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Abstract

We study the class of simple C∗-algebras introduced by Villadsen in his pioneering work on perforated
ordered K-theory. We establish six equivalent characterisations of the proper subclass which satisfies the
strong form of Elliott’s classification conjecture: two C∗-algebraic (Z -stability and approximate divisibil-
ity), one K-theoretic (strict comparison of positive elements), and three topological (finite decomposition
rank, slow dimension growth, and bounded dimension growth). The equivalence of Z -stability and strict
comparison constitutes a stably finite version of Kirchberg’s characterisation of purely infinite C∗-algebras.
The other equivalences confirm, for Villadsen’s algebras, heretofore conjectural relationships between var-
ious notions of good behaviour for nuclear C∗-algebras.
Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.
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1. Introduction

The classification theory of norm-separable C∗-algebras began with Glimm’s study of UHF
algebras in 1960 [13], and was expanded by Bratteli’s 1972 classification of approximately
finite-dimensional (AF) algebras via certain directed graphs [4]. It was with the work of El-

✩ Research partly supported by: Deutsche Forschungsgemeinschaft (through the SFB 478), EU-Network Quantum
Spaces—Noncommutative Geometry (Contract No. HPRN-CT-2002-00280), and an NSERC Discovery Grant.

* Corresponding author. Current address: School of Mathematical Sciences, University of Nottingham, NG7 2RD
Nottingham, United Kingdom.

E-mail addresses: atoms@mathstat.yorku.ca (A.S. Toms), wilhelm.winter@nottingham.ac.uk (W. Winter).
0022-1236/$ – see front matter Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2008.12.015



1312 A.S. Toms, W. Winter / Journal of Functional Analysis 256 (2009) 1311–1340
liott, however, that the theory grew exponentially. His classification of both AF and AT algebras
of real rank zero via their scaled ordered K-theory suggested a deep truth about the structure of
separable and nuclear C∗-algebras [6,7]. He articulated this idea in the late 1980s, and formalised
it in his 1994 ICM address [9]: simple, separable, and nuclear C∗-algebras should be classified
up to ∗-isomorphism by their topological K-theory and traces. This prediction came to be known
as the Elliott conjecture.

The 1990s and early 2000s saw Elliott’s conjecture confirmed in remarkable generality,
cf. [23]. Kirchberg and Phillips established it for purely infinite C∗-algebras satisfying the
Universal Coefficient Theorem [17,21], and Lin did the same for his C∗-algebras of tracial topo-
logical rank zero [19]. Elliott, Gong, and Li, confirmed the conjecture for unital approximately
homogeneous (AH) algebras of bounded dimension growth [12]. These results cover many nat-
ural examples of C∗-algebras, including those arising from certain graphs, dynamical systems,
and shift spaces.

In the midst of these successes, Villadsen produced a strange thing: a simple, separable,
and nuclear C∗-algebra whose ordered K0-group was perforated, i.e., contained a non-positive
element x such that nx was positive and non-zero for some n ∈ N [33]. (This answered a long-
standing question of Blackadar concerning the comparison theory of projections in C∗-algebras.)
The techniques used by Villadsen to study the K-theory of his algebra were drawn from differ-
ential topology, and it took time for the functional analysts of the classification community to
digest them. Then, in 2002, Rørdam found a way to adapt Villadsen’s techniques to construct the
first counterexample to the Elliott conjecture [24]. Other counterexamples followed [26,27].

The success of Elliott’s conjecture, however, is no accident. It is a deep and fascinating phe-
nomenon, and one must ask whether there is a regularity property lurking in those algebras for
which the Elliott conjecture is confirmed. Various candidates exist: stability under tensoring with
the Jiang–Su algebra Z , finite decomposition rank, and, for approximately subhomogeneous
(ASH) algebras, the notion of strict slow dimension growth. The first property—known as Z -
stability—is perhaps the most natural candidate, since tensoring with Z does not affect K-theory
or traces of a simple unital C∗-algebra with weakly unperforated K0-group. Elliott’s conjecture
thus predicts that all such algebras will be Z -stable. It is this very prediction which forms the ba-
sis for the counterexamples of Rørdam and the first named author: one produces pairs of simple
unital C∗-algebras with weakly unperforated K0-groups, one of which is not Z -stable. These ex-
amples have legitimised the assumption of Z -stability in Elliott’s classification program, leading
to the wide-ranging classification theorem of the second named author for ASH algebras of real
rank zero [37,38].

The problem with Z -stability in relation to Elliott’s classification program is that its ability
to characterise those algebras which are amenable to classification is an article of faith. In all
cases where Z -stability is sufficient for classification (e.g., simple unital ASH algebras of real
rank zero), it may also be automatic; when it is known to be necessary for classification (e.g.,
AH algebras), it is not known to suffice. In this paper we prove that Z -stability does characterise
those algebras which satisfy Elliott’s conjecture in an ambient class where the assumption of
Z -stability is truly necessary. The class considered is at once substantial and the natural starting
point for establishing such a characterisation: Villadsen’s algebras. In fact we will prove much
more. Z -stability is not only the hoped for necessary and sufficient condition for classification,
but is furthermore equivalent to a topological condition (finite decomposition rank) and to a K-
theoretic condition (strict comparison of positive elements). These three conditions, all of which
make sense for an arbitrary nuclear C∗-algebra, are equivalent to three further conditions which
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are to varying extents native to the class of algebras we consider: approximate divisibility, slow
dimension growth, and bounded dimension growth.

Some comments on our characterisations are in order. Nuclear C∗-algebras can be viewed
from several angles. They are evidently analytic objects, but can be seen as ordered algebraic
objects through their K-theory, or as topological objects via the decomposition rank of Kirch-
berg and the second named author. Our main result says that from each of these viewpoints,
there is a natural way to characterise those C∗-algebras which satisfy the Elliott conjecture. The
equivalence of Z -stability, approximate divisibility, finite decomposition rank, slow dimension
growth, and bounded dimension growth is a satisfying confirmation of the expectations of ex-
perts. The equivalence of these conditions with strict comparison of positive elements, however,
is unexpected and exciting for several reasons. First, the very idea of there being a K-theoretic
characterisation of those algebras which will satisfy Elliott’s conjecture is new. Second, it is a
condition that can be verified for large classes of examples generally suspected to be amenable
to classification [25,29]. Third, and most remarkably, this equivalence is a stably finite version
of Kirchberg’s celebrated characterisation of purely infinite C∗-algebras.

Our paper is organised as follows: in Section 2 we recall the definitions of the regularity
properties which appear in our main result; Section 3 introduces Villadsen algebras of the first
type, and states our main result; Sections 4–7 contain the proof of the main result; Section 8 gives
some examples of non-Z -stable Villadsen algebras.

2. Preliminaries and notation

2.1. AH algebras and dimension growth

Below we recall the concepts of (separable unital) AH algebras and their dimension growth.

Definition 2.1. A separable unital C∗-algebra A is called approximately homogeneous, or AH,
if it can be written as an inductive limit

A = lim
i→∞(Ai,φi)

where each Ai is a C∗-algebra of the form

Ai =
mi⊕

j=1

pi,j

(
C(Xi,j ) ⊗ Mri,j

)
pi,j

for natural numbers mi and ri,j , compact metrisable spaces Xi,j and projections
pi,j ∈ C(Xi,j ) ⊗ Mri,j . We refer to the inductive system (Ai,φi)i∈N as an AH decomposition
for A.

We say the AH decomposition (Ai,φi)N has slow dimension growth, if

lim
i→∞ max

j=1,...,mi

dimXi,j

rankpi,j

= 0;

it has very slow dimension growth, if

lim max
(dimXi,j )

3

= 0

i→∞ j=1,...,mi rankpi,j
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and it has bounded dimension growth, if

sup
i∈N

max
j=1,...,mi

dimXi,j = d < ∞.

The AH algebra A has slow (very slow or bounded, respectively) dimension growth, if it has an
AH decomposition which has slow (very slow or bounded, respectively) dimension growth.

Remark 2.2. Slow dimension growth is obviously entailed by very slow dimension growth.
Moreover, it is easy to see that if A is simple, then bounded dimension growth implies very slow
dimension growth. One of the remarkable results of [15] says that, for simple AH algebras, very
slow dimension growth also implies bounded dimension growth.

