identifications

LAffb(T(A))
++ ≡ Aff(T(A))++ ≡ {(λ1, . . . , λn)|λi ∈ R

++},

where n is the number of pure tracial states on A. Now suppose further that A is
simple, unital, exact, finite, and Z-stable. Since ι : W(A)+ → LAffb(T(A))++ is
an order-embedding, we know (using [4, Theorem 2.6]) that S((R++)n, 1)maps
surjectively onto S(W(A)+, 〈1 ⊗ z1〉), which by Lemma 5.5 agrees with

S(K∗
0(A), K∗

0(A)
++, [1A]) def= DF(A).

Remark 6.3 The definition of the term “state” is different for partially ordered
Abelian semigroups and partially ordered Abelian groups. For semigroups a
state must be order preserving, while for groups it is required to be positive.
Both definitions require the state to be a linear map into R taking the order
unit to 1. With this in mind it is easy to check that the states on (W(A), 〈1A〉)
coincide with the states on (K∗

0(A), K∗
0(A)

++, [1A]).
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Now, if τ is an extremal trace, then the corresponding lower semicontinuous
function dτ is an extreme point in DF(A). This follows from the fact that LDF(A)
is a face of DF(A) [3, Proposition II.4.6] and the fact that τ 
→ dτ is an affine
bijection from T(A) onto LDF(A). In our case of interest, where we have exactly
n extreme traces, we find counting dimensions that S(K∗

0(A), K∗
0(A)

++, [1A]) ∼=
R

n. It follows from Corollary 5.2 and [14, Theorem 4.14] that K∗
0(A)

∼= R
n in

this case.
Next, from the obvious containment

S(K∗
0(A), K∗

0(A)
++, [1A]) ⊆ S(K∗

0(A), K∗
0(A)

+, [1A])

and the fact that K∗
0(A)

∼= R
n, we see that in fact we have equality.

We shall need the following result (see, e.g. [14, Theorem 7.9]):

Theorem 6.4 Let (G, u) be an unperforated partially ordered Abelian group with
order-unit, and let

ψ : G → Aff(S(G, u))

be the natural map (given by evaluation). Then, the set

{ψ(x)/2n | x ∈ G+, n ∈ N}

is dense in Aff(S(G, u))+.

Inspection of the proof reveals that the same result will hold under the
assumption that G is simple and weakly unperforated, which is what we shall
use below.

Theorem 6.5 Let A be an exact, simple, and unital C∗-algebra absorbing the
Jiang–Su algebra Z tensorially. Suppose that A has n pure tracial states. Then,
ι : W(A)+ → LAffb(T(A))++ is surjective.

Proof From the comments preceding Theorem 6.4, it follows that the state
space of the group K∗

0(A) is R
n, no matter which ordering we consider on it

(either K∗
0(A)

+ or K∗
0(A)

++). Therefore,

Aff(S(K∗
0(A), K∗

0(A)
+, [1A])) = Aff(S(K∗

0(A), K∗
0(A)

++, [1A])) = LAffb(T(A)).

We also know from Proposition 5.3 that (K∗
0(A), K∗

0(A)
+, [1A]) is a weakly

unperforated partially ordered simple abelian group. Our considerations above
together with Theorem 6.4 imply that

{ι(a)/2n | a ∈ M∞(A)++, n ∈ N}



Recasting the Elliott conjecture 695

is dense in LAffb(T(A)). But ι(a)/2n = ι(a ⊗ z1/2n) by Corollary 3.6, so

{ι(a)/2n | a ∈ M∞(A)++, n ∈ N} = {ι(a) | a ∈ M∞(A)++}.

In other words, the image of ι in LAffb(T(A))++ is dense.
Let f ∈ LAffb(T(A))++ be given. A moment’s reflection shows that one may

choose a sequence (hi)
∞
i=1 ⊆ LAffb(T(A))++ with the following properties:

(i) limi→∞ fi = f , where fi = ∑i
j=1 hj;

(ii)
∑∞

i=1 ‖hi‖ < ∞;
(iii) hi(τ ) = dτ (ai) for some ai ∈ M∞(A)++.

