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Abstract

Let Xt be a Cauchy process in Rd, d ≥ 1. We investigate some of
the fine spectral theoretic properties of the semigroup of this process
killed upon leaving a domain D. We establish a connection between
the semigroup of this process and a mixed boundary value problem for
the Laplacian in one dimension higher, known as the “Mixed Steklov
Problem.” Using this we derive a variational characterization for the
eigenvalues of the Cauchy process in D. This characterization leads to
many detailed properties of the eigenvalues and eigenfunctions for the
Cauchy process inspired by those for Brownian motion. Our results are
new even in the simplest geometric setting of the interval (−1, 1) where
we obtain more precise information on the size of the second and third
eigenvalues and on the geometry of their corresponding eigenfunctions.
Such results, although trivial for the Laplacian, take considerable work
to prove for the Cauchy processes and remain open for general sym-
metric α–stable processes. Along the way we present other general
properties of the eigenfunctions, such as real analyticity, which even
though well known in the case of the Laplacian, are not rarely available
for more general symmetric α–stable processes.
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1 Introduction

The potential theory for the symmetric α-stable processes, 0 < α < 2, in do-
mains of Euclidean space has been extensively studied by many researchers
for many years. In particular, many of the “fine” and now well known re-
sults for Brownian motion (α = 2) have been extended to these processes
in recent years. These include, to name but a few, the boundary Harnack
principles ([11], [15], [45]), the identification of the Martin boundary for var-
ious types of domains ([12], [26]), the Harnack inequalities and conditional
gauge theorems for α-stable Schrödinger semigroups ([13], [14], [23]), the
notion of intrinsic ultracontractivity ([23], [36]), sharp estimates for Green
functions and Poisson kernels ([24]), and isoperimetric–type inequalities for
heat kernels, Green functions, the lowest eigenvalue, and electrostatic ca-
pacities ([2], [40], [7]). We refer the reader to [21] for a survey of some of
these results. Despite the extensive literature on extension of these “fine”
potential theoretic properties from the Brownian motion to the symmetric
α–stable processes, many of the more detailed and refined spectral theoretic
properties for which there is also an extensive literature in the case of Brow-
nian motion (the Laplacian), remain completely open for general symmetric
stable processes. This is the case even in the simplest geometric setting when
the domain is the interval (−1, 1). The purpose of this paper is to study
some of these detailed properties for the eigenvalues and eigenfunctions in
the case of the Cauchy process, α = 1. Before we describe our result in more
detail, and the reason why we need to restrict to the Cauchy process, we
recall the basic definitions and some of the results for the Brownian motion
which motivated the work presented in this paper.

Let Xt be a d-dimensional symmetric α-stable process of order α ∈
(0, 2] in Rd. The process Xt has stationary independent increments and its
transition density pα(t, x, y) = pα(t, x − y), t > 0, x, y ∈ Rd is determined
by its Fourier transform

exp(−t|ξ|α) =
∫

Rd

eiξ·ypα(t, y) dy, t > 0, ξ ∈ Rd.

That is, for any Borel subset B ⊂ Rd, x ∈ Rd, t > 0,

P x(Xt ∈ B) =
∫

B
pα(t, x, y) dy.

These processes have right continuous sample paths and their transition
densities satisfy the following scaling property

pα(t, x, y) = t−d/αpα(1, t−1/αx, t−1/αy) .
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When α = 2, Xt is just the usual d-dimensional Brownian motion Bt but
running at twice the speed. That is, if α = 2, then Xt = B2t and

p2(t, x, y) =
1

(4πt)d/2
exp

[−|x − y|2
4t

]
, t > 0, x, y ∈ Rd.

When α = 1, Xt is the Cauchy process in Rd whose transition densities
are given by the Cauchy distribution (Poisson kernel)

(1.1) p1(t, x, y) =
cd t

(t2 + |x − y|2) d+1
2

, t > 0, x, y ∈ Rd,

where
cd = Γ(

d + 1
2

)/π
d+1
2 .

From this point on, unless otherwise clearly indicated, we assume that
α = 1. We will write p(t, x, y) for p1(t, x, y). If D ⊂ Rd is a nonempty
bounded open set, we let τD = inf{t ≥ 0 : Xt /∈ D} be the first exit time
of Xt from D and denote by P x and Ex the associated probability and
expectation for this process starting at x. We shall denote the semigroup on
L2(D) of the the Cauchy process killed upon leaving D by {PD

t }t≥0. That
is, for f ∈ L2(D), x ∈ D, t > 0,

PD
t f(x) = Ex(f(Xt), τD > t).

The semigroup has transition densities pD(t, x, y) and

PD
t f(x) =

∫
D

pD(t, x, y)f(y) dy.

The function pD(t, x, y) is positive symmetric and

pD(t, x, y) ≤ p(t, x, y) =
cd t

(t2 + |x − y|2) d+1
2

≤ cd

td

for all t > 0 and x, y ∈ D. In addition, for each fixed t > 0, pD(t, x, y)
is continuous on D × D as a functions of (x, y). We refer the reader to
[23], and [36] for these elementary properties. It follows from this bound
on the function pD(t, x, y) that for any open set D of finite volume, and
in particular for any bounded set, the operator PD

t generates a self-adjoint
semigroup on L2(D) which is ultracontractive. That is, the operator PD

t

maps L2(D) into L∞(D) for all t > 0. Under these assumptions it follows
from the general theory of heat semigroups [27] that there is an orthonormal
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basis of eigenfunctions {ϕn} for L2(D) and corresponding eigenvalues {λn}
satisfying

0 < λ1 < λ2 ≤ λ3 ≤ . . .

with λn → ∞ as n → ∞. That is, the pair {ϕn, λn} satisfies

(1.2) PD
t ϕn(x) = e−λntϕn(x).

In addition, λ1 is simple and the corresponding eigenfunction ϕ1, often called
the ground state eigenfunction, is strictly positive on D. By the continuity
of the kernel in both variables x and y, the eigenfunctions ϕn are continuous
and bounded. These general facts hold for all symmetric stable processes of
index 0 < α ≤ 2. For more general properties of these semigroups, see [32],
[9], [23].

The above construction is analogous to the construction for Brownian
motion. If we replace the Cauchy process, α = 1, by the process associated
with α = 2 (Brownian motion running at twice the speed) and assume in
addition that D is connected and that ∂D is regular, then PD

t is just the
heat semigroup associated with the Laplacian in D with Dirichlet bound-
ary conditions. In this case pD(t, x, y) is the fundamental solution of the
heat equation in D, also called the heat kernel for D. Let us denote by
{ψn, µn}∞n=1 the eigenfunctions and eigenvalues in this case. This pair is
then the classical eigenfunction/eigenvalue solution of the Dirichlet Lapla-
cian in D. That is, the pair satisfies,

(1.3)
{

∆ψn(x) = −µnψn(x); x ∈ D,
ψn(x) = 0; x ∈ ∂D.