2.2. Approximate divisibility and the Jiang–Su algebra

Let p, q and n be natural numbers with p and q dividing n. C∗-algebras of the form

I [p,n, q] = {
f ∈ Mn

(
C

([0,1])) ∣∣ f (0) = 1n/p ⊗ a, f (1) = b ⊗ 1n/q, a ∈ Mp, b ∈ Mq

}
are commonly referred to as dimension drop intervals. If n = pq and gcd(p, q) = 1, then the
dimension drop interval is said to be prime.

In [16], Jiang and Su construct a C∗-algebra Z , which is the unique simple unital inductive
limit of dimension drop intervals having K0 = Z , K1 = 0 and a unique normalised trace. It is a
limit of prime dimension drop intervals where the matrix dimensions tend to infinity, and there
is a unital embedding of any prime dimension drop interval into Z . Jiang and Su show that Z is
strongly self-absorbing in the sense of [31].

A C∗-algebra A is said to be Z -stable, if it is isomorphic to A⊗ Z (since Z is nuclear, there is
no need to specify which tensor product we use). It was shown in [16] and [32] that all classes of
simple C∗-algebras for which the Elliott conjecture has been verified so far consist of Z -stable
C∗-algebras.

Using semiprojectivity of prime dimension drop intervals, it is not too hard to see that a
separable unital C∗-algebra A is Z -stable if and only if the following holds (cf. [32]): for any
n ∈ N there is a sequence of unital completely positive contractions φi : Mn ⊕ Mn+1 → A such
that the restrictions of φi to Mn and Mn+1 both preserve orthogonality (i.e., have order zero in the
sense of [35]) and such that ‖[φi((x,0)),φi((0, y))]‖ → 0 and ‖[φi((x, y)), a]‖ → 0 as i goes
to infinity for every x ∈ Mn, y ∈ Mn+1 and a ∈ A. This characterisation shows that Z -stability
generalises the concept of approximate divisibility:

Following [3], we say a separable unital C∗-algebra A is approximately divisible, if for
any n ∈ N there is a sequence of unital ∗-homomorphisms φi : Mn ⊕ Mn+1 → A such that
‖[φi(x), a]‖ → 0 as i goes to infinity for every x ∈ Mn ⊕ Mn+1 and a ∈ A.

It was shown in [32] that approximate divisibility indeed implies Z -stability. The converse
cannot hold in general (approximate divisibility asks for the existence of an abumdance of pro-
jections). However, using the classification result of [12], it was shown in [11] that simple AH
algebras of bounded dimension growth are approximately divisible.
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2.3. The Cuntz semigroup

Let A be a C∗-algebra, and let Mn(A) denote the n × n matrices whose entries are elements
of A. If A = C, then we simply write Mn. Let M∞(A) denote the algebraic limit of the direct
system (Mn(A),φn), where φn : Mn(A) → Mn+1(A) is given by

a 	→
(

a 0
0 0

)
.

Let M∞(A)+ (resp. Mn(A)+) denote the positive elements in M∞(A) (resp. Mn(A)). Given
a, b ∈ M∞(A)+, we say that a is Cuntz subequivalent to b (written a � b) if there is a sequence
(vn)

∞
n=1 of elements of M∞(A) such that∥∥vnbv∗

n − a
∥∥ n→∞−−−−→ 0.

We say that a and b are Cuntz equivalent (written a ∼ b) if a � b and b � a. This relation is an
equivalence relation, and we write 〈a〉 for the equivalence class of a. The set

W(A) := M∞(A)+/∼

becomes a positively ordered Abelian monoid when equipped with the operation

〈a〉 + 〈b〉 = 〈a ⊕ b〉

and the partial order

〈a〉 � 〈b〉 ⇔ a � b.

In the sequel, we refer to this object as the Cuntz semigroup of A.
Given a ∈ M∞(A)+ and ε > 0, we denote by (a − ε)+ the element of C∗(a) corresponding

(via the functional calculus) to the function

f (t) = max{0, t − ε}, t ∈ σ(a).

(Here σ(a) denotes the spectrum of a.)

2.4. Dimension functions and strict comparison

Now suppose that A is unital and stably finite, and denote by QT(A) the space of normalised
2-quasitraces on A (v. [2, Definition II.1.1]). Let S(W(A)) denote the set of additive and order
preserving maps d from W(A) to R+ having the property that d(〈1A〉) = 1. Such maps are called
states. Given τ ∈ QT(A), one may define a map dτ : M∞(A)+ → R+ by

dτ (a) = lim
n→∞ τ

(
a1/n

)
. (1)

This map is lower semicontinuous, and depends only on the Cuntz equivalence class of a. It
moreover has the following properties:
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(i) if a � b, then dτ (a) � dτ (b);
(ii) if a and b are orthogonal, then dτ (a + b) = dτ (a) + dτ (b);

(iii) dτ ((a − ε)+) ↗ dτ (a) as ε → 0.

Thus, dτ defines a state on W(A). Such states are called lower semicontinuous dimension func-
tions, and the set of them is denoted LDF(A). If A has the property that a � b whenever
d(a) < d(b) for every d ∈ LDF(A), then we say that A has strict comparison of positive ele-
ments or simply strict comparison.

2.5. Decomposition rank

Based on the completely positive approximation property for nuclear C∗-algebras, one may
define a noncommutative version of covering dimension as follows:

Definition 2.3. (See [18, Definitions 2.2 and 3.1].) Let A be a separable C∗-algebra.

(i) A completely positive map ϕ : ⊕s
i=1 Mri → A is n-decomposable, if there is a decomposi-

tion {1, . . . , s} = ∐n
j=0 Ij such that the restriction of ϕ to

⊕
i∈Ij

Mri preserves orthogonality
for each j ∈ {0, . . . , n}.

(ii) A has decomposition rank n, drA = n, if n is the least integer such that the following holds:
Given {b1, . . . , bm} ⊂ A and ε > 0, there is a completely positive approximation (F,ψ,ϕ)

for b1, . . . , bm within ε (i.e., ψ : A → F and ϕ : F → A are completely positive contrac-
tions and ‖ϕψ(bi) − bi‖ < ε) such that ϕ is n-decomposable. If no such n exists, we write
drA = ∞.

This notion has good permanence properties; for example, it behaves well with respect to
quotients, inductive limits, hereditary subalgebras, unitization and stabilization. It generalises
topological covering dimension, i.e., if X is a locally compact second countable space, then
drC0(X) = dimX; see [18] for details. Moreover, if A is an AH algebra of bounded dimension
growth, then drA is finite.

3. VI Algebras and the main result

3.1. Villadsen algebras of the first type

The class of algebras we consider is an interpolated family of AH algebras. At their simplest
they are the UHF algebras of Glimm, while at their most complex they are the algebras introduced
by Villadsen in his work on perforated ordered K-theory. In between these extremes they span
the full spectrum of complexity for simple, separable, nuclear, and stably finite C∗-algebras. We
call these algebras Villadsen algebras of the first type as they are defined by a generalisation of
Villadsen’s construction in [33]. (Villadsen used a second and quite distinct construction in his
subsequent work on stable rank, cf. [34].)

Let X and Y be compact Hausdorff spaces. Recall that a ∗-homomorphism

φ : C(X) → Mn ⊗ C(Y )
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is said to be diagonal if it has the form

f 	→ diag(f ◦ λ1, . . . , f ◦ λn),

where λi : Y → X is a continuous map for each 1 � i � n. The maps λ1, . . . , λn are called the
eigenvalue maps of φ. Amplifications of diagonal maps are also called diagonal.

Definition 3.1. Let X be a compact Hausdorff space and n,m,k ∈ N. A unital diagonal ∗-homo-
morphism

φ : Mn ⊗ C(X) → Mk ⊗ C
(
X×m

)
is said to be a Villadsen map of the first type (a V I map) if each eigenvalue map is either a
co-ordinate projection or has range equal to a point.

Definition 3.2. Let X be a compact Hausdorff space, and let (ni)
∞
i=1 and (mi)

∞
i=1 be sequences

of natural numbers with n1 = 1. Fix a compact Hausdorff space X, and put Xi = X×ni . A unital
C∗-algebra A is said to be a Villadsen algebra of the first type (a V I algebra), if it can be written
as an inductive limit algebra

A ∼= lim
i→∞

(
Mmi

⊗ C
(
X×ni

)
, φi

)
where each φi is a V I map.

We will refer to the inductive system in Definition 3.2 as a standard decomposition for A with
seed space X1(= X). Clearly, such decompositions are not unique.

For j > i, put

φi,j = φj−1 ◦ · · · ◦ φi.