We may apply Proposition 6.2 to find a ∈ M∞(A)++ such that dτ (a) = f (τ ),
for all τ ∈ T(A), whence ι is surjective, as desired. ��

7 Real rank zero

In this section we show that our map ι is surjective whenever A is a Z-stable,
simple, exact C∗-algebra with real rank zero and stable rank one. In fact, we
can prove a more general result, namely that for such an A (not necessarily
simple) K∗

0(A) is order-isomorphic to the group of differences of lower semi-
continous, affine, real-valued and bounded functions defined on T(A), equipped
with the pointwise ordering. Some of our arguments, namely the first part of
Theorem 7.3 below, can be traced back to the ones in [3], and we include them
for the convenience of the reader.

It should be no surprise, however, that the (WEC) implies the (EC) for this
class. This can be justified by recalling that the Cuntz semigroup W(A) is com-
pletely determined by V(A) whenever A is σ -unital, has real rank zero and
stable rank one. More concretely, one can obtain for such an A an order-iso-
morphism between W(A) and the monoid of the so-called countably generated
intervals in V(A) that are bounded by the generating interval D(A) (see [25]
for a full account).

Given a positively ordered abelian semigroup with order-unit (M, ≤, u), con-
sider the natural representation map φu : M → Aff(S(M, u))+. It is said that
M satisfies condition (D) provided that φu(M) is dense. A unital C∗-algebra
A satisfies condition (D) provided that the positive cone K0(A)+ of its Grot-
hendieck group satisfies condition (D). It was shown in [24] that any unital
C∗-algebra A with real rank zero satisfies condition (D) if and only if A has no
finite dimensional representations.

Lemma 7.1 Let A be a Z-stable unital C∗-algebra with stable rank one. Then
s(x) > 0 for all states s on S(K0(A), [1A]) if and only if x is an order-unit in
K0(A).

Proof Since A has stable rank one, we have K0(A)+ = V(A). We also know
from [32, Corollary 4.8] that V(A) is almost unperforated. Assume that s(x) > 0
for all states s. It then follows from [14, Theorem 4.12] that mx is an order-unit
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for some natural number m. Write x = a − b where a, b ∈ V(A). We know that
there is l in N such that b ≤ lm(a − b), and hence (lm + 1)b ≤ lma. Therefore
b ≤ a, and so x > 0. Thus x is an order-unit. ��

If f , g are real-valued functions defined on a set X, write f � g (or f � g) to
mean that f (x) > g(x) (or f (x) < g(x)) for every x in X.

Lemma 7.2 Let A be a Z-stable unital C∗-algebra with real rank zero and stable
rank one. Then A contains a sequence of orthogonal projections (pn) such that
s([pn]) > 0 for all states s ∈ S(V(A), [1A]). (Equivalently, τ(pn) > 0 for all
quasitraces on A.)

Proof (Outline.) Note first that A ∼= A ⊗ Z satisfies condition (D), because Z
is simple and infinite dimensional. Denote by u = [1A] ∈ V(A) and by

φu : V(A) → Aff(S(V(A), u)) = Aff(S(K0(A), u))

the natural representation map, given by evaluation.
Using condition (D) we may then find a projection p1 such that 0 �

φu([p1]) � 1. Thus, by compactness of the state space of V(A) and condi-
tion (D) again, there is a projection p′

2 satisfying 0 � φu([p′
2]) � φu([1 − p1]).

Lemma 7.1 implies that p′
2 ∼ p2 ≤ 1 − p1 for some projection p2. Continuing in

this way we find our sequence of projections (pn).
The equivalent statement follows readily from the fact that the map QT(A) →

S(V(A), [1A]), given by evaluation, is an affine homeomorphism (see [3, Theo-
rem III.1.3]). ��

We remark that Lemma 7.2 also holds trading Z-stability and stable rank one
by weak divisibility. This latter property was introduced in [27]: a C∗-algebra A
is weakly divisible if for any element x in V(A), we may find a natural number
n and elements y and z in V(A) such that x = ny + (n + 1)z. Weak divisibility
is always guaranteed for simple (non-type I) C∗-algebras of real rank zero, and
holds quite widely in the non-simple case (see [27, Theorem 5.8]). Basically,
what we need to use to establish 7.2 in this setting is that for a non-zero x in
V(A), there is n and a non-zero y in V(A) such that ny ≤ x ≤ (n + 1)y.

Theorem 7.3 (cf. [3, Theorem III.3.2 and Corollary III.3.3]) Let A be a Z-stable,
exact, separable and unital C∗-algebra with real rank zero and stable rank one.
Then K∗

0(A) is order-isomorphic to G(LAffb(T(A)), equipped with the pointwise
ordering.