The Dirichlet eigenvalue problem (1.3) has been extensively studied for
many years both analytically and probabilistically. It is well–known that
geometric information on D, such as convexity, symmetry, volume growth,
smoothness of its boundary, etc., provides information not only on the
ground state eigenfunction ψ1 and the ground state eigenvalue µ1, but also
on the spectral gap µ2−µ1, and on the geometry of the nodal domains of ψ2.
We recall here some of the classical results for the Laplacian which served
as motivation for the investigations in this paper.

Recall that for any f : D → R, its nodal set is f−1{0} and a nodal
domain of f is any connected component of D\f−1{0}. The celebrated
Courant-Hilbert nodal domain theorem guarantees that ψn has no more
than n nodal domains. In particular, ψ2 has exactly two nodal domains. In
[41], L. Payne proved that if D is a symmetric bounded convex domain in the
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plane, then the nodal line N = {x ∈ D : ψ2(x) = 0} for ψ2 must intersect
∂D in exactly two points. He conjectured that such a result should hold
for any planar convex domain, regardless of symmetry. This was proved by
Melas [38] for bounded convex domains in the plane with smooth boundary,
(see also [1]). This kind of detailed information on the nodal line is crucial
in proving µ2 − µ1 > 3π2/d2

D ([3], [28]) for bounded planar convex domain
of diameter dD which are symmetric with respect to both coordinate axes
and convex in both axes. Indeed, for such domains Payne [41] proved that
the nodal line is one of the two axes of symmetry. For general convex
domains in Rd, an important result of Brascamp and Lieb [4] asserts that
the eigenfunction ψ1 is log concave. This result has had many interesting
applications in the literature and in particular it can be used to prove that
for general convex domain, µ2 − µ1 > π2/d2

D, [44] and [37]. (The general
conjecture made in 1983 by M. van den Berg [6] that for any planar convex
domain µ2 − µ1 > 3π2/d2

D, remains open.) For many other applications
of the Brascamp–Lieb log–concavity result, including applications to option
pricing, and various other extensions, we refer the reader to C. Borell [16],
[17] and [18].

All of the above properties for the eigenvalues and eigenfunctions are
completely unknown for general symmetric stable processes (or for the Cauchy
process) even for the interval (−1, 1). Of course, various general results on
the eigenvalues and eigenfunctions of the Cauchy process, and even for gen-
eral symmetric stable processes, are known. For example; (1) A version of
the celebrated Wyel’s asymptotic law was proved in [9]. This asserts that
if D is an open bounded nonempty set and N(λ) denotes the number of
eigenvalues which are smaller than or equal to λ, and m(∂D) = 0, then
N(λ) ≈ λd m(D) cd (Γ(1 + d))−1 as λ → ∞ [9]; (2) It was proved recently
that for all bounded domains the semigroup PD

t is intrinsically ultracontrac-
tive [23], [36]. Intrinsic ultracontractivity is closely related to the parabolic
boundary Harnack principle and to conditioned processes (the associated
Doob h-processes). It gives very sharp estimates on ϕn in terms of ϕ1 and
we will indeed use some of these estimates below, (see (2.6) in §2 below). In
addition, if ∂D is suitably smooth then ϕ1(x) behaves like (dist(x, ∂D))1/2;
(3) It is known that among all domains of fixed volume the ball has the
smallest λ1 (the Faber–Krahn inequality) and that among all convex do-
mains of inradius RD (the radius of the largest ball contained in D) λ1 is
minimized by the infinite strip and maximized by the ball of radius RD. We
refer the reader to [2] and [40] for many other “isoperimetric–type” results
for general symmetric stable processes.

While an explicit expression for λ1 is not known even for the interval
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(−1, 1), the comparison estimates in [2] and [40] lead to explicit upper and
lower bounds for λ1 for (−1, 1). As far as estimates on λn, n ≥ 2, and
geometric properties of ϕn, n ≥ 2 for (−1, 1) are concerned, nothing seems to
be known. Indeed, it was this very simple geometric situation which initially
motivated our investigations that led to this paper. We were particularly
interested in obtaining bounds for λ1, λ2, λ2 − λ1 and geometric properties
for ϕ1 and ϕ2 for (−1, 1). It may be proved (Section 4) that there exists an
eigenfunction which is antisymmetric and (up to a sign) negative on (−1, 0)
and positive on (0, 1). One of the first goals of this paper was to prove that
this is the second eigenfunction. Unlike the case of the Laplacian, the proof
is not easy. This is due in part to the fact that the Courant-Hilbert nodal
line theorem is not known for operators which are not local. We succeeded
in obtaining properties for ϕ2 and λ2 for (−1, 1) because of the connection
of the Cauchy process to the Steklov problem. We will now describe this
connection.

The central difficulty from the analytic point of view in studying some
of the fine properties of λn and ϕn for the semigroup PD

t is that its infinites-
imal generator, AD, is not a local differential operator. We may define AD

formally by

(1.4) ADf = lim
t↓0

PD
t f − f

t

for such f ∈ L2(D) for which this limit exists in L2(D). The set of such
functions (the domain of AD) is denote by D(AD). Similarly we define
ADf(x) = limt↓0(PD

t f(x) − f(x))/t for any f ∈ C(D) and x ∈ D for which
the limit exists. It may be shown that for f ∈ C2

c (D) and x ∈ D, ADf(x)
is well defined and we have ADf(x) = −(−∆)1/2f(x). The definition of
(−∆)1/2 may be find for example in [13] (Definition 3.2, Lemma 3.5). We
want to emphasize that we will not use the operator (−∆)1/2 in any essen-
tial way in this paper, we just want to present the connection between the
semigroup PD

t and the operator (−∆)1/2.
The expression

(1.5) E(f, g) = −〈ADf, g〉 = −
∫

D
(ADf) g dx

defines a Dirichlet form with domain D(E) ⊂ L2(D) ([31], Theorem 1.3.1,
Corollary 1.3.1), here f ∈ D(AD), g ∈ D(E).

