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Question (1)

Are there “two–term” (“second-term”) Weyl asymptotics for the
isotropic stable processes (fractional Laplacian of order 0 < α < 2), and
even perhaps for other subordinations of Brownian motion such a
relativistic Brownian motion, in domains of Euclidean space under
Dirichlet boundary conditions? Answer: Unknown as of now

Question (2)

What about two-term asymptotics for the trace of the Dirichlet (“killed”)
semigroup? Answer: Yes for stable processes.

Question (3)

Can one “feel” some“fractional Laplacian geometry" from the heat
asymptotics? Is there a McKean-Singer theorem? Answer: Don’t know yet
but . . .

Question (4)

Question the questions: Why should we be interested in these questions?
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I D ⊂ Rd , d ≥ 1, |D| = Vol(D), |∂D| = Area(∂D).

{
∆ϕk (x) = −λkϕk (x), x ∈ D
ϕk (x) = 0, x ∈ ∂D

has eigenvalues satisfying:

0 < λ1 < λ2 ≤ λ3 ≤ · · ·λk →∞.

Example

D = [−1,1] in the real line has eigenfunctions ϕk (x) = sin(kπx) and
eigenvalues λk = k2π2.

Example

For square in plane D = [−1,1]× [−1,1], eigenfunctions are products of
sin(kπx and sin(nπx) and eigenvalues are sums k2π2 + n2π2, etc.

Example

For the disc in the plane or balls in Rd , eigenfunctions are Bessel functions
and eigenvalues are "their" roots but even this case is already complicated.
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A Celebrated Theorem of Herman Weyl, know as "Weyl’s Law":

Definition
The counting function: ND(λ) = card{λk |λk < λ}=number of
eigenvalues not exceeding λ.

Theorem (Weyl’s Law, 1912:)

lim
λ→∞

λ−d/2ND(λ) =
|D|

(4π)d/2Γ(d/2 + 1)
= Cd |D|
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Some History

I Weyl’s theorem had been conjectured by Hendrik Antoon Lorentz
(1902 Nobel Prize) in October 1910 in his "Old and new problems
in physics" lectures at Göttingen.

I Lorentz gave a series of six lectures, the conjecture was stated at
the end of the 4th lecture.

I Göttingen had an endowed prize (the Paul Wolfskehl prize) for
proving, or disproving, Fermat’s last theorem. The donor
stipulated that as long as the prize was not awarded, the proceeds
from the principal should be used to invite an eminent scientists to
deliver a series of lectures. Other eminent scientist that delivered
the Wolfskehl Lectures included Poincaré, Einstein, Planck and
Bohr.

I Note:The prize was awarded to Andrew Wiles in 1997.
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Quoting from M. Kac, celebrated “Can one hear the shape of a drum?":

“Hilbert predicted that the theorem would not be proved in his life time. Well,
he was wrong by many, many years (he died in 1943). For less than two
years later Hermann Weyl, who was present at the Lorentz’ lecture and
whose interest was aroused by the problem, proved the theorem in question.
Weyl used in a masterly way the theory of integral equations, which his
teacher Hilbert developed only a few years before, and his proof was a
crowning achievement of this beautiful theory."

Weyl’s Law had been proved for cubes in R3 by L. Rayleigh and J.H. Jeans in
1905. However, Jean’s only contribution seems to be the following
observation: "It seems that Lord Rayleigh has introduced an unnecessary
factor 8 by counting negative as well as positive values of his integers."

Weyl wrote three papers on this topic (including other boundary value
problems such as the elastic vibrations of a homogeneous body) around this
time. He also made the following conjecture.
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Conjecture (Weyl 1913)

ND(λ) = Cd |D|λd/2 − C
′

d |∂D|λ(d−1)/2 + o(λ(d−1)/2)), as λ→∞,

Theorem (Hörmander 1968, Seeley 1978)

ND(λ) = Cd |D|λd/2 + O(λ(d−1)/2), as λ→∞.

Theorem (Ivri (1980), Melrose (1980): Conjecture is true under)

∂D ∈ C∞ and “measure of all periodic geodesic billiards is zero”.