Proof Define ι : K∗
0(A) → G(LAffb(T(A))) by ι([a])(τ ) = dτ (a). Note first

that, for a positive element a, if (pn) is an (increasing) approximate unit con-
sisting of projections for the hereditary algebra generated by a, we have that
ι([a])(τ ) = supn τ(pn).

In order to get an order-isomorphism onto the image, we have to show that
[a] ≤ [b] in K∗

0(A) whenever ι([a]) ≤ ι([b]). Let (pn) be the sequence of orthog-
onal projections constructed in Lemma 7.2, and let c = ∑∞

n=1
1

2n rn ∈ A+, where
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rn = ∑n
i=1 pi. Let (en) and (fn) be approximate units consisting of projections

for the hereditary algebras generated by a and b, respectively. We then have that
(en ⊕ rn) (respectively, (fn ⊕ rn)) is an (increasing) approximate unit consisting
of projections for a ⊕ c (respectively, for b ⊕ c). Note that ι([a ⊕ c]) ≤ ι([b ⊕ c]).
By construction of the sequence (rn) and Lemma 7.2, the sequence τ(en ⊕ rn) is
strictly increasing. Using compactness of the state space of V(A), we find that
for all n, there is m such that τ(en ⊕ rn) < τ(fm ⊕ rm) for all τ . It follows again
from Lemma 7.2 that for all n, there is m such that en ⊕ rn � fm ⊕ rm. But
this implies that a ⊕ c � b ⊕ c (see [25, Proposition 2.3] and also [3, Corollary
III.3.8]).

We now prove that ι is surjective. Let f ∈ LAffb(T(A)), which is bounded
below by some constant k. Writing h = f − k + 1, we may assume that actually
f ∈ LAffb(T(A))++. Since A is separable, we have that T(A) is metrizable,
hence we may write f as a pointwise supremum of an increasing sequence (fn)

of functions in Aff(T(A))++. Choose n0 such that fn − 1
2n � 0 whenever n ≥ n0.

Write u = [1A] ∈ V(A) and denote as before φu the natural representation
map.

Using condition (D) we may find projections pn in M∞(A) such that fn −
1

2n � φu([pn]) � fn − 1
2n+1 for all n ≥ n0, where u = [1A] ∈ V(A). Since

φu([pn]) � φu([pn+1])we get from Lemma 7.1 that [pn] ≤ [pn+1] in V(A). Since
f is also bounded, a second use of Lemma 7.1 shows that pn all belong to Mt(A)
for some t. Using that A has stable rank one (whence projections cancel from
direct sums) we may arrange that the sequence (pn) is indeed increasing in the
order of A.

It is clear that f , being the pointwise supremum of the fn’s, will satisfy that
f = supφu([pn]). We know from [3, Theorem III.1.3] that the natural mapping
T(A) → S(K0(A), [1A]) is a homeomorphism.

If we then let x =
∞∑

n=1

1
2n pn, we find that x ⊗ z1 is a purely positive element in

Mt(A) such that dτ (x ⊗ z1) = dτ (x) = supn dτ (pn) = sup τ(pn) = φu([pn])(τ ) =
f (τ ) for every τ ∈ T(A). ��

The argument of surjectivity in the proof of Theorem 7.3, allows us to state
the following:

Corollary 7.4 Let A be an exact, simple, and unital C∗-algebra absorbing the
Jiang–Su algebra Z tensorially. Suppose that A has real rank zero and stable
rank one. Then, ι : W(A)+ → LAffb(T(A))++ is surjective.

8 Goodearl algebras

In this section we prove that ι is surjective for algebras we term degenerate
Goodearl algebras, and outline a proof of the same fact for the simple Goodearl
algebras studied in [15]. We do so to support the conjecture that ι is always
surjective for unital and stably finite C∗-algebras without nonzero finite-dimen-
sional representations. In other words, hypotheses (i) and (ii) of Theorem 1.4
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should be removeable. (Note that for a non-simple algebra, the image of ι will
not always consist of strictly positive functions.) Our reasons for providing a
sketch in lieu of a full proof in the simple case are twofold: first, the main ideas
and technical details for a full proof are contained already in the argument for
the degenerate case; second, simple Goodearl algebras are known to satisfy
the Elliott conjecture, and so one gains little new insight into their structure by
computing their Cuntz semigroups.