It is well–known that ϕn ∈ D(AD), (−∆)1/2ϕn(x), ADϕn(x) are well
defined for x ∈ D and ADϕn(x) = −(−∆)1/2ϕn(x) = −λnϕn(x), x ∈ D.
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With this, we may write an analog of (1.3) with ∆ replaced by −(−∆)1/2.
However, due to the non-locality of this operator it is difficult to use this
representation to study the influence of the geometry of D on ϕn and on
λn. The main idea in this paper, and the reason why we need to restrict
our attention to the case α = 1, is based on the connection between the
eigenvalue problem for the Cauchy process and a mixed boundary eigenvalue
problem for the Laplacian in one dimension higher, known as the “mixed
Steklov” problem. Probabilistically, this amounts to thinking of the Cauchy
processes as the trace of Brownian motion in one dimension higher. This
idea will help us avoid dealing with (−∆)1/2 and the difficulties related to the
non-locality of this operator. However, even for bounded domains D ⊂ Rd

the boundary value problem that arises takes place in unbounded domains
and has not, as far as we we know, been treated in the literature. Hence,
we must deal with many basic questions and estimates for this problem.

The connection between our eigenvalue problem (1.2) and the Steklov
problem arises as follows. For f ∈ L1(Rd) we set

Ptf(x) =
∫

Rd

p(t, x, y)f(y) dy

where p(t, x, y) is given by (1.1). For f ∈ L2(D) we extend it to all of Rd by
putting f(x) = 0 for x ∈ Dc. Since D is bounded we see that such functions
are also in L1(Rd). Thus Ptf(x) is well defined for f ∈ L2(D) by our bound
on p(t, x, y) and in particular it is well defined for any eigenfunction ϕn of
our eigenvalue problem (1.2) extended to be zero outside of D. For any
n ∈ N, x ∈ Rd and t > 0 we put

(1.6) un(x, t) = Ptϕn(x) and un(x, 0) = ϕn(x).

This defines a function in

H = {(x, t) : x ∈ Rd, t ≥ 0}.
Since ϕn is continuous at least on Rd \ ∂D the function un is continuous at
least on H \{(x, 0) : x ∈ ∂D}. For many “regular domains” such as bounded
Lipschitz domains, ϕn is continuous on all of Rd (see (3.2)), so that un is
continuous on all of H. We will denote by H+ the interior of the set H.
That is, H+ = {(x, t) : x ∈ Rd, t > 0}. Let

∆ =
d∑

i=1

∂2

∂x2
i

+
∂2

∂t2

denote the Laplace operator in H+.
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Theorem 1.1. Let D ⊂ Rd be a bounded domain. Then

∆un(x, t) = 0; (x, t) ∈ H+,(1.7)
∂un

∂t
(x, 0) = −λnun(x, 0); x ∈ D(1.8)

un(x, 0) = 0; x ∈ Dc.(1.9)

The idea of transforming problems for the non–local generator of sym-
metric α-stable processes to problems for local operator in Rd+1 has been
used in the past, see for example [5] and [39]. This idea was also used in a
very general context in [43].

If Ω is a bounded domain in Rd and we write its boundary ∂Ω as the
disjoint union of two pieces, (∂Ω)1 and (∂Ω)2 then the classical “mixed
Steklov” eigenvalue problem ([34], [29], [30]) is the following mixed boundary
value problem:

∆un(z) = 0; z ∈ Ω,(1.10)
∂un

∂ν
(z) = −enun(z); z ∈ (∂Ω)1.(1.11)

un(z) = 0; z ∈ (∂Ω)2,(1.12)

where ∆ =
∑d

i=1
∂2

∂x2
i

and ∂
∂ν is the inner normal derivative. The basic

difference between our Steklov problems and the classical one in that our
domain is unbounded.

The transformation of our eigenvalue problem (1.2) for the Cauchy pro-
cess to (1.7)-(1.9) enables us to use variational methods, and in particular to
derive a variational formula for λn (Theorem 3.8) and to prove an analog of
the Courant–Hilbert nodal domain Theorem (Theorem 3.11). Under some
additional assumptions on D, we will also show that λn ≤ √

µn. A compari-
son result of this type for all 0 < α < 2 was proved in [2] for λ1. In addition,
we obtain various other results for the eigenvalues and eigenfunctions of the
Cauchy process from the corresponding Steklov problem.

The paper is organized as follows. In §2 we set some notation and present
various known facts for the Cauchy process which are needed in the sequel.
We also obtain a new upper bound estimate on λ1 for balls in Rd which
holds for all 0 < α < 2. In particular, if D = (−1, 1) and α = 1 we have
1 ≤ λ1 ≤ 3π/8. This estimate is better than the previous best bounds
contained in [2]. In §3, we establish the connection between the Cauchy
eigenvalue problem and the mixed Steklov boundary eigenvalue problem and
prove the variational characterization for λn.
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In §4, we prove several results based on properties of the transition den-
sity pD(t, x, y). One of the main result in this section (Theorem 4.3) asserts
that whenever D is symmetric relative to one of the coordinate axis, then
there exists an antisymmetric eigenfunction which is positive on the portion
of D which lies on one side of the axis and negative on the portion of D
which lies on the other side. It comes as a surprise to us that such results
are essentially trivial for the Brownian motion (the Dirichlet Laplacian) but
not so for the Cauchy processes. The basic idea for this argument is to use
the multiple integral representation of the kernel coming from the semigroup
property to construct a new semigroup.

In §5, we use the some of the results obtained in the previous sections to
perform a much more detailed study for the Cauchy eigenvalues and eigen-
functions on what is perhaps the simplest geometric setting for these type of
problems, the interval D = (−1, 1). We will show that ϕ1 is symmetric and
concave on (−1, 1) (see Theorem 5.1). It is in fact nondecreasing on (−1, 0)
and nonincreasing on (0, 1), and hence it satisfies the Brascamp–Lieb [4] con-
cavity result. However, the main result of this section deals with geometric
properties of ϕ2 and λ2. We shall prove that 2 ≤ λ2 ≤ π and that its cor-
responding eigenfunction ϕ2 is antisymmetric and (up to sign) negative on
(−1, 0) and positive on (0, 1) (Theorem 5.3), similar to the situation for the
Brownian motion. ¿From this it will follow that ϕ2 has two nodal domains
and one nodal set. Moreover, we will show that ϕ2 is concave on (0, 1) and
convex on (−1, 0). In this section we also obtain various properties for λ3

and ϕ3 (Theorem 5.4). Furthermore, an application of our Courant–Hilbert
nodal domain theorem for the Cauchy process proved in §3 will give that ϕn,
n ≥ 1, has at most 2n−2 zeros in (−1, 1). This implies that ϕn has at most
2n − 1 nodal domains. Again, we find it remarkable that these properties,
as simple as they are for Brownian motion, take considerable work to prove
for the Cauchy process and that, out side of α = 1 and α = 2, they remain
unknown for other symmetric α–stable processes.