In "Ramifications, old and new, of the eigenvalue problem" Weyl (1950): "I
feel that these informations about the proper oscillations of a membrane,
valuable as they are still incomplete. I have certain conjectures on what a
complete analysis of their asymptotic behavior should aim at; but since for
more than 35 years I have made no serious attempt to prove them, I think I
had better keep them to myself."
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1 M. Kac early 50’s proved that Weyl’s one–term asymptotics
can be obtained from the heat kernel (“hence” from Brownian
motion) and tauberian theorem.

2 Kac’s method became (and is) the standard method for first
order asymptotics. It has been used in many settings.
Blumenthal and Getoor used it in 1959 to obtain a Weyl law
for stable (and other) processes.

3 Kac’s method: The behavior of the counting function ND(λ)
as λ→∞ follows from the behavior of the trace (partition
function) Zt (D) as t →∞ of the “heat kernel” (“heat
semigroup”) associated with the corresponding PDE–in the
above case the Laplacia.
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A couple of references

1 For historical account: "Mathematical Analysis of Evolution,
information and complexity."

Chapter titled: "Weyl’s Laws: Spectral Properties of the Laplacian
in Mathematics and Physics" Wolfgang Arendt, Robin Nittka,
Wolfgang Peter, Frank Steiner

2 For many applications of Ivrii and Melrose: The asymptotic
distribution eigenvalues of PDE’s, Safarov and Vassiliev, AMS
Translation monograph, Vol 155–(1996).
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Brownian motion killed 
upon leaving D

ZD(t) =
∞∑
j=0

e−tλj =

∫
D

pD
t (x , x)dx = (Laplace transform of Nd (λ))

where PD
t (x , x) ="the probability that the Brownian particle makes a

round trip from x back to x without leaving the domain D."

pD
t (x , x) =

1
(4πt)d/2 Px{τD > t |Bt = x} = pt (0)Px{τD > t |Bt = x}

with
pt (x) =

1
(4πt)d/2 e

−|x|2
4t
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Theorem (M. Kac 1951, perhaps earlier)

lim
t↓0

td/2ZD(t) =
|D|

(4π)d/2 = p1(0) |D|

The Karamata tauberian theorem
Suppose µ is a measure on [0,∞) with

lim
t→0

tγ
∫ ∞

0
e−tλdµ(λ) = A, γ > 0.

Then
lim

a→∞
a−γµ[0,a) =

A
Γ(γ + 1)

Corollary (Kac⇒Weyl’s asymptotics)

lim
λ→∞

λ−d/2ND(λ) =
p1(0) |D|

Γ(d/2 + 1)
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Theorem (Minakshiusundaram ’53–heat invariance)

D ⊂ Rd , ∂D ∈ C∞. Then

ZD(t) = (4πt)−d/2

(
|D| −

√
πt
2
|∂D|+ o(t1/2)

)
, t ↓ 0

More, the function ZD(t) has an “expansion” in t for small t .

Theorem (J. Brossard and R. Carmona 1986)

D ⊂ Rd is bounded with C1 boundary. Then

ZD(t) = (4πt)−d/2

(
|D| −

√
πt
2
|∂D|+ o(t1/2)

)
, t ↓ 0

Remark
For domains as in Ivri-Melrose, Brossard-Carmona also follows by integrating
from the asymptotics of ND(λ). That is, from asymptotics of the measure at
infinity one gets asymptotics of its Laplace transform at zero–But not the
other way around.
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Definition (R-Smooth or C1,1 domains)

D ⊂ Rd is R-smooth if ∀ x0 ∈ ∂D there are two open balls B1 and B2 with radii
R such that

B1 ⊂ D, B2 ⊂ Rd \ (D ∪ ∂D) and ∂B1 ∩ ∂B2 = x0.

Theorem (M. van den Berg 1987. Uniform in t)

Let ∂D be R–smooth. Then for all t > 0,∣∣∣∣∣ZD(t)− (4πt)−d/2

(
|D| −

√
πt
2
|∂D|

)∣∣∣∣∣ ≤ d4

πd/2

|D|t
td/2R2 .