Let Ni,j be the number of distinct co-ordinate projections from Xj = X
×nj /ni

i to Xi occuring
as eigenvalue maps of φi,j , and let Mi,j denote the multiplicity (number of eigenvalue maps)
of φi,j . Notice that

Mi,j = Mj−1,jMi,j−1, that Ni,j = Nj−1,jNi,j−1

and that

0 � Ni,j

Mi,j

� 1.

From these relations it follows in particular that the sequence(
Ni,j

Mi,j

)
j>i

is decreasing and converges for any fixed i.
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A is said to have slow (very slow, or bounded ) dimension growth as a V I algebra, if it admits a
standard decomposition as above which has slow (very slow, or bounded, respectively) dimension
growth in the sense of Definition 2.1.

Remarks 3.3. Despite its simple definition, the class of V I algebras is surprisingly broad:

• By taking X1 = {∗}, we can obtain any UHF algebra. If instead we take X1 to be a finite set,
then we obtain a good supply of AF algebras.

• With each Xi equal to a disjoint union of finitely many circles, we obtain a large collection
of AT algebras of real rank zero and real rank one.

• If each Xi is equal to the same compact Hausdorff space X, then we obtain the class of
Goodearl algebras.

• If we impose the condition that ni/mi → 0, then we obtain AH algebras of slow dimension
growth exhibiting a full range of complexity in their Elliott invariants: torsion in K0 or K1,
and arbitrary tracial state spaces.

• By taking “most” of the eigenvalue maps in each φi to be distinct co-ordinate projections
and setting X1 = S2 we obtain Villadsen’s example of a simple, separable, and nuclear
C∗-algebra with perforated ordered K0-group [33]. A variation on Villadsen’s construction
yields the counterexample to Elliott’s classification conjecture discovered by the first named
author in [26].

The first three examples above are special cases of the fourth, and the latter is a class of alge-
bras for which the Elliott conjecture can be shown to hold. Proving this, however, requires both
the most powerful available classification results for stably finite C∗-algebras and the detailed
analysis of V I algebras provided in the sequel. Thus, from the standpoint of trying to confirm
the Elliott conjecture, V I algebras are no less complex than the class of all simple unital AH
algebras. The fifth example demonstrates that V I algebras include non-Z -stable algebras which,
in general, cannot be detected with classical K-theory. The sequel will show that there are in fact
a tremendous number of such V I algebras (see Section 8).

3.2. The main theorem

Theorem 3.4. Let A be a simple V I algebra admitting a standard decomposition with seed space
a finite-dimensional CW complex. The following are equivalent:

(i) A is Z -stable;
(ii) A has strict comparison of positive elements;

(iii) A has finite decomposition rank;
(iv) A has slow dimension growth (as an AH algebra);
(v) A has bounded dimension growth (as an AH algebra);

(vi) A is approximately divisible.

If, moreover, A has real rank zero, then A satisfies the equivalent conditions above.

For Theorem 3.4, the following implications are already known:

(v) ⇒ (vi) ⇒ (i) ⇒ (ii); (v) ⇒ (iii); (iv) ⇒ (ii).
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More precisely, (v) ⇒ (vi) was shown in [11] (based on the results of [12]), (vi) ⇒ (i) is a result
of [32], (i) ⇒ (ii) is [25, Corollary 4.6], (iv) ⇒ (ii) is [29, Corollary 4.6], and (v) ⇒ (iii) is an
easy observation of [18]. We will prove (ii) ⇒ (iv), (ii) ⇒ (v), (iii) ⇒ (ii), and the statement
about real rank zero. In the real rank zero setting, the implication (iv) ⇒ (v) is due independently
to Dadarlat and Gong [5,14].

Remarks 3.5.

• In the absence of Theorem 3.4, no two of conditions (i)–(vi) are known to be equivalent for
an arbitrary simple unital AH algebra. However, (i), (ii), (iv), (v) and (vi) are known to be
equivalent for simple unital AH algebras of real rank zero (a combination of results from
[8,10,11,19,32,38]). One of the central open questions in the classification theory of nuclear
C∗-algebras is whether any of these conditions is actually necessary in the real rank zero
case. Theorem 3.4 makes some progress on this question—see the third remark below.

• Conditions (i)–(iii) should remain equivalent in much larger classes of simple, separable, nu-
clear, and stably finite C∗-algebras. Conditions (iv), (v), and (vi) cannot be expected to hold
in general (conditions (iv) and (v) exclude non-AH algebras, and (vi) excludes projection-
less algebras, such as Z itself), but it remains possible that(i)–(vi) are equivalent for simple
unital ASH algebras, when (iv) and (v) are adapted in the obvious way to this class.

• It is not known whether real rank zero implies conditions (i)–(vi) above for larger classes
of simple nuclear C∗-algebras (clearly, (iii), (iv), and (v) can only hold in the stably finite
case). Every existing classification theorem for real rank zero C∗-algebras assumes at least
one of conditions (i)–(vi). It thus remarkable that in the class of V I algebras, real rank zero
entails classifiability without assuming any of these conditions.

• Our proof of (iv) ⇒ (v) is the first instance of such among simple unital AH algebras of
unconstrained real rank.

• The proof of Theorem 3.4 yields new examples of simple C∗-algebras with infinite decom-
position rank. Previous examples all had a unique trace, while our examples can exhibit a
wide variety of structure in the tracial state space. (See Section 8.)

• Simple V I algebras all have stable rank one by an argument similar to that of [33, Proposi-
tion 10]. They may, however, have quite fast dimension growth—[28, Theorem 5.1] exhibits
a simple V I algebra for which every AH decomposition has the property that

lim inf
i→∞ max

j=1,...,mi

dimXi,j

rankpi,j

= ∞.

For completeness, we note that the class of V I algebras which satisfy the conditions of Theo-
rem 3.4 indeed satisfies the Elliott conjecture. Let Ell(•) denote the Elliott invariant of a unital,
exact, and stably finite C∗-algebra. We then have:

Corollary 3.6. (See Gong [15], Elliott, Gong and Li [12].) Let A and B be simple V I algebras
as in Theorem 3.4 which satisfy conditions (i)–(vi), and suppose that there is an isomorphism

φ : Ell(A) → Ell(B).

Then, there is a ∗-isomorphism Φ : A → B which induces φ.
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3.3. An analogue of Kirchberg’s first Geneva theorem

The most interesting aspect of Theorem 3.4 is that it provides an analogue among V I algebras
of Kirchberg’s characterisation of purely infinite algebras. The latter states that for a simple,
separable, and nuclear C∗-algebra A we have

A ⊗ O∞ ∼= A ⇔ A is purely infinite.

If we suppose that A is a priori traceless, then a result of Rørdam (see [25]) says that Z -stability
and O∞-stability are equivalent, and the definition of strict comparison reduces to the very def-
inition of pure infiniteness. Thus, we see that Kirchberg’s characterisation is equivalent to the
statement

A ⊗ Z ∼= A ⇔ A has strict comparison of positive elements.

This statement makes sense even if A has a trace, and is moreover true for the simple V I algebras
of Theorem 3.4. Were the statement to hold for all simple, separable, and nuclear C∗-algebras—a
distinct possibility—it would be a deep and striking generalisation of Kirchberg’s characterisa-
tion. In light of this possibility, we suggest that simple and Z -stable C∗-algebras be termed
“purely finite.”

4. Villadsen’s obstruction in the Cuntz semigroup

In this section we prove that under a technical assumption, a simple V I algebra fails to have
strict comparison of positive elements. We shall see later that this failure is dramatic enough to
ensure that the algebra also has infinite decomposition rank.

4.1. Vector bundles and characteristic class obstructions

All vector bundles considered in this paper are topological and complex. For any connected
topological space X, we let θl denote the trivial vector bundle of fibre dimension l ∈ N. If ω is a
vector bundle over X, then we denote by

⊕k
i=1 ω the k-fold Whitney sum of ω with itself, and by

ω⊗k its k-fold external tensor product (over Xk). We use rank(ω) to denote the fibre dimension
of ω. If Y is a second topological space and f : Y → X is continuous, then f ∗(ω) denotes the
induced bundle over Y . By Swan’s theorem, ω can be represented by a (non-unique) projection
in a matrix algebra over C(X); we will use vector bundles and projections interchangeably in the
sequel.

Recall that the Chern class c(ω) is an element of the integral cohomology ring H ∗(X) of the
form

c(ω) =
∞∑
i=0

ci(ω),

where ci(ω) ∈ H 2i (X) and ci(ω) = 0 whenever i > rank(ω). Let γ be a second vector bundle
over X. We will make use of the following properties of the Chern class:

(i) c(θl) = 1 ∈ H 0(X);
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(ii) c(γ ⊕ ω) = c(γ )c(ω), where the product is the cup product;
(iii) If Y is another topological space and f : Y → X is continuous, then c(f ∗(ω)) = f ∗(c(ω)).