2 Preliminary Results

In this section we introduce some more notation, prove Theorem 1.1 and
obtain some new bounds on the ground state eigenvalue. These bounds
hold for all 0 < α < 2 and are of independent interest. Let N = {1, 2, . . .}
denote the set of natural numbers. For d ∈ N, we denote by |·| the Euclidean
norm in Rd. For any subset U ⊂ Rd we use U c, U , int(U), and ∂U to denote
its complement, closure, interior, and boundary, respectively. Furthermore,
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for x ∈ Rd, r > 0 and U, V ⊂ Rd, we put B(x, r) = {y ∈ Rd : |x − y| <
r}, rU = {ry : y ∈ U}, dist(U, V ) = inf{|y − z| : y ∈ U, z ∈ V } and
δU (x) = dist(x, ∂U). By B(Rd) we mean the Borel σ-algebra of Rd. We will
write c = c(α, β, . . . , γ) to indicate the dependence of a constant c on the
parameters indicated. The constants may change their value from one use
to the next and even on the same line in the same formula. However, the
set of parameters on which a constant may depend will not change from one
use to the another. The constants denoted with c will always be assumed
to be finite and positive.

By a domain D ⊂ Rd we shall mean an open nonempty set. For d ≥ 2
a bounded domain D ⊂ Rd is called a bounded Lipschitz domain if there
exists a Lipschitz constant M = M(D) > 0 and a localization radius r0 =
r0(D) > 0 satisfying the following property: For every Q ∈ ∂D there is
a Lipschitz function ΓQ : Rd−1 → R of constant no worst than M and an
orthonormal coordinate system CSQ such that if y = (y1, . . . , yd−1, yd) in
the CSQ coordinates, then

D ∩ B(Q, r0) = {y : yd > ΓQ(y1, . . . , yd−1)} ∩ B(Q, r0).

For completeness, a bounded Lipschitz domain on the real line (d = 1) is the
union of a finite number of disjoint bounded open intervals with no common
endpoints. Notice that, unlike the usual definition, we do not assume that
D is necessarily connected. In dimensions d ≥ 2 a bounded domain D ⊂ Rd

is called a bounded C∞ domain if it satisfies the same conditions as the
bounded Lipschitz domain where the Lipschitz function is replaced by C∞–
function. The definition of a bounded Ck domain for any k ≥ 1, is analogous.
A bounded C∞ domain or bounded Ck domain on the real line is the same
as the bounded Lipschitz domain.

As above, we denote the transition probabilities for the killed process
in the bounded domain D by pD(t, x, y). A probabilistic representation for
this kernel is given by

pD(t, x, y) = p(t, x, y) − rD(t, x, y),

for t > 0, x, y ∈ D, where

(2.1) rD(t, x, y) = Ex(τD < t; p(t − τD,X(τD), y)).

We now recall some other useful properties related to the Cauchy semi-
group. For x, y ∈ D let

GD(x, y) =
∫ ∞

0
pD(t, x, y) dt
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and recall that
P x{τD > t} =

∫
D

pD(t, x, y)dy.

Hence,

Ex(τD) =
∫ ∞

0
P x(τD > t) dt =

∫ ∞

0

∫
D

pD(t, x, y) dy dt =
∫

D
GD(x, y) dy.

We call GD(x, y) the Green function for D. This gives rise to the Green
operator GD : L2(D) → L2(D) defined by

GDf(x) =
∫

D
GD(x, y)f(y) dy

=
∫ ∞

0
Ex{f(Xt; τD > t} dt = Ex

(∫ τD

0
f(Xt) dt

)
for all x ∈ D, f ∈ L2(D). We note in particular that

(2.2) GDϕn(x) = ϕn(x)/λn

for all n ∈ N. In addition,

(2.3) ||GD||2→2 = 1/λ1

where ||GD||2→2 denotes the operator norm on L2(D). It follows from [3]
that for all domains D of finite volume, Ex (τD) ≤ E0 (τ∗

D), where D∗ is the
ball of same volume as D. In particular, for bounded domain, Ex (τD) ∈
Lp(D) for any 0 < p ≤ ∞. It is also well–known that the function u(x) =
Ex(τD) is in the domain of AD as defined in (1.4) and that ADu(x) = −1,
x ∈ D.

In addition to the above properties, the semigroup PD
t shares many

other important properties with the semigroup of Brownian motion and in
some instances is better behave. In particular, for all bounded domains
D ⊂ Rd our Cauchy semigroup is intrinsically ultracontractive. (This is not
the case for Brownian motion.) That is, for all ε > 0 there exists a constant
c = c(ε,D) such that for all t > c and all x, y ∈ D,

(2.4) (1 − ε)e−λ1tϕ1(x)ϕ1(y) ≤ pD(t, x, y) ≤ (1 + ε)e−λ1tϕ1(x)ϕ1(y)

We also have

(2.5) c1(D)Ex(τD) ≤ ϕ1(x) ≤ c2(D)Ex(τD)
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for all x ∈ D and

(2.6) |ϕn(x)| ≤ c(t,D)eλntϕ1(x),

for all t > 0, x ∈ D, n ∈ N. The inequality (2.6) follows directly from (2.4)
as does the right hand side of (2.5). We refer the reader to [36] for full
details on these results. Another result which we will need in the sequel
asserts that if D ⊂ Rd is a bounded Lipschitz domain, then there exist
constants β1 = β1(D) ∈ (0, 1), β2 = β2(D) ∈ (0, 1), c1(D,β1) and c2(D,β2)
such that

(2.7) c1(D,β1)δ
β1

D (x) ≤ Ex(τD) ≤ c2(D,β2)δ
β2

D (x), x ∈ D

and hence the same is true for the eigenfunction ϕ1 by (2.5). The proof
of (2.7) uses the Ikeda-Watanabe formula and boundary Harnack principle
techniques, see ([11], Lemmas 3, 5) and ([20], (2.9)).

The eigenvalues λn also satisfy the following useful scaling property: For
any γ > 0 we have λn(γD) = λn(D)/γ, where λn(D) is the eigenvalue for
D and λn(γD) is the eigenvalue for γD.

Proof of Theorem 1.1. The formula (1.7) follows from the fact that the Pois-
son kernel for the half space H, (where (x, t) ∈ H+, (y, 0) ∈ ∂H), is just
p(t, x, y) given by (1.1). (1.9) is obvious by the definition of un(x, 0) in (1.6).
It remains to show (1.8). For x ∈ D we have

∂un

∂t
(x, 0) = lim

t→0+

Ptϕn(x) − ϕn(x)
t

and

Ptϕn(x) − ϕn(x)
t

=
PD

t ϕn(x) − ϕn(x)
t

+
Ptϕn(x) − PD

t ϕn(x)
t

=
(e−λnt − 1)ϕn(x)

t
+

1
t

∫
D

rD(t, x, y)ϕn(y) dy,

where rD(t, x, y) is given by (2.1). Clearly (e−λnt−1)/t → −λn when t → 0+

so to prove (1.8) it is sufficient to show that for each x ∈ D,

(2.8) lim
t→0+

1
t

∫
D

rD(t, x, y)|ϕn(y)| dy = 0.