Let X and Y be compact Hausdorff spaces. A ∗-homomorphism

φ : C(X) → Mn(C(Y))

is called diagonal if

φ(f )(y) = diag (f (γ1(y)), . . . , f (γn(y)))

for continuous maps γi : Y → X, 1 ≤ i ≤ n. The γi are called eigenvalue maps.
Let X be a nonempty, separable, and compact Hausdorff space. Let A =

limi→∞(Ai,φi) be a unital inductive limit C∗-algebra where, for each i ∈ N,
Ai ∼= Mni(C(X)) for some ni ∈ N with ni|ni+1, φi is diagonal, and the eigenvalue
maps of φi are either the identity map on X, or have range equal to a point.
Such an algebra will be called a Goodearl algebra. This definition generalises
slightly the one provided by Goodearl in [15].

If each φi in the inductive sequence for A has every eigenvalue map equal
to the identity map on X, then we will say that A is degenerate. In this case
one obtains a (in general non-simple) algebra isomorphic to the tensor product
C(X) ⊗ U, where U is the UHF algebra whose K0-group is the subgroup of
the rationals whose denominators, when in lowest terms, divide some ni. This
subgroup is dense in R whenever ni → ∞ as i → ∞. In this case, T(A) may be
identified with the Bauer simplex M+

1 (X) of positive probability measures on
X, hence its extreme boundary ∂eT(A) is homeomorphic to X. (Recall that a
Bauer simplex is a Choquet simplex with closed extreme boundary—see [1] for
details.)

If X is a compact Hausdorff space, denote by L(X) the semigroup of lower
semicontinuous real-valued functions defined on X, by L(X)++ the subsemi-
group of L(X) consisting of strictly positive elements, and by Lb(X) the sub-
semigroup of bounded functions. Let A be a unital C∗-algebra such that T(A) is
a non-empty Bauer simplex. Then, there is a semigroup isomorphism between
LAffb(T(A)) and Lb(∂eT(A))—the behaviour of f ∈ LAff(T(A)) is determined
by the behaviour of its restriction to ∂eT(A) (cf. [16, Lemma 7.2]). It follows
that proving the surjectivity of ι for such an algebra only requires proving that
every f ∈ Lb(∂eT(A))++ can be realised as the image of some a ∈ M∞(A)++
under the map

ιe : W(A)+ → Lb(∂eT(A))++
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given by

ιe(〈a〉) = dτ (a), for all τ ∈ ∂eT(A).

Clearly, it will suffice to prove the above for functions f such that ‖f‖ ≤ 1.

Theorem 8.1 Let A be a degenerate Goodearl algebra. Then ι is surjective.

Proof We identify T(A) with the Bauer simplex M+
1 (X), whence ∂e(T(A)) is

homeomorphic to X. Let us write τx for the trace that corresponds to a point x
in X. This, in turn, corresponds to the point mass measure δx at x.

Let f ∈ Lb(X)++ be given, and assume that ‖f‖ ≤ 1. We prove that f is the
image of an element a ∈ A+ under the map ιe defined above.

Define, for each i ∈ N, a function fi as follows: put

Fi,k :=
{

x ∈ X | f (x) ≤ k
ni

}
, 1 ≤ k ≤ ni,

fi(x) = 0, for all x ∈ F1,k,

and

fi(x) := k − 1
ni

whenever x ∈ Fi,k \ Fi,k−1.

Let us check that fi converges pointwise to f , and that fj ≥ fi whenever j ≥ i.
Let x ∈ Fi,k \ Fi,k−1 for 1 ≤ k ≤ ni, and take j ≥ i. Then fi(x) = k−1

ni
. Write

nj = nin′
i, and note that f (x) ≤ k

ni
= kn′

i
nj

. Thus x ∈ Fj,kn′
i
. Let l ≥ 0 be such that

x ∈ Fj,kn′
i−l \ Fj,kn′

i−l−1. Since

k − 1
ni

< f (x) ≤ kn′
i − l
nj

,

it is easy to check now that fj(x) = kn′
i−l−1
nj

≥ k−1
ni

= fi(x).

Note that for x ∈ Fi,k \Fi,k−1 we have f (x)− fi(x) ≤ 1
ni

, whence clearly fi → f .
We will construct an increasing sequence a1 ≤ a2 ≤ · · · of positive elements

in A converging to a positive element a, such that dτx(ai) = fi(x), for all x ∈ X.
It will follow that dτx(a) = f (x), for all x ∈ X.