Let ξ be the Hopf line bundle over S2. The following Chern class obstruction argument, due
essentially to Villadsen, shows that θk is not isomorphic to a sub-bundle of

⊕l
i=1 ξ⊗l whenever

1 � k < l. The top Chern class cl(
⊕l

i=1 ξ⊗l) (equal, in this case, to the Euler class of
⊕l

i=1 ξ⊗l)
is not zero by [24, Proposition 3.2]. If θk is isomorphic to a sub-bundle of

⊕l
i=1 ξ⊗l , then there

exists a vector bundle γ of rank l − k over (S2)l such that

θk ⊕ γ ∼=
l⊕

i=1

ξ⊗l .

Applying the Chern class to this equation yields

c(γ ) = c

(
l⊕

i=1

ξ⊗l

)
.

But then cl(γ ) �= 0, contradicting the fact that ci(γ ) = 0 whenever i > rank(γ ) = k.
We review for future use some structural aspects of the integral cohomology ring H ∗((S2)n).

It is well known that

H 0(S2) ∼= H 2(S2) ∼= Z

and

Hi
(
S2) = 0, i �= 0,2.

It follows from the Künneth formula that

H ∗((S2)n) ∼= H ∗(S2)⊗n

as graded rings. Let ei denote the generator of H 2(S2) in the ith tensor factor of H ∗(S2)⊗n.
Then,

H ∗((S2)n) ∼= Z[1, e1, . . . , en]/R,

where

R = {
e2
i = 0

∣∣ 1 � i � n
}
.

If n = Nl for some N ∈ N, then

H ∗((S2)Nl) = H ∗((S2)l)⊗N
.

Let ei,j denote the generator of the ith copy of H 2(S2), i ∈ {1, . . . , l}, in the j th tensor factor of
the right-hand side above.
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4.2. A failure of strict comparison in C(X)

Villadsen’s Chern class obstruction argument may be viewed as a statement about projections
in a matrix algebra over C(X). We present below an analogue of his argument for certain non-
projections in Mn(C(X)).

Let X be a CW-complex with dim(X) � 6, and let there be given a natural number l satisfying
2 � l � �dim(X)/3�. Choose an open set O ⊆ X homeomorphic to (−1,1)dim(X). Define

Ã := {
x ∈ (−1,1)3

∣∣ dist
(
x, (0,0,0)

) = 1/2
} ∼= S2

and

B̃ := {
x ∈ (−1,1)3

∣∣ 1/3 < dist
(
x, (0,0,0)

)
< 2/3

}
,

and let π : B̃ → Ã be the continuous projection along rays emanating from (0,0,0). Now define
a closed subset

A = Ãl × {0}dim(X)−3l

and an open subset

B = B̃l × (−1,1)dim(X)−3l

of O . Define a continuous map Π : B → A by

Π = π × · · · × π︸ ︷︷ ︸
l times

× ev0 × · · · × ev0︸ ︷︷ ︸
dim(X)−3l times

,

where ev0(x) = 0 for every x ∈ (−1,1). Let f : X → [0,1] be a continuous map which is iden-
tically one on A and identically zero off B .

Notice that A ∼= (S2)l , so ξ⊗l may be viewed as a vector bundle over A. Define positive
elements

P = f · Π∗
(

l⊕
i=1

ξ⊗l

)
(2)

and

Θk = f · θk (3)

in M∞(C(X)). For every x ∈ X and n ∈ N we have either

rank
(
P(x)

) = rank
(
Θk(x)

) = 0

or

rank
(
P(x)

) = l, rank
(
Θk(x)

) = k.
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If τ ∈ T(C(X)) and a ∈ M∞(C(X))+, then dτ (a) is obtained by integrating the rank function of
a against the probability measure on X corresponding to τ . Thus, if k < l, we have

dτ (Θk) � dτ (P ), ∀τ ∈ T(A),

and this inequality is strict if μτ (B) > 0, where μτ is the measure induced on X by τ ∈ T(A).
On the other hand, 〈Θk〉 � 〈P 〉. To see this suppose, on the contrary, that there exists a sequence
(vi)

∞
i=1 in M∞(C(X)) such that

∥∥viP v∗
i − Θk

∥∥ i→∞−−−→ 0.

Then, the same is true upon restriction to A ⊆ X, i.e.,

Θk|A ∼= θk �
l⊕

i=1

ξ⊗l ∼= P |A.

This amounts to saying that θk is isomorphic to a sub-bundle of
⊕l

i=1 ξ⊗l , contradicting our
choice of ξ .

We are now ready to prove a key lemma. Its proof is inspired by the proof of [26, Theo-
rem 1.1].

Lemma 4.1. Let A be a simple V I algebra with standard decomposition (Ai,φi) and seed space
a CW-complex X1 of dimension strictly greater than zero. Suppose that for any ε > 0 there exists
i ∈ N such that

Ni,j

Mi,j

> 1 − ε, ∀j > i. (4)

Then, for any n ∈ N there exist pairwise orthogonal elements a, b1, . . . , bn ∈ M∞(A)+ such
that for each s ∈ {1, . . . , n}

dτ (a) < dτ (bs), ∀τ ∈ T(A),

and

〈a〉 � 〈b1〉 + · · · + 〈bn〉.
In particular, A does not have strict comparison of positive elements.

Proof. First observe that the simplicity of A combined with the non-zero dimension of X1 imply
that mi → ∞ as i → ∞—the number of point evaluations appearing as eigenvalue maps in φi,j

is unbounded as j → ∞. It then follows from our assumption on Ni,j /Mi,j that dim(Xi) → ∞
as i → ∞. We may thus assume that dim(Xi) �= 0, ∀i ∈ N. Since φi always contains at least one
eigenvalue map which is not a point evaluation, it is injective.

Let n ∈ N be given. Find, using the hypotheses of the lemma, an i ∈ N such that

Ni,j
>

6n − 1
, ∀j > i.
Mi,j 6n
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Since Ni,j /Mi,j increases with increasing i, we may assume that i is large enough to permit the
construction of the element

f · Π∗
(

3⊕
i=1

ξ⊗3n

)

—this is just the element P of Eq. (2), with the number of direct summands altered. This ele-
ment will be our b1. (The maps φi are injective, so we identify forward images in the inductive
sequence.) For b2, . . . , bn we simply take mutually orthogonal copies of b1. Let a be Θ2, chosen
orthogonal to each of b1, . . . , bn. We have by construction that

dτ (a) < dτ (bs), 1 � s � n,

whenever μτ (B) > 0 (recall that B ⊆ Xi is the support of P and Θ2—it is an open set). If
f : Xi → [0,1] has support equal to B , then we may write

μτ (B) = dτ (f · 1Ai
).

Now for τ ∈ T(A) we have

dτ

(
φi∞(f · 1Ai

)
) = d

φ
�
i∞(τ )

(f · 1Ai
). (5)

Since A is simple and φi∞(f · 1Ai
) �= 0 we have

0 < τ
(
φi∞(f · 1Ai

)
)
< lim

n→∞ τ
(
φi∞(f · 1Ai

)1/n
) = dτ

(
φi∞(f · 1Ai

)
)
.

Combining this with (5) above we see that

dτ

(
φi∞(a)

) = d
φ

�
i∞(τ )

(a)

< d
φ

�
i∞(τ )

(b)

= dτ (φi∞(b)

for every τ ∈ T(A).
It remains to prove that

〈a〉 � 〈b1〉 + · · · + 〈bn〉 = 〈b1 + · · · + bn〉.

Notice that b1 + · · · + bn, viewed as an element of M∞(Ai), is simply the element P of Eq. (2)
with parameter l = 3n. Thus, with this choice of l, we are in fact trying to prove that〈

φi∞(Θ2)
〉
�

〈
φi∞(P )

〉
.

It will suffice to prove that for each j > i and v ∈ M∞(Aj )∥∥vφi,j (P )v∗ − φi,j (Θ2)
∥∥ � 1/2.
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Let S be the set of eigenvalue maps of φi,j . S is the disjoint union of the set S1 of eigenvalue
maps which are co-ordinate projections and the set S2 of eigenvalue maps which are point eval-
uations. (The fact that dim(Xi) �= 0 ensures that S1 ∩ S2 = ∅.) Note that |S1| = Ni,j . For λ ∈ S1,
let m(λ) denote the number of times that λ occurs as an eigenvalue map of some φi,j .