11



By (2.1) and the fact that rD(t, x, y) = rD(t, y, x) we obtain for any t > 0,
x, y ∈ D, that rD(t, x, y) is equal to Ey(τD < t; p(t − τD,X(τD), x)). Hence

1
t

rD(t, x, y) =
1
t
Ey

(
cd(t − τD)

((t − τD)2 + |X(τD) − x|2) d+1
2

; τD < t

)

≤ 1
t
Ey

(
cdt

δd+1
D (x)

; τD < t

)
=

cdP
y(τD < t)

δd+1
D (x)

.(2.9)

When t → 0+ the last expression tends to 0. Since ϕn ∈ L∞(D), we get
(2.8) by the bounded convergence theorem.

In §3 below we will present, as an application of our variational formulas,
upper bounds estimates for the Cauchy eigenvalues in terms of the eigen-
values for the Laplacian. From these and our knowledge of the eigenvalues
of the Laplacian, one can obtain estimates on the eigenvalues of the Cauchy
processes. This idea was used in [2] to give estimates on the first eigenvalue
of α–symmetric stable processes for various domains. For the unit ball in
Rd, the following proposition can be used to improve upon the upper bound
of [2].

Proposition 2.1. Let D ⊂ Rd be a bounded domain. We have

(2.10)
1

supx∈D Ex(τD)
≤ λ1 ≤

∫
D Ex(τD) dx∫

D[Ex(τD)]2 dx

Proof. The lower bound is well known. In fact,

(2.11)
ϕ1(x)

λ1
= Ex

(∫ τD

0
ϕ1(Xt) dt

)
≤ ||ϕ1||∞Ex(τD).

For the upper bound we use the following equality ([31], pg. 33, Lemma 1.5.3)
valid for any Dirichlet forms. For any non–negative f ∈ L1(D) ∩ L2(D),

sup
u∈D(E)

∫
D f |u| dx√E(u, u)

=

√∫
D

fGDf dx.

12



This, Schwarz inequality and (2.3) gives that for all u ∈ D(E),∫
D

f |u| dx ≤
√

E(u, u)

√∫
D

fGDf dx

≤
√

E(u, u)
√

‖f‖2‖GDf‖2

≤
√

E(u, u)
√

1
λ1

‖f‖2‖f‖2

= ‖f‖2

√
E(u, u)

√
1
λ1

Taking u(x) = f(x) = Ex(τD) and observing, as we did earlier, that√E(u, u) =
√〈1, u〉 gives the right hand side of the Proposition.

We note that the above estimates for λ1 hold for all 0 < α ≤ 2. For
α = 2 the upper estimate follows from the variational formula for λ1 and
integration by parts.

Let us look at the special case of the ball B(0, 1) in Rd. (For a general ball
of radius r similar estimates follow trivially by scaling.) For any 0 < α ≤ 2
we have by [33]

(2.12) Ex(τB(0,1)) = Cα, d

(
1 − |x|2)α/2

where

Cα, d =
Γ(d

2)

2αΓ
(
1 + α

2

)
Γ
(

d+α
2

) .
Clearly

sup
x∈B(0,1)

Ex(τB(0,1)) = Cα, d

and a simple integration in polar coordinates gives∫
B(0,1)

Ex(τB(0,1)) dx =
Cα, d σd

2
B(

d

2
,

α

2
+ 1)

and ∫
B(0,1)

[Ex(τB(0,1))]
2 dx =

C2
α, d σd

2
B(

d

2
, α + 1),

where σd is the surface area of the unit sphere in Rd (σ1 = 2) and

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

is the Beta function. These calculations and Proposition 2.1 give
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Corollary 2.2. Let λα, d be the smallest eigenvalue for the symmetric stable
process of order 0 < α ≤ 2, killed off B(0, 1) ⊂ Rd. Then

(2.13)
1

Cα, d
≤ λα, d ≤ 1

Cα, d

B(d
2 , α

2 + 1)
B(d

2 , α + 1)
.

In particular, for the Cauchy process in unit interval (−1, 1) in R and the
unit disk in R2 we have, respectively,

(2.14) 1 ≤ λ1,1 ≤ 3π
8

≈ 1.178

and

(2.15) 1.57 ≈ π

2
≤ λ1,2 ≤ 2π

3
≈ 2.094

Both (2.14) and (2.15) follow from (2.13) by a simple calculation, we
leave it to the reader. The left hand side of (2.13) is already in [2]. However,
the right hand side gives better estimates, at least in dimensions one and
two, than those that follow from [2].

3 The Mixed Steklov Problem

In this section we exploit the connection of the eigenvalue problem for the
Cauchy process to the Steklov problem described by Theorem 1.1. Using
this we obtain a variational characterization for the eigenvalues λn. Many
of these results, such as the variational formulas, are known for the Steklov
problem (1.10-1.12) in bounded smooth domains Ω. Obtaining this results
for our problem (1.7-1.9) for the unbounded domain H+ ⊂ Rd+1 when D ⊂
Rd is a bounded Lipschitz domain requires close attention to several technical
details.

Proposition 3.1. Let D ⊂ Rd be a bounded domain. Let un(x, t) be as in
(1.6). For x ∈ int(Dc), set

rn(x) = lim
t→0+

un(x, t)
t

and rn(x) = 0 for x ∈ D. Then rn(x) is well defined for all x ∈ Rd and for
x ∈ int(Dc),

(3.1) rn(x) =
∫

D

cdϕn(y)
|x − y|d+1

dy.
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Proof. For any t > 0 and x ∈ int(Dc), we have

un(x, t)
t

=
Ptϕn(x)

t
=
∫

D

cdϕn(y)

(t2 + |x − y|2) d+1
2

dy.

Note that for x ∈ int(Dc) we have

(t2 + |x − y|2)−(d+1)/2 ≤ δ−d−1
D (x).

The bounded convergence theorem implies (3.1).

Let us recall that if D ⊂ Rd is a bounded Lipschitz domain then, by
(2.6) and (2.7), there exist β = β(D) ∈ (0, 1) and a constant c(D,β) such
that for all n ∈ N, x ∈ D we have

(3.2) |ϕn(x)| ≤ c(D,n, β)δβ
D(x).