Using the celebrated McKean–Singer (1967) Theorem

lim
t→0

{
ZD(t)− (4πt)−1

(
|D| −

√
πt
2
|∂D|

)}
=

(1− r)

6
,

D ⊂ R2, r number of holes in D, van den Berg showed that his bound is best
possible in both R and t .
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In his 1966 “Can one hear the shape of a drum,” Kac derived the second-term
asymptotic for ZD(t) for polygons, i.e., some domains with corners.

Theorem (R. Brown 1993)

If D ⊂ Rd is bounded with Lipschitz boundary, then

ZD(t) = (4πt)−d/2

(
|D| −

√
πt
2
|∂D|+ o(t1/2)

)
, t ↓ 0

Also for Neumann conditions with (−)→ (+) in the second term.

Remark
Proved at the “right time” given the development of harmonic analysis and
elliptic boundary value problems in Lipschitz domains of the 80’s and 90’s.

Remark
Similar results hold with Robin boundary conditions: ∆ϕ = −λϕ in D and
∂ϕ
∂η + kϕ = 0 in ∂D. (But only for smooth domains and manifolds.)
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For Stable processes

Theorem ( R.B.–Kulczycki (2008) & R.B.–Kulczycki, Siudeja (2009))

1 The van den Berg result (two–term uniform in t for R–smooth domains)
and

2 The Brown (two–term asymptotics for Lipschitz domains)

both hold for symmetric stable processes.

Remark
Two-term Weyl asymptotics do not follow from this. (As of now no “heat”
analysis gives two-term Weyl asymptotics, even for the Laplacian!). So, the
question remains open for fractional Laplacians.

Progress may depend on the development of some kind of “Ivri–Melrose
machinery” via a “wave” group for stable processes. Such developments will
be very interesting, independently of these applications and perhaps will
“free” us probabilists from the “chains” of the heat equation.
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Lévy Processes

Constructed by Paul Lévy in the 30’s (shortly after Wiener constructed
Brownian motion). Other names: de Finetti, Kolmogorov, Khintchine, Itô.

I Rich stochastic processes, generalizing several basic processes in
probability: Brownian motion, Poisson processes, stable processes,
subordinators, . . .

I Regular enough for interesting analysis and applications. Their paths
consist of continuous pieces intermingled with jump discontinuities at
random times. Probabilistic and analytic properties studied by many.

I Many Developments in Recent Years:

I Applied: Queueing Theory, Math Finance, Control Theory, Porous
Media . . .

I Pure: Investigations on the “fine” potential and spectral theoretic
properties for subclasses of Lévy processes. In recent year there
have been many techniques developed to study the heat kernels for
many (not all) Lévy processes. This is a very active area of
research involving now a very large number of people.
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Definition

A Lévy Process is a stochastic process X = (Xt ), t ≥ 0 with
I X has independent and stationary increments

I X0 = 0 (with probability 1)

I X is stochastically continuous: For all ε > 0,

lim
t→s

P{|Xt − Xs| > ε} = 0

Note: Not the same as a.s. continuous paths. However, it gives
“cadlag" paths: Right continuous with left limits.
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I Stationary increments: 0 < s < t <∞, A ∈ Rd Borel

P{Xt − Xs ∈ A} = P{Xt−s ∈ A}

I Independent increments: For any given sequence of ordered times

0 < t1 < t2 < · · · < tm <∞,

the random variables

Xt1 − X0, Xt2 − Xt1 , . . . ,Xtm − Xtm−1

are independent.

The characteristic function of Xt is

ϕt (ξ) = E
(
eiξ·Xt

)
=

∫
Rd

eiξ·xpt (dx) = (2π)d/2p̂t (ξ)
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The Lévy–Khintchine Formula

The characteristic function has the form ϕt (ξ) = e−tρ(ξ), where

ρ(ξ) = −ib · ξ + 〈A · ξ, ξ〉+

∫
Rd

(
1− eiξ·x + iξ · x1{|x|<1}(x)

)
ν(dx)

for some b ∈ Rd , a non–negative definite symmetric n × n matrix A and a
Borel measure ν on Rd with ν{0} = 0 and∫

Rd
min

(
|x |2,1

)
ν(dx) <∞.