Write φi,j = γ1 ⊕ γ2, where γ1 is a V I map corresponding to the eigenvalue maps of φi,j

contained in S1, and γ2 corresponds similarly to the elements of S2. By construction, γ2(P ) is
a constant positive matrix-valued function over Xj . Put P̃ = γ1(1Mmi

(C(Xi))) ⊕ γ2(P )1/2, and

q = limn→∞ γ2(P )1/n. It follows that

φi,j (P ) = γ1(P ) ⊕ γ2(P ) = P̃
(
γ1(P ) ⊕ q

)
P̃ ,

and that the projection q corresponds to a trivial vector bundle.
Suppose that there exists v ∈ M∞(Aj ) such that∥∥vφi,j (P )v∗ − φi,j (Θ2)

∥∥ < 1/2.

Then, ∥∥vP̃
(
γ1(P ) ⊕ q

)
P̃ v∗ − (

γ1(Θ2) ⊕ γ2(Θ2)
)∥∥ < 1/2.

Cutting down by γ1(1Ai
) and setting w = γ1(1Ai

)vP̃ we have∥∥w
(
γ1(P ) ⊕ q

)
w∗ − γ1(Θ2)

∥∥ < 1/2, (6)

and this estimate holds a fortiori over any closed subset of Xj .

Fix a point x0 ∈ Xi and let C be the closed subset of Xj = X
×nj /ni

i consisting of those
(nj /ni)-tuples which are equal to x0 in those co-ordinates which are not the range of an element
of S1, and whose remaining co-ordinates belong to A ⊆ Xi . Notice that

C ∼= A×lNi,j ∼= (
S2)×lNi,j .

We have

γ1(P )|C ∼=
⊕
λ∈S1

lm(λ)⊕
m=1

λ∗(ξ⊗l
)
,

γ2(P )|C ∼= θlr ,

and

γ1(Θ2)|C ∼= θ2mult(γ1),

where r � mult(γ2). [26, Lemma 2.1] and (6) together imply that

θ2 mult(γ1) �
( ⊕ lm(λ)⊕

λ∗(ξ⊗l
)) ⊕ θlr
λ∈S1 m=1
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in the sense of Murray and von Neumann. In other words, there is a t ∈ N and a complex vector
bundle ω over C of fibre dimension (l − 2)mult(γ1) + lr such that

θ2 mult(γ1)+t ⊕ ω ∼=
( ⊕

λ∈S1

lm(λ)⊕
m=1

λ∗(ξ⊗l
)) ⊕ θlr+t .

Applying the total Chern class to this equation yields

c(ω) = c

(( ⊕
λ∈S1

lm(λ)⊕
m=1

λ∗(ξ⊗l
)) ⊕ θlr+t

)

=
∏
λ∈S1

c
(
λ∗(ξ⊗l

))lm(λ)

=
∏
λ∈S1

[
λ∗(c(ξ⊗l

))]lm(λ)
.

Let us take the elements of S1 to be numbered λ1, . . . , λNi,j
, so that

c(ω) =
Ni,j∏
k=1

(1 + e1,k + · · · + el,k)
lm(λ).

Recall our description of the ring structure of H ∗((S2)×l )⊗Ni,j from the end of Section 4.1.
The class clNi,j

(ω) is the sum of all possible products of lNi,j elements of the form es,ks or 1.
Since H ∗((S2)×l )⊗Ni,j is torsion free and the products in question generate independent copies
of Z whenever the products themselves are distinct, we see that clNi,j

(ω) �= 0 if even one of the
products in question is not zero. Since the only relation on the generators of H ∗((S2)×l )⊗Ni,j is
that e2

s,k = 0, we see that

Ni,j∏
k=1

l∏
s=1

es,k �= 0.

Thus, clNi,j
(ω) �= 0. This in turn necessitates rank(ω) � lNi,j —the nth Chern class of a vector

bundle of dimension < n is always zero. We conclude that

lNi,j � (l − 2)mult(γ1) + lr

� (l − 2)mult(γ1) + l mult(γ2)

� (l − 2)Mi,j + 2(Mi,j − Ni,j ).

Dividing the last inequality above by lMi,j we get

Ni,j � l − 2 + 2
(

1 − Ni,j
)

.

Mi,j l l Mi,j
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Using the assumption

Ni,j

Mi,j

� 6n − 1

6n
= 2l − 1

2l

we have

2l − 1

2l
� Ni,j

Mi,j

� l − 2

l
+ 2

l2
<

l − 1

l
,

a contradiction. �
5. Strict comparison implies bounded dimension growth

The next lemma says that if a simple V I algebra has strict comparison of positive elements,
then it not only has slow dimension growth, but even has slow dimension growth as a V I algebra.

Lemma 5.1. Let A be a simple V I algebra; suppose that A admits a standard decomposition
(Ai,φi) with seed space a CW-complex X. If A has strict comparison of positive elements, then
dim(X) = 0 (in which case A is AF), or for every i ∈ N,

Ni,j

Mi,j

j→∞−−−→ 0.

If A does not have strict comparison of positive elements, then

lim
i→∞ lim

j→∞
Ni,j

Mi,j

= 1. (7)

Proof. Suppose, for a contradiction, that A satisfies the hypotheses of the lemma, dim(X) � 1,
and there is some i0 ∈ N and δ > 0 such that

Ni0,j

Mi0,j

� δ, ∀j > i0.

We must show that A does not have strict comparison of positive elements and that (7) holds.
A is simple with dim(X) = 1, so Mi,j → ∞ as j → ∞ for any fixed i ∈ N. This forces

Ni,j → ∞, too, so that dim(Xi) → ∞ as i → ∞.
For any j > m > i0 we have

δ � Ni0,j

Mi0,j

= Ni0,m

Mi0,m

· Nm,j

Mm,j

.

The sequence (
Ni0,j

Mi0,j
)j>i0 is decreasing, so its limit exists and is larger than or equal to δ. It

follows that Nm,j /Mm,j approaches 1 as m,j → ∞, whence (7) holds. Now apply Lemma 4.1
to see that A must fail to have strict comparison of positive elements. �
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Proposition 5.2. Let A be a simple V I algebra with strict comparison of positive elements, and
suppose that A admits a standard decomposition (Ai,φi) with seed space a finite-dimensional
CW-complex X. Then, A has bounded dimension growth.

Proof. A satisfies the hypotheses of Lemma 5.1. If A is AF, then it has bounded dimension
growth, so we may assume that dim(X) � 1. The conclusion of Lemma 5.1 then implies that

Ni,j

Mi,j

j→∞−−−→ 0 (8)

for every i ∈ N. We will prove that A has very slow dimension growth in the sense of Gong;
bounded dimension growth follows by the reduction theorem of [15] or, alternatively, the classi-
fication theorem of [20].

Let there be given a positive tolerance ε > 0. For natural numbers j > i let π1, . . . , πNi,j
be

the co-ordinate projection maps from Xj = X
nj /ni

i to Xi appearing as eigenvalue maps of φi,j ,
and let li,j be the number of eigenvalue maps of φi,j which are point evaluations. Since A is
simple and dim(X) � 1, li,j0 > 0 for some j0 > i. Straightforward calculation then shows that
there are at least

li,j0 · Mj0,j = Mi,j · li,j0

Mi,j0

point evaluations in the map φi,j . Combining this with (8) yields

Lj :=
⌊

Mi,j

Ni,j

· li,j0

Mi,j0

⌋
j→∞−−−→ ∞.

In other words, if one wants to partition the eigenvalue maps of φi,j which are point evaluations
into Ni,j roughly equally sized multisets, then these multisets become arbitrarily large as j →
∞. (We say multisets as some point evaluations may well be repeated.) Assume that we have
specified such a partition, let S1, . . . , SNi,j

denote the multisets in the partition, and assume that
dim(Xi)

3/Lj < ε. Each f ∈ Sl , 1 � l � Ni,j , factors through any of the co-ordinate projections
π1, . . . , πNi,j

. Factor f ∈ Sl as f = f̃ ◦ πl , where f̃ : Xi → Xi has range equal to a point; let Rl

be the multiset of all maps from Xi to itself obtained in this manner. Let t (l) be the number of
copies of πl appearing among the eigenvalue maps of φi,j . Put

B
(l)
i = Mmi(t (l)+|Rl |) ⊗ C(Xi),

and observe that

rank(1
B

(l)
i

) = mi

(
t (l) + |Rl |

)
� |Rl | = |Sl | � Lj .