Proposition 3.2. Let D ⊂ Rd be a bounded Lipschitz domain. Let β ∈ (0, 1)
be the constant in (3.2). Then

(i)

|rn(x)| ≤
∫

D

cd|ϕn(y)|
|x − y|d+1

dy ≤ c(D,n, β)min(δβ−1
D (x), δ−d−1

D (x)),

for all x ∈ int(Dc).

(ii)
h−1|Phϕn(x) − ϕn(x)| ≤ c(D,n, β)δβ−1

D (x),

for x ∈ D, h > 0, and

(iii)

(3.3)
∂un

∂t
(x, t) = −λnun(x, t) + Ptrn(x),

for x ∈ Rd, t > 0.

Proof. (i) Let x ∈ int(Dc). The upper bound c(D,n, β)δ−d−1
D (x) is easy. We

have∫
D

cd|ϕn(y)||x − y|−d−1 dy ≤ cdδ
−d−1
D (x)

∫
D
|ϕn(y)| dy ≤ c(D,n)δ−d−1

D (x).

15



On the other hand, by (3.2) we get

(3.4)
∫

D
cd|ϕn(y)||x − y|−d−1 dy ≤ c(D,n, β)

∫
D

δβ
D(y)|x − y|−d−1 dy.

We will divide the integral over D into two integrals, one over the set D ∩
B(x, 2δD(x)) and the other one over the set D \ B(x, 2δD(x)). Note that
for y ∈ D ∩ B(x, 2δD(x)) we have δD(y) ≤ δD(x) and for y ∈ D we have
δD(y) ≤ |x−y|. Hence the integral on the right-hand side of (3.4) is bounded
above by∫

D∩B(x,2δD(x))
δβ
D(x)|x − y|−d−1 dy +

∫
D\B(x,2δD(x))

|x − y|−d−1+β dy ≤

δβ
D(x)

∫
B(x,2δD(x))\B(x,δD (x))

|x − y|−d−1 dy +
∫

Bc(x,2δD(x))
|x − y|−d−1+β dy.

A simple integration in polar coordinates shows that the sum is dominated
above by c(d, β)δβ−1

D (x).
(ii) Let x ∈ D and h > 0. As in the proof of Theorem 1.1, we obtain

that h−1|Phϕn(x) − ϕn(x)| is bounded above by

h−1|PD
h ϕn(x) − ϕn(x)| + h−1|Phϕn(x) − PD

h ϕn(x)|
≤ h−1|e−λnh − 1||ϕn(x)| + h−1

∫
D

rD(h, x, y)|ϕn(y)| dy,

The first term in the sum is controlled by ||ϕn||∞λn. It remains to show
that

(3.5) h−1

∫
D

rD(h, x, y)|ϕn(y)| dy ≤ c(D,n, β)δβ−1
D (x).

As in the previous argument, we divide the integral in (3.5) as an integral
over B(x, δD(x)) and an integral over D \B(x, δD(x)). For y ∈ B(x, δD(x))
we use (2.9) to get h−1rD(h, x, y) ≤ cdδ

−d−1
D (x). For y ∈ D \B(x, δD(x)) we

estimate h−1rD(h, x, y) ≤ p(h, x, y) ≤ cd|x − y|−d−1. Note that 2|y − x| ≥
δD(y) for y ∈ D \ B(x, δD(x)). Applying (3.2) we obtain that |ϕn(y)| ≤
c(D,n, β)(2δβ

D(x))β for y ∈ B(x, δD(x)) and |ϕn(y)| ≤ c(D,n, β)δβ
D(y) ≤

c(D,n, β)(2|x − y|)β, for y ∈ D \ B(x, δD(x)). It follows that

h−1

∫
D

rD(h, x, y)|ϕn(y)| dy ≤ c(D,n, β)δ−d−1+β
D (x)

∫
B(x,δD(x))

dy

+ c(D,n, β)
∫

D\B(x,δD(x))
|x − y|−d−1+β dy

≤ c(D,n, β)δβ−1
D (x),
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which proves (3.5) and (ii).
(iii) Let t > 0 and x ∈ Rd.

∂un

∂t
(x, t) = lim

h→0+

∫
p(t, x, y)

Phϕn(y) − ϕn(y)
h

dy

= lim
h→0+

∫
int(Dc)

p(t, x, y)
Phϕn(y) − ϕn(y)

h
dy(3.6)

+ lim
h→0+

∫
D

p(t, x, y)
Phϕn(y) − ϕn(y)

h
dy.(3.7)

If y ∈ int(Dc), then h−1(Phϕn(y) − ϕn(y)) = h−1Phϕn(y) tends to rn(y)
when h → 0+. If y ∈ D then by Theorem 1.1 h−1(Phϕn(y) − ϕn(y)) tends
to −λnϕn(y) when h → 0+. Hence, to show (3.3) it remains to justify the
change of the the limit and the integral in (3.6) and (3.7). For x ∈ int(Dc)
we have ∣∣∣∣Phϕn(x) − ϕn(x)

h

∣∣∣∣ = ∣∣∣∣Phϕn(x)
h

∣∣∣∣ ≤ ∫
D

cd|ϕn(y)|
|x − y|d+1

dy.

By (i) this is bounded above by c(D,n, β)min(δβ−1
D (x), δ−d−1

D (x)), where
x ∈ int(Dc) which is an integrable function on int(Dc). Similarly (ii) shows
that h−1(Phϕn(y) − ϕn(y)) for y ∈ D is bounded above by the function
c(D,n, β)δβ−1

D (x) which is integrable on D. Therefore by the bounded con-
vergence theorem we can change limits and integrals in (3.6) and (3.7). This
proves (3.3) and completes the proof of the proposition.

Our aim now is to obtain a variational formulas for the eigenvalues λn

of the following type

λn = inf
u∈Fn

∫
H
|∇u(x, t)|2 dx dt,

for a suitably chosen class of function Fn. For a function u : H → R we
denote ∇u = ( ∂u

∂x1
, . . . , ∂u

∂xd
, ∂u

∂t ). For ε > 0 we put Hε = {(x, t) : x ∈
Rd, t > ε}. Recall that H+ = {(x, t) : t > 0, x ∈ Rd}. We need some
estimates on ∇un. These are obtained essentially by differentiating under
the integral sign using our representation for the functions un(x, t) in terms
of the Cauchy (Poisson) kernel. These calculations are in fact very similar
to those in [46], Chapter IV.
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Lemma 3.3. Let D ⊂ Rd be a bounded domain. For any ε > 0, (x, t) ∈ H+

and i = 1, . . . , d, we have

(a)
∂un

∂xi
(x, t) = −cd

∫
D

(d + 1)t(xi − yi)

(t2 + |x − y|2) d+3
2

ϕn(y) dy,

(b)
∂un

∂t
(x, t) = cd

∫
D

|x − y|2 − dt2

(t2 + |x − y|2) d+3
2

ϕn(y) dy,

(c)
∂2un

∂x2
i

(x, t) =

cd

∫
D

−(d + 1)t(t2 + |x − y|2) + (d + 1)(d + 3)t(xi − yi)2

(t2 + |x − y|2) d+5
2

ϕn(y) dy,

and

(d)
∂2un

∂t2
(x, t) = cd

∫
D

−3(d + 1)t|x − y|2 + d(d + 1)t3

(t2 + |x − y|2) d+5
2

ϕn(y) dy.