ρ(ξ) is called the symbol of the process or the characteristic exponent. The
triple (b,A, ν) is called the characteristics of the process.

Converse also true. Given such a triplet we can construct a Lévy
process.
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Examples

1. Standard Brownian motion:
With (0, I,0), I the identity matrix,

Xt = Bt , Standard Brownian motion

2. Gaussian Processes, “General Brownian motion”:
(0,A,0), Xt is “generalized” Brownian motion, mean zero, covariance

E(X j
sX i

t ) = aij min(s, t)

Xt has the normal distribution (assume here that det(A) > 0)

1
(2πt)d/2

√
det(A)

exp
(
− 1

2t
x · A−1x

)

3. “Brownian motion” plus drift: With (b,A,0) get gaussian processes
with drift:

Xt = bt + Gt
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4. Poisson Process: The Poisson Process Xt = πt (λ) of intensity λ > 0 is
a Lévy process with (0,0, λδ1) where δ1 is the Dirac delta at 1.

P{πt (λ) = m} =
e−λt (λt)m

m!
, m = 1,2, . . .

πt has continuous paths except for jumps of size 1 at the random times

τm = inf{t > 0 : πt (λ) = m}

5. Compound Poisson Process Let Y1,Y2, . . . be i.i.d. and independent
of the πt with distribution ν. The process

Xt = Y1 + Y2 + · · ·+ Yπt (λ) = Sπt (λ)

is a Lévy process. By independence

E [eiξ·Xt ] =
∞∑

m=0

P{πt = m}E [eiξ·Sm ]

=
∞∑

m=0

e−λt (λt)m

m!
(ν̂(ξ))m = e−λt(1−ν̂(ξ))

⇒ ρ(ξ) = λ

∫
Rd

(
1− eix·ξ) ν(dx)
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6. Relativistic Brownian motion According to quantum mechanics, a
particle of mass m moving with momentum p has kinetic energy

E(p) =
√

m2c4 + c2|p|2 −mc2

where c is speed of light. Then ρ(p) = −E(p) is the symbol of a Lévy
process, called “relativistic Brownian motion."

7. The rotationally invariant stable processes: Self–similar processes
Xα

t with symbol
ρ(ξ) = −|ξ|α, 0 < α ≤ 2.

That is,
ϕt (ξ) = E

(
eiξ·Xα

t

)
= e−t|ξ|α

α = 2, Brownian motion, α = 1, Cauchy processes. Transition
probabilities:

Px{Xα
t ∈ A} =

∫
A

pαt (x − y)dy , any Borel A ⊂ Rd

pαt (x) =
1

(2π)d

∫
Rd

e−iξ·xe−t|ξ|αdξ
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p2
t (x) =

1
(4πt)d/2 e−

|x|2
4t , α = 2, Brownian motion

p1
t (x) =

Cd t

(|x |2 + t2)
d+1

2
, α = 1, Cauchy Process

For any a > 0, the two processes

{η(at) ; t ≥ 0} and {a1/αηt ; t ≥ 0},

have the same finite dimensional distributions (self-similarity).

In the same way, the transition probabilities scale similarly to those for
BM:

pαt (x) = t−d/αpα1 (t−1/αx)

and
pαt (0) = t−d/αpα1 (0)
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The Lévy “free” semigroup and generator

Tt f (x) = E [f (X (t))|X0 = x ] = E0[f (X (t) + x)], f ∈ S(Rd ).