Define a map ψ(l) : Ai → B
(l)
i by

ψ(l)(a) =
(

t (l)⊕
m=1

a

)
⊕

( ⊕
˜

a ◦ f̃

)
.

f ∈Rl
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Put Bi = B
(1)
i ⊕· · ·⊕B

(Ni,j )

i , and let ψ : Ai → Bi be the direct sum of the ψ(l), 1 � l � Ni,j . For
each 1 � l � Ni,j , let Pl ∈ Aj be the projection which is the sum of the images of the unit of Ai

under all of the copies of πl in φi,j and all of the point evaluations in Sl . Let γl : B(l)
i → PlAjPl

be induced by πl , and let γ : Bi → Ai be the direct sum of the γl . We now have the factorisation

Ai
ψ−→ Bi

γ−→ Aj ,

and each direct summand B
(l)
i has the property that

dim(Xi)
3

rank(1
B

(l)
i

)
� dim(Xi)

3

Lj

< ε.

Both i and ε were arbitrary, so A has very slow dimension growth. �
Proposition 5.2 establishes the implications (ii) ⇒ (iv) and (ii) ⇒ (v) of Theorem 3.4. (The

first observation of the proof is that the hypotheses guarantee that A has slow dimension growth
as a V I algebra, and so a fortiori as an AH algebra.)

6. Finite decomposition rank

In the present section we prove the remaining implication of Theorem 3.4, namely that finite
decomposition rank implies strict comparison of positive elements in V I algebras. The technical
key step is Lemma 6.1 below; under the additional assumption of real rank zero, a related result
was already observed in [36, Proposition 3.7]. Our proof is inspired by that argument.

Lemma 6.1. Let A be a simple, separable and unital C∗-algebra with drA = n < ∞. If
a, d(0), . . . , d(n) ∈ A+ satisfy

dτ (a) < dτ

(
d(i)

)
for i = 0, . . . , n and every τ ∈ T (A), then

〈a〉 �
〈
d(0)

〉 + · · · + 〈
d(n)

〉
.

Proof. It will be convenient to set up some notation: Given 0 � α < β � 1, define functions on
the real line by

gβ(t) :=
{

0, t < β,

1, t � β,
, gα,β(t) :=

{0, t � α,

1, t � β,

(t − α)/(β − α) else

and

fα,β(t) :=
{0, t � α,

t, t � β,
β(t − α)/(β − α) else.
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Before turning to the proof, observe first that our hypotheses imply that a is not invertible in
A: indeed, if a was invertible, we had a1/n → 1A as n → ∞, so

1 = lim
i→∞ τ

(
a1/n

) = dτ (a) < dτ

(
d(i)

)
� 1,

a contradiction, whence 0 ∈ σ(a).
By passing to Mn+1(A) (which again has decomposition rank n by [18, Corollary 3.9]),

replacing each d(i) ∈ A ∼= e00Mn+1(A)e00 by a Cuntz equivalent element in the corner
eiiMn+1(A)eii for i = 1, . . . , n, and observing that dτ (a) < dτ (d

(i)) also holds for every
τ ∈ T (Mn+1(A)), we may as well assume that the d(i) themselves are already pairwise or-
thogonal.

For the actual proof of the lemma, we distinguish two cases. Suppose first that 0 ∈ σ(a) is an
isolated point. Then, there is θ > 0 such that

p := gθ (a) ∈ A

is a projection satisfying 〈p〉 = 〈a〉, whence dτ (a) = dτ (p) = τ(p) for all τ ∈ T (A). Further-
more, for any τ ∈ T (A) and i = 0, . . . , n, we have

dτ

(
d(i)

) = lim
δ↘0

τ
(
gδ/2,δ

(
d(i)

))
, (9)

so there are δτ > 0 and ητ > 0 such that

τ(p) = dτ (a) < dτ

(
d(i)

) − ητ < τ
(
gδτ /2,δτ

(
d(i)

))
for all i. Since the elements of A are continuous when regarded as functions on T (A), each τ

has an open neighborhood Uτ ⊂ T (A) such that

τ ′(p) < τ ′(gδτ /2,δτ

(
d(i)

))
for i = 0, . . . , n and τ ′ ∈ Uτ . Now by compactness of T (A) (and since, for any positive h,

gδ′/2,δ′(h) � gδ/2,δ(h) (10)

if only δ � δ′) it is straightforward to find δ1 > 0 such that

τ(p) < τ
(
gδ1/2,δ1

(
d(i)

))
for all i = 0, . . . , n and τ ∈ T (A). Now by [36, Proposition 3.7], we have

p � gδ1/2,δ1

(
d(0)

) + · · · + gδ1/2,δ1

(
d(n)

)
,

whence

〈a〉 = 〈p〉 �
〈
gδ /2,δ

(
d(0)

)〉 + · · · + 〈
gδ /2,δ

(
d(n)

)〉
�

〈
d(0)

〉 + · · · + 〈
d(n)

〉
.
1 1 1 1
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Next, suppose 0 is a limit point of σ(a). The proof in this case is similar to that of [36, Propo-
sition 3.7], but we have to deal with some extra technical difficulties. Since a = limε↘0 fε/2,ε(a)

and since the d(i) are pairwise orthogonal, it will be enough to show that

fε/2,ε(a) � d(0) + · · · + d(n)

for all ε > 0. So, given some ε > 0, we set

b := fε/2,ε(a) and c := (g0,ε/4 − gε/4,ε/2)(a),

then

c ⊥ b and b + c � a.

Since 0 is a limit point of σ(a), we have c �= 0, hence (each τ ∈ T (A) is faithful by simplicity
of A, c is continuous as a function on T (A) and T (A) is compact)

α := min
{
τ(c)

∣∣ τ ∈ T (A)
}

> 0.

Using that c � 1A and that c ⊥ b, we obtain for all τ ∈ T (A)

dτ (b) + α � dτ (b) + τ(c)

� dτ (b) + dτ (c)

= dτ (b + c)

� dτ (a)

and, by hypothesis,

dτ (b) < dτ

(
d(i)

) − α (11)

for i = 0, . . . , n and τ ∈ T (A).
Again, to show that b � d(0) + · · · + d(n) it will suffice to prove that

fη,2η(b) � d(0) + · · · + d(n)

for any given η > 0. To this end, we set

b̄ := gη/2,η(b) (12)

and choose 0 < δ2 < α/4 such that

τ(b̄) < τ
(
d̄(i)

) − 3α

4
(13)

for i = 0, . . . , n and τ ∈ T (A), where

d̄(i) := gδ /2,δ

(
d(i)

)
.
2 2
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The number δ2 is obtained in a similar way as δ1 in the first part of the proof, using compactness
of T (A): From (9) and (11) we see that for each τ ∈ T (A) there is δτ > 0 such that for i =
0, . . . , n

τ(b̄) � dτ (b)
(11)
< dτ

(
d(i)

) − α
(9)

� τ
(
gδτ /2,δτ

(
d(i)

)) − 3α

4
.

Each τ has an open neighborhood Uτ such that

τ ′(b̄) < τ ′(gδτ /2,δτ

(
d(i)

)) − 3α

4

for i = 0, . . . , n and τ ′ ∈ Uτ . Similar as in the first part of the proof, compactness of T (A) and
(10) now yield δ2 > 0 such that (13) holds.

Since drA = n, by [18, Proposition 5.1], there is a system (Fk,ψk,ϕk)k∈N of c.p. approxima-
tions for A such that the ϕk are n-decomposable and the ψk are approximately multiplicative. In
other words, for each k ∈ N there are finite-dimensional C∗-algebras Fk and c.p.c. maps

A
ψk−→ Fk

ϕk−→ A

such that

(i) ϕkψk(a) → a for each a ∈ A as k → ∞,
(ii) Fk admits a decomposition Fk = ⊕n

i=0 F
(i)
k such that

ϕ
(i)
k := ϕk|F (i)

k

preserves orthogonality (i.e., has order zero in the sense of [35, Definition 2.1(b)]) for each
i = 0, . . . , n and k ∈ N,

(iii) ‖ψk(aa′) − ψk(a)ψk(a
′)‖ → 0 for any a, a′ ∈ A as k → ∞.