For any ε > 0 there exists a constant c = c(D,n, ε) such that for all (x, t) ∈
Hε we have

(e) |∇un(x, t)| ≤ c(t2 + |x|2)−(d+1)/2,

and

(f)
∣∣∣∣∂2un

∂t2
(x, t)

∣∣∣∣+ d∑
i=1

∣∣∣∣∂2un

∂x2
i

(x, t)
∣∣∣∣ ≤ c

(t2 + |x|2) d+2
2

.

In particular,

(g)
∫

Hε

|∇un(x, t)|2 dx dt < ∞

and

(h)
∫

Hε

∣∣∣∣∂2un

∂t2
(x, t)

∣∣∣∣ + d∑
i=1

∣∣∣∣∂2un

∂x2
i

(x, t)
∣∣∣∣ dx dt < ∞.
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Proof. Recall that un(x, t) =
∫
D p(t, x, y)ϕn(y) dy. Formulas (a), (b), (c)

and (d) follow from our explicit expression for p(t, x, y) in (1.1) and the fact
that

∂un

∂xi
(x, t) =

∫
D

∂

∂xi
p(t, x, y)ϕn(y), dy (x, t) ∈ H+,

with a similar formula for ∂un
∂t (x, t).

Let a = 2diam(D) + 2dist(0,D). For y ∈ D we have |y| ≤ a/2. So, for
|x| ≥ a and y ∈ D we get

|x − y| ≥ |x| − |y| ≥ |x| − a/2 ≥ |x|/2

and
|x − y| ≤ |x| + |y| ≤ |x| + a/2 ≤ 3|x|/2.

For y ∈ D and |x| < a we have |x−y| ≤ 3a/2. We will use these elementary
observations several times below.

For t > ε and |x| ≥ a,∣∣∣∣∂un

∂xi
(x, t)

∣∣∣∣ ≤ cd(d + 1)
∫

D

(3/2)t|x|
(t2 + |x|2/4) d+3

2

|ϕn(y)| dy

≤ c(d)

(t2 + |x|2) d+1
2

∫
D
|ϕn(y)| dy.

For t > ε and |x| < a,∣∣∣∣∂un

∂xi
(x, t)

∣∣∣∣ ≤ cd(d + 1)
∫

D

(3/2)ta
td+3

|ϕn(y)| dy

≤ c(D,n)
td+2

t

ε
≤ c(D,n)

td+1
.

But for t > ε and |x| < a, |x| < ta/ε so

(3.8)
1

td+1
≤ 1

(t2 + |x|2) d+1
2

(
1 +

a2

ε2

) d+1
2

.

Therefore, for t, x as above,∣∣∣∣∂un

∂xi
(x, t)

∣∣∣∣ ≤ c(D,n)

(t2 + |x|2) d+1
2

(
1 +

a2

ε2

) d+1
2

.
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Similarly, for t > ε and |x| ≥ a,∣∣∣∣∂un

∂t
(x, t)

∣∣∣∣ ≤ cd

∫
D

(dt2 + (9/4)|x|2)
(t2 + |x|2/4) d+3

2

|ϕn(y)| dy

≤ c(d)

(t2 + |x|2) d+1
2

∫
D
|ϕn(y)| dy.

On the other hand, for t > ε and |x| < a,∣∣∣∣∂un

∂t
(x, t)

∣∣∣∣ ≤ cd

∫
D

(dt2 + (9/4)a2)
td+3

|ϕn(y)| dy

≤ c(D,n, ε)
td+1

≤ c(D,n, ε)

(t2 + |x|2) d+1
2

.

The last two inequalities follow from the fact that a2 ≤ t2a2/ε2 and (3.8).
Now, (e) follows from the above inequalities.

The estimate (g) is a simple consequence of (e). In fact,∫
Hε

|∇un(x, t)|2 dx dt ≤ c(D,n, ε)
∫

Hε

dx dt

(t2 + |x|2)d+1
< ∞.

We will now prove (f). For t > ε and |x| ≥ a,∣∣∣∣∂2un

∂x2
i

(x, t)
∣∣∣∣ ≤ c(d)

∫
D

(t2 + (9/4)|x|2)3/2

(t2 + |x|2/4) d+5
2

|ϕn(y)| dy

≤ c(D,n)

(t2 + |x|2) d+2
2

and for t > ε and |x| < a,∣∣∣∣∂2un

∂x2
i

(x, t)
∣∣∣∣ ≤ c(d)

∫
D

(t2 + (9/4)a2)3/2

td+5
|ϕn(y)| dy ≤ c(D,n, ε)

td+2
.

But for t > ε and |x| < a,

1
td+2

≤ 1

(t2 + |x|2) d+2
2

(
1 +

a2

ε2

) d+2
2

.

Therefore, for t and x as above,∣∣∣∣∂2un

∂x2
i

(x, t)
∣∣∣∣ ≤ c(D,n, ε)

(t2 + |x|2) d+2
2

.
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Similarly, for t > ε and |x| ≥ a,∣∣∣∣∂2un

∂t2
(x, t)

∣∣∣∣ ≤ ∫
D

c(d)(t2 + (9/4)|x|2)t
(t2 + |x|2/4) d+5

2

|ϕn(y)| dy ≤ c(D,n)

(t2 + |x|2) d+2
2

and for t > ε and |x| < a,∣∣∣∣∂2un

∂t2
(x, t)

∣∣∣∣ ≤ ∫
D

c(d)(t2 + (9/4)a2)t
td+5

|ϕn(y)| dy ≤ c(D,n, ε)

(t2 + |x|2) d+2
2

.

The previous two inequalities imply (f). Finally, (h) follows from this.

We will now introduce the class of function F(D) = F which we shall
use in the variational characterization of λn. Motivated by Lemma 3.3, we
define this class as follows.