Tt f (x) =

∫
Rd

f (x + y)pt (dy) = pt ∗ f (x) =
1

(2π)d

∫
Rd

e−ix·ξetρ(ξ) f̂ (ξ)dξ

Generator:

Af (x) =
∂Tt f (x)

∂t

∣∣∣
t=0

= lim
t→0

1
t

(
Ex [f (X (t)]− f (x)

)
=

1
(2π)d

∫
Rd

e−ix·ξρ(ξ)f̂ (ξ)dξ = a pseudo diff operator, in general

R. Bañuelos (Purdue) Weyl & Heat Cork, October 13, 2011



From the Lévy–Khintchine formula (and properties of the Fourier transform),

Af (x) =
∑
i=1

bi∂i f (x) +
∑
i,j

ai,j∂i∂j f (x)

+

∫ [
f (x + y)− f (x)− y · ∇f (x)χ{|y|<1}

]
ν(dy)

Examples:
I Standard Brownian motion (running at twice the usual speed):

Af (x) = ∆f (x)

I Poisson Process of intensity λ:

Af (x) = λ
[
f (x + 1)− f (x)

]
I Rotationally Invariant Stable Processes of order 0 < α < 2, Fractional

Diffusions:

Af (x) = −(−∆)α/2f (x)

= Aα,d
∫

f (y)− f (x)

|x − y |d+α
dy
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ZD(t) =
∞∑
j=0

e−tλα
j =

∫
D

pD,α
t (x , x)dx

= pαt (0) |D| −
∫

D
rD
t (x , x)dx

Lemma

lim
t→0

td/α
∫

D
rD
t (x , x)dx = 0

Corollary (For any set of finite volume D)

lim
t→0

td/αZD(t) = pα1 (0)|D|

Corollary (Weyl’s asymptotics)

lim
λ→∞

λ−d/αND(λ) =
pα1 (0)|D|

Γ(d/α + 1)

Proved under assumptions on ∂D by Blumenthal and Getoor 1959.
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Theorem (For R-smooth domains: R.B. T. Kulczycki 2009)∣∣∣∣ZD(t)− C1(α,d) |D|
td/α +

C2(α,d) |∂D|t1/α

td/α

∣∣∣∣ ≤ C3 |D|t2/α

R2td/α , t > 0.

Theorem (For Lipschitz domains: R.B.–T. Kulczycki, B. Siudeja 2010)

td/αZD(t) = C1(α,d) |D| − C2(α,d) |∂D|t1/α + o
(

t1/α
)
, t ↓ 0

C1(α,d) = pα1 (0) =
ωd Γ(d/α)

(2π)dα
,

C2(α,d) =

∫ ∞
0

rH
1 (~q, ~q) dq, H =

{
x ∈ Rd : x1 > 0

}
, ~q = (q,0, . . .0)

Question
Is there a McKean–Singer type result for stable processes/fractional
Laplacian?
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The Weyl one-term asymptotic gives: For any 0 < α ≤ 2

λk ∼ C(α)
kα/d

|D|α/d , k →∞,

C(α) = (4π)α/2 [Γ(d/2 + 1)]α/d

Pólya’s Conjectured (1961), α = 2.

λk ≥ C(2)
k2/d

|D|2/d , ∀ k ≥ 1.

Known for domains that tile the plane, open even for the disk!

Berezin (1972), Li-Yau (1983): For the Laplacian, α = 2

k∑
j=1

λj ≥
d

d + 2
C(2)

k2/d+1

|D|2/d

⇒ λk ≥
d

d + 2
C(2)

k2/d

|D|2/d
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S. Yolcu (2010) and S. Yolcu and T. Yolcu (2010): For the α Laplacian
We also have

k∑
j=1

λj ≥
d

d + α
C(α)

k1+α/d

|D|α/d .

and

λk ≥
d

d + 2
C(α)

kα/d

|D|α/d
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Integrating the counting measure ND(s)

k∑
j=1

λj =

∫ ∞
0

(k − ND(s))+ ds,

With α = 2, the two-term Weyl asymptotic for ND(s) gives

k∑
j=1

λj =
d

d + 2
C(2)

k1+ 2
d

|D|2/d + C̃(d)
|∂D|k1+ 1

d

|D|1+ 1
d

+ o(k1+ 1
d ), k →∞

R. Frank and G. Leader 2010
This holds for all 0 ≤ α ≤ 2, even without the two-term Weyl asymptotics. The
proof comes from studying the trace of perturbations of "heat" semigroup
associated with the operator ∆α/2. It requires less smoothness than the
two-term Weyl formula.
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Thank you!
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