We set

ψ
(i)
k (·) := 1

F
(i)
k

ψk(·)

for each i and k and note that the ψ
(i)
k are also approximately multiplicative for each i since the

1
F

(i)
k

are central projections in Fk . As in [18, Remark 5.2(ii)], we may (and will) assume that the

ψk are unital.
Recall from [36, 1.2], that each of the order zero maps ϕ

(i)
k has a supporting ∗-homomorphism

σ
(i)
k : F (i)

k → A′′;
this a ∗-homomorphism satisfying

ϕ
(i)
k (x) = σ

(i)
k (x)ϕ

(i)
k (1

F
(i)
k

) = ϕ
(i)
k (1

F
(i)
k

)σ
(i)
k (x) ∈ A

for all x ∈ F
(i)
k .
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We proceed to show that there is K ∈ N such that

τ
(
g1−α/4

(
ψ

(i)
k (b̄)

))
< τ

(
gα/4

(
ψ

(i)
k (d̄(i))

))
(14)

for all i = 0, . . . , n, τ ∈ T (F
(i)
k ) and k � K . If this was not the case, there would be a strictly

increasing sequence (kl)l∈N ⊂ N such that, for some fixed i0 ∈ {0, . . . , n}, there are τl ∈ T (F
(i0)
kl

)

satisfying

τl

(
g1−α/4

(
ψ

(i0)
kl

(b̄)
))

� τl

(
gα/4

(
ψ

(i0)
kl

(
d̄(i0)

)))
(15)

for all l ∈ N. But then

τl

(
ψ

(i0)
kl

(b̄)
)

� τl

(
g1−α/4

(
ψ

(i0)
kl

(b̄)
)) − α

4
(15)

� τl

(
gα/4

(
ψ

(i0)
kl

(
d̄(i0)

))) − α

4

� τl

(
ψ

(i0)
kl

(
d̄(i0)

)) − 2 · α

4
(16)

for all l ∈ N. Now fix some free ultrafilter ω ∈ βN \ N, then

τ̄ (·) := lim
ω

τlψ
(i0)
kl

(·)

obviously is a well-defined positive functional on A. It is tracial, since the τl are traces and the
ψ

(i0)
kl

are approximately multiplicative. It is a state, since τ̄ (1A) = 1 (the τl are states and the

ψ
(i0)
kl

are unital). We have now constructed a tracial state τ̄ on A satisfying

τ̄ (b̄) � τ̄
(
d̄(i0)

) − α

2
,

a contradiction to (13). Therefore, there is K ∈ N such that (14) holds for all i = 0, . . . , n,
τ ∈ T (F

(i)
k ) and k � K .

As a consequence, for i = 0, . . . , n and k � K there exist partial isometries v
(i)
k ∈ F

(i)
k such

that

(
v

(i)
k

)∗
v

(i)
k = g1−α/4

(
ψ

(i)
k (b̄)

)(
� g1−α/4,1

(
ψ

(i)
k (b̄)

))
(17)

and

v
(i)
k

(
v

(i)
k

)∗ � gα/4
(
ψ

(i)
k

(
d̄(i)

))
(the g1−α/4(ψ

(i)
k (b̄)) and gα/4(ψ

(i)
k (d̄(i))) are projections in F

(i)
k —which in turn are finite-

dimensional algebras, hence satisfy the comparison property).
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Note that

v
(i)
k

(
v

(i)
k

)∗ � gα/4
(
ψ

(i)
k

(
d̄(i)

))
� gα/4

(
ψk

(
d̄(i)

))
� g0,δ2

(
ψk

(
d̄(i)

))
� 1Fk

for i = 0, . . . , n and k � K ; since the v
(i)
k (v

(i)
k )∗ are projections, from this one easily concludes

that

g0,δ2

(
ψk

(
d̄(i)

))
v

(i)
k

(
v

(i)
k

)∗ = v
(i)
k

(
v

(i)
k

)∗
.

Because the ψk are approximately multiplicative, and using that the d̄(i) are mutually orthogonal,
we also have ∥∥∥∥∥g0,δ2

(
ψk

(
n∑

j=0

d̄(j)

))
− ψk

(
n∑

j=0

g0,δ2

(
d̄(j)

))∥∥∥∥∥ k→∞−−−→ 0

and ∥∥g0,δ2

(
ψk

(
d̄(i′)))v(i)

k

(
v

(i)
k

)∗ − δi′,i · v(i)
k

(
v

(i)
k

)∗∥∥ k→∞−−−→ 0

for i, i′ ∈ {0, . . . , n} (δi,i′ denotes the Kronecker delta of i and i′). Moreover, we have∥∥∥∥∥
n∑

j=0

g0,δ2

(
d̄(j)

)
ϕk

(
v

(i)
k

(
v

(i)
k

)∗) − ϕk

(
ψk

(
n∑

j=0

g0,δ2

(
d̄(j)

))
v

(i)
k

(
v

(i)
k

)∗
)∥∥∥∥∥ � 2μ

1
2
k

by [18, Lemma 3.5] (an easy consequence of Stinespring’s theorem), where

μk := max

{∥∥∥∥∥(ϕkψk − id)

(
n∑

j=0

g0,δ2

(
d̄(j)

))∥∥∥∥∥,

∥∥∥∥∥(ϕkψk − id)

((
n∑

j=0

g0,δ2

(
d̄(j)

))2)∥∥∥∥∥
}

.

Observing that μk → 0 as k → ∞ and combining all these facts we obtain∥∥∥∥∥
n∑

j=0

g0,δ2

(
d̄(j)

)
ϕk

(
v

(i)
k

(
v

(i)
k

)∗) − ϕk

(
v

(i)
k

(
v

(i)
k

)∗)∥∥∥∥∥ k→∞−−−→ 0

and ∥∥g0,δ2

(
d̄(i′))ϕk

(
v

(i)
k

(
v

(i)
k

)∗) − δi,i′ · ϕk

(
v

(i)
k (v

(i)
k )∗

)∥∥ k→∞−−−→ 0

for i, i′ = 0, . . . , n. Using that

ϕk

(
v

(i)
k

(
v

(i)
k

)∗) = ϕ
(i)
k

(
v

(i)
k

(
v

(i)
k

)∗) = ϕ
(i)
k (1 (i) )σ

(i)
k

(
v

(i)
k

)
σ

(i)
k

(
v

(i)
k

)∗

Fk
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it follows easily that∥∥∥∥∥σ
(i′)
k

(
v

(i′)
k

)∗
ϕ

(i′)
k (1

F
(i′)
k

)
1
2

n∑
j=0

g0,δ2

(
d̄(j)

)
ϕ

(i)
k (1

F
(i)
k

)
1
2 σ

(i)
k

(
v

(i)
k

)

− δi′,i · ϕ(i)
k

((
v

(i)
k

)∗
v

(i)
k

)∥∥∥∥∥ k→∞−−−→ 0

for i, i′ = 0, . . . , n, whence∥∥∥∥∥s∗
k

n∑
j=0

g0,δ2/2
(
d̄(j)

)
sk − fη,2η(b)

1
2

(
n∑

i=0

ϕ
(i)
k

((
v

(i)
k

)∗
v

(i)
k

))
fη,2η(b)

1
2

∥∥∥∥∥ k→∞−−−→ 0,

where

sk :=
n∑

i=0

ϕ
(i)
k (1

F
(i)
k

)
1
2 σ

(i)
k

(
v

(i)
k

)
fη,2η(b)

1
2

for k � K . We now have

lim
k→∞

∥∥∥∥∥fη,2η(b) − s∗
k

n∑
j=0

g0,δ2

(
d̄(j)

)
sk

∥∥∥∥∥
= lim

k→∞

∥∥∥∥∥fη,2η(b) − fη,2η(b)
1
2

(
n∑

i=0

ϕ
(i)
k

((
v

(i)
k

)∗
v

(i)
k

))
fη,2η(b)

1
2

∥∥∥∥∥
(17)

� lim
k→∞

∥∥∥∥∥fη,2η(b) − fη,2η(b)
1
2

(
n∑

i=0

ϕ
(i)
k

(
g1−α/4,1

(
ψ

(i)
k (b̄)

)))
fη,2η(b)

1
2

∥∥∥∥∥
(iii)= lim

k→∞

∥∥∥∥∥fη,2η(b) − fη,2η(b)
1
2

(
n∑

i=0

ϕ
(i)
k ψ

(i)
k

(
g1−α/4,1(b̄)

))
fη,2η(b)

1
2

∥∥∥∥∥
(i)= lim

k→∞
∥∥fη,2η(b) − fη,2η(b)

1
2 g1−α/4,1(b̄)fη,2η(b)

1
2
∥∥

(12)= 0.