For each i ∈ N, choose ni continuous functions fi,k : X → [0, 1/2i] as follows:
fi,1 ≡ 0, and fi,k is supported on the open set Fc

i,k−1, for 2 ≤ k ≤ ni. Put

ãi := diag(fi,1, . . . , fi,ni) ∈ Ai.

Define a1 := ã1 ∈ A1. Suppose that we have constructed a1, . . . , ai such that
aj ∈ Aj and also a1 ≤ a2 ≤ · · · ≤ ai when viewed in Ai (through the natural
maps). We now construct ai+1.
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Consider the image of ai in Ai+1 under φi. It is a diagonal element, and its
diagonal entries consist of ni+1/ni copies of fi,k for each 1 ≤ k ≤ ni. Now,
for any such k, notice that the open set Fc

i,k is contained in Fc
i+1,l for every

(k − 1)(ni+1/ni) + 1 ≤ l ≤ k(ni+1/ni). Assume, by permuting the diagonal
entries of ãi+1 if necessary, that the entries of φ(ai) equal to fi,k correspond
to the entries of fi+1,l of ãi+1 for which (k − 1)(ni+1/ni) + 1 ≤ l ≤ k(ni+1/ni).
Now define ai+1 to be the diagonal element whose entries are the pointwise
maximum of the entries of φi(ai) and ãi+1.

Since Fc
i,k ⊆ Fc

i+1,l, we have that Coz(max{fi,k, fi+1,l}) = Coz(fi+1,l) = Fc
i+1,l

(Coz(f ) denotes the cozero set of a function f ). For any x ∈ X, we have

dτx(ai+1) = dτx(ãi+1) = 1
ni+1

ni+1∑

j=1

δx(Fc
i+1,j) = k

ni+1
,

where k is such that x ∈ Fc
i+1,k \ Fc

i+1,k+1. Hence dτx(ai+1) = fi+1(x). Observe
that φi(ai) ≤ ai+1 and ‖ai − ai−1‖ < 1/2i by construction.

Continue in this way and identify the ai’s with their images in A. Then the
sequence (ai)

∞
i=1 ⊆ A has the following properties:

(i) ai ≤ ai+1 for all i;
(ii) ‖ai − ai−1‖ < 1/2i;

(iii) dτx(ai) = fi(x), for all x ∈ X.

It follows that a := limj→∞ aj has the desired property:

dτx(a) = f (x), for all x ∈ X.

��

Simple Goodearl algebras [15] are either of real rank zero or real rank one,
and are known to be approximately divisible (see [11]). It follows from The-
orem 2.3 of [36] that they are Z-stable, and so, in the real rank zero case, the
surjectivity of ι is given by Corollary 7.4. In the real rank one case, it is known
that the connecting ∗-homomorphisms φi in the inductive sequence for the
given algebra must contain a vanishingly small proportion of eigenvalue maps
with range equal to a point—the connecting maps are very nearly those of a
degenerate Goodearl algebra [15]. Combining this fact with the construction
of Theorem 8.1 yields the surjectivity of ι for simple Goodearl algebras of real
rank one. The details are left to the reader.

9 Concluding remarks

Although Z-stability is a useful tool in the proofs of Theorem 6.5 and
Corollary 7.4, it is by no means a necessary condition for the surjectivity of ι.
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A calculation akin to the proof of Theorem 8.1 shows that ι is surjective for the
non-Z-stable AH algebra constructed in Theorem 1.1 of [34]. Also:

Proposition 9.1 Let A be a unital C∗-algebra with unique tracial state τ . Suppose
that there exists a ∈ A+ such that Sp(a) = [0, 1], and that τ induces an atom-free
measure on Sp(a). Then, ι is surjective.

Proof We need only produce, for every λ ∈ (0, 1], positive elements gλ ∈ A
such that dτ (gλ) = λ. This is straightforward: let Oλ be an open set of measure λ
with respect to τ (such a set exists since said measure is an atom-free probability
measure on [0, 1]), and let gλ be a positive function supported on Oλ. ��

The results of Sects. 6, 7, and 8 suggest a closing question:

Question 9.2 Is ι surjective for any unital and stably finite C∗-algebra A having
no nonzero finite-dimensional representations?

An affirmative answer will extend the equivalence of (EC) and (WEC) to all
simple, separable, unital, nuclear, finite, and Z-stable C∗-algebras.
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