This shows that

fη,2η(b) �
n∑

j=0

g0,δ2

(
d̄(j)

)
.

Since η was arbitrary, and because

n∑
g0,δ2

(
d̄(j)

)
�

n∑
d̄(j),
j=0 j=0
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it follows that

b �
n∑

j=0

d(j),

as desired. �
Corollary 6.2. Let A be as in the hypotheses of Theorem 3.4. If A has finite decomposition rank,
then A has strict comparison of positive elements.

Proof. We prove the contrapositive. Suppose that A does not have strict comparison of positive
elements and fix a standard decomposition as in 3.4. Then, condition (7) of Lemma 5.1 holds. It
follows that A satisfies the hypotheses of Lemma 4.1, and so strict comparison fails in the manner
prescribed the in the conclusion of that lemma. In light of Lemma 6.1, this failure excludes the
possibility that A has finite decomposition rank. �

The preceding corollary establishes the implication (iii) ⇒ (ii) of Theorem 3.4.

7. Real rank zero

In this section we prove that an algebra of real rank zero which also satisfies the hypotheses
of Theorem 3.4 must then satisfy conditions (i)–(vi) of the same theorem, thus completing the
proof of our main result. The result is a special case of a theorem of Toan Ho and the first named
author which will appear in Toan Ho’s PhD thesis. As no preprint of this result was available at
the time of writing, we give a proof here which applies only to V I algebras.

Let X be a compact connected Hausdorff space and a a self-adjoint element of Mn(C(X)).
For each x ∈ X, form an n-tuple consisting of the eigenvalues of a listed in decreasing order.
For each m ∈ {1, . . . , n} let λm : X → R be the function whose value at x is the mth entry of the
eigenvalue n-tuple for x. The variation of the normalised trace of a (v. [1]), denoted T V (a), is
defined as

sup

{∣∣∣∣∣1

n

n∑
m=1

(
λm(x) − λm(y)

)∣∣∣∣∣: x, y ∈ X

}
.

Suppose that A = limi→∞(Mmi
(C(Xi),φi) is of real rank zero, and let a be a self-adjoint ele-

ment of some Mmi
(C(Xi)). Then, by Theorem 1.3 of [1], the variation of the normalised trace

tends to zero as j → ∞ for each direct summand of φi,j (a) corresponding to a connected com-
ponent of Xj .

Proposition 7.1. Let A = limi→∞(Ai,φi) be a simple V I algebra with seed space a finite-
dimensional CW-complex. If A has real rank zero, then A has bounded dimension growth.

Proof. If A is AF, then there is nothing to prove. If A is not AF, then all but finitely many of the
φis contain at least one co-ordinate projection as an eigenvalue map, and each Xi has dimension
strictly greater than zero. It will be enough to prove that for each i ∈ N,

Ni,j

Mi,j

j→∞−−−→ 0.

The proof of Proposition 5.2 then shows that A has bounded dimension growth.
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Let ε > 0 be given, and suppose for a contradiction that for some i ∈ N and c > 0 we have

Ni,j

Mi,j

j→∞−−−→ c.

By increasing i if necessary (and following the lines of the proof of Lemma 5.1) we may assume
that c > 7/8. Choose a continuous function f : Xi → [0,1] such that for some points x0, x1 in
the same connected component of Xi we have f (x0) = 0 and f (x1) = 1; put a := f · 1Ai

.
For any j > i we have

φi,j (a)(x) = diag
(
a(γ1(x)), . . . , a

(
γMi,j

(x)
))

, ∀x ∈ Xj ,

where the γls are the eigenvalue maps of φi,j . Let π1, . . . , πNi,j
: Xj → Xi be the distinct

co-ordinate projections appearing among the γls. Since T V (φi,j (a)) is unaffected by unitary
conjugation in Aj , we may assume that

φi,j (a)(x) = diag
(
a
(
π1(x)

)
, . . . , a

(
πNi,j

(x)
)
, . . . , a

(
γMi,j

(x)
))

, ∀x ∈ Xj .

Fix a point y0 ∈ Xj which when viewed as an element of a Cartesian power of Xi has the
value x0 in each co-ordinate; define y1 similarly with respect to x1, and notice that y0 and y1
are in the same connected component of Xj . Then, the eigenvalue list of φi,j (a)(y0) contains
at least miNi,j 0s, while the list for φi,j (a)(y1) contains at least miNi,j 1s. By the pigeonhole
principle, at least mi[Mi,j − 2(Mi,j − Ni,j )] of the eigenfunctions λm corresponding to φi,j (a)

have the value 0 at y0 and 1 at y1, while the remaining 2mi(Mi,j − Ni,j ) eigenfunctions satisfy
λm(y1) − λm(y0) � −1. Now,

T V
(
φi,j (a)

)
�

∣∣∣∣∣ 1

miMi,j

mj∑
m=1

(
λm(y1) − λm(y0)

)∣∣∣∣∣
� Mi,j − 4(Mi,j − Ni,j )

Mi,j

= 4Ni,j

Mi,j

− 3

>
1

2

since Ni,j /Mi,j > c > 7/8. This contradicts our real rank zero assumption for A, completing the
proof. �
8. Non-Z-stable VI algebras

We now give examples of non-isomorphic V I-algebras which cannot be distinguished using
topological K-theory and traces. These are not the first such—examples are already given in
[26]—but the results of the present paper allow us to construct a large class of examples with
relatively little further effort. They will also demonstrate the variety of tracial state spaces which
can occur in a simple nuclear C∗-algebra of infinite decomposition rank.
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Any subgroup G of Q corresponds to a list of prime powers PG = {pn1
1 ,p

n2
2 , . . .},

ni ∈ Z+ ∪ {∞}, in the following sense: the elements of G are those rationals which, when in
loweset terms, have denominators of the form p

r1
1 p

r2
2 . . . , where ri < ni for all i and ri = 0 for

all but finitely many i. If ni = ∞ for some i then we will say that G is of infinite type. Let p be
a prime. If p∞ ∈ PG and H is the subgroup of Q with PH = {p∞}, then H ⊗ G ∼= G.

Let X be a contractible and finite-dimensional CW-complex. Construct a V I algebra AX =
limi→∞(Ai,φi) satisfying:

(i) The ratio N1,j /M1,j does not vanish;
(ii) AX is simple by virtue of a judicious inclusion of point evaluations as eigenvalue maps of

the φi ;
(iii) The K0-group of AX (necessarily a subgroup of Q by the contractibility of X1 = X and

each Xi ) is of infinite type.

Inspection of Villadsen’s construction in [33] shows that for a fixed X, one can arrange for
K0(AX) to be an arbitrary infinite type subgroup of Q. There are uncountably many such sub-
groups, and hence, for a fixed X, uncountably many non-isomorphic algebras AX satisfying
(i)–(iii). Condition (i) ensures that AX does not have strict comparison of positive elements (use
Lemmas 4.1 and 5.1).

Fix an algebra AX as above. Let p be a prime such that p∞ ∈ PK0(AX), and let U be a UHF
algebra with PK0(U) = {p∞}. We claim that the tensor product AX ⊗ U has the same topological
K-theory and tracial state space as A. At the level of K-theory this statement follows from the
Künneth theorem, the triviality of the K1-groups of both U and AX (in the case of AX this is due
to the contractibility of Xi ), and the isomorphism

K0(AX) ⊗ K0(U) ∼= K0(AX).

At the level of tracial state spaces the statement is due to the fact that U admits a unique tracial
state. There is only one possible pairing of traces with K0 in each of AX and AX ⊗ U, as their
K0-groups are subgroups of the rationals. As noted above, AX does not have strict comparison of
positive elements, but AX ⊗ U does by virtue of [22, Lemma 5.1]. Thus, AX and AX ⊗ U are not
isomorphic, and by varying X and K0(AX) independently we obtain a large class of examples of
the desired variety.

Straightforward but laborious calculation shows that the tracial state space of AX as above is
a Bauer simplex with extreme boundary homeomorphic to X×∞. (The details of this calculation
are more or less contained in the proof of [30, Theorem 4.1]—we will not reproduce them here.)
AX also has infinite decomposition rank by Theorem 3.4, and this does not depend on X being
contractible. Thus, a large variety of structure can occur in the tracial state space of a simple
nuclear C∗-algebra with infinite decomposition rank.

Finally, we remark that infinite decomposition rank can also occur in the case of a simple AH
algebra with unique tracial state, as observed in [36, Example 6.6(i)], using the examples of [34].
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