Definition 3.1. Let D ⊂ Rd be a bounded Lipschitz domain. We define
F(D) to be the collection of all finite linear combinations of functions u :
H → R satisfying the following conditions:

(i) u is continuous on H except possibly on {(x, 0) : x ∈ ∂D} and u is
bounded on H.

(ii) ∇u(x, t) exists for almost all (x, t) ∈ H+ and ∇u is a measurable
function. If (x, t) ∈ H+ and ∇u(x, t) does not exists then u(x, t) = 0.
Moreover, for all ε > 0 there exists a constant c(ε) such that for all
t > ε,

|∇u(x, t)| ≤ c(ε)(t2 + |x|2)−(d+1)/2,

for any (x, t) ∈ H for which ∇u(x, t) exists.

(iii) u(x, 0) = 0 for x ∈ Dc \ ∂D and∫
Rd

u2(x, 0) dx < ∞.

(iv) ∫
H
|∇u(x, t)|2 dx dt < ∞.

The space F(D) is the linear space spanned by the functions u : H → R

which satisfy (i)–(iv). We will often simply write F for F(D) unless we want
to stress the dependence on D. Notice that the condition “if ∇u(x, t) does
not exists, then u(x, t) = 0,” is the only condition which prevents the class of
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functions u : H → R satisfying (i)–(iv) from being a linear space itself. This
condition, as it turns out, will be very important in the sequel. Finally,
we note that un(x, t) satisfies (i)–(iii) by Lemma 3.3 and via the Fourier
transform one can easily show that it also satisfies (iv). An alternative way
to verify this which has some additional advantages, as we shall see below, is
to use Green’s theorem. In particular, we need to justify the use of Green’s
formula on expressions of the form∫

H
∇u(x, t)∇un(x, t) dx dt,

for u ∈ F . Some of the “Littlewood-Paley” formulas below can also be
derived by the Fourier transform. We choose to prove them by integration
by parts since the Fourier transform method does not suffice for all our
formulas.

Proposition 3.4. Let D ⊂ Rd be a bounded Lipschitz domain. If u : H → R

satisfies conditions (i)–(iii) in Definition 3.1, then for any ε > 0 and n ∈ N

we have

(3.9)
∫

Hε

∇u(x, t)∇un(x, t) dx dt = −
∫

Rd

u(x, ε)
∂un

∂t
(x, ε) dx.

In particular, both integrals finite.

We interpret (3.9) as saying that Green’s formula can be applied to∫
Hε

∇u(x, t)∇un(x, t) dx dt

in that

∫
Hε

∇u(x, t)∇un(x, t) dx dt = −
∫

Hε

u(x, t)∆un(x, t) dx dt

−
∫

Rd

u(x, ε)
∂un

∂t
(x, ε) dx.

The (−) sign rather than the (+) sign arises because we are using ∂
∂t for the

inner normal derivative at ∂Hε.

Proof. By the Lemma 3.3 and (ii) in Definition 3.1∫
Hε

|∇u(x, t)||∇un(x, t)| dx dt ≤ c(ε,D, n, u)
∫

Hε

(t2 + |x|2)−(d+1) dx dt < ∞.
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So the integral ∫
Hε

∇u(x, t)∇un(x, t) dx dt

is absolutely convergent. Moreover, this integral equals

d∑
i=1

∫ ∞

ε

∫ ∞

−∞
. . .

∫ ∞

−∞︸ ︷︷ ︸
(d−1)− integrals

∫ ∞

−∞
∂u

∂xi
(x, t)

∂un

∂xi
(x, t) dxi dx1 . . . dxd︸ ︷︷ ︸

(d−1) times without dxi

dt

+
∫ ∞

−∞
. . .

∫ ∞

−∞

∫ ∞

ε

∂u

∂t
(x, t)

∂un

∂t
(x, t) dt dx1 . . . dxd.

By Lemma 3.3 and (ii) in Definition 3.1 we get for each t ≥ ε,∫ ∞

−∞

∣∣∣∣ ∂u

∂xi
(x, t)

∂un

∂xi
(x, t)

∣∣∣∣ dxi ≤
∫ ∞

−∞

c(D, ε, n, u) dxi

(t2 + |x|2)d+1

≤
∫ ∞

−∞

c(D, ε, n, u) dxi

(ε2 + |x|2)d+1
< ∞.

We now claim that

(3.10)
∫ ∞

−∞

∂u

∂xi
(x, t)

∂un

∂xi
(x, t) dxi = −

∫ ∞

−∞
u(x, t)

∂un

∂x2
i

(x, t) dxi.

We may assume i = 1. Let us fix the coordinates x2, . . . , xd, t and put
Ω = {x1 ∈ (−∞,∞) : u(x, t) = u(x1, x2, . . . , xd, t) = 0}. The set (−∞,∞) \
Ω consists of at most countably many intervals (ak, bk)∞k=1 such that for
all x1 ∈ (ak, bk) we have u(x, t) �= 0 (some of intervals (ak, bk) may be
unbounded). For x1 = ak or x1 = bk (when ak �= −∞, bk �= ∞) we have
u(x, t) = 0. Hence

(3.11)
∫ ∞

−∞

∂u

∂x1
(x, t)

∂un

∂x1
(x, t) dx1 =

∞∑
k=1

∫ bk

ak

∂u

∂x1
(x, t)

∂un

∂x1
(x, t) dx1.

On the other hand,

∫ bk

ak

∂u

∂x1
(x, t)

∂un

∂x1
(x, t) dx1 =

[
u(x, t)

∂un

∂x1
(x, t)

]x1=bk

x1=ak

−
∫ bk

ak

u(x, t)
∂2un

∂x2
1

(x, t) dx1.(3.12)

23



If ak = −∞, then the expression[
u(x, t)

∂un

∂x1
(x, t)

]
x1=ak

should be understood in the limit sense. By (i) in Definition 3.1 and (e) of
Lemma 3.3, we get for ak = −∞ that this expression is equal to 0. Similarly,
if bk = ∞, then [

u(x, t)
∂un

∂x1
(x, t)

]x1=bk

= 0.

When ak �= −∞ and bk �= ∞, we have u(ak, x2, . . . , xd, t) = 0 and we have
u(bk, x2, . . . , xd, t) = 0. Hence,[

u(x, t)
∂un

∂x1
(x, t)

]
x1=ak

=
[
u(x, t)

∂un

∂x1
(x, t)

]x1=bk

= 0.

Note also that by (i) in Definition 3.1 and by (f) in Lemma 3.3, we have∫ ∞

−∞
|u(x, t)|

∣∣∣∣∂2un

∂x2
1

(x, t)
∣∣∣∣ dx1 < ∞

and it follows that ∫ ∞

−∞
u(x, t)

∂2un

∂x2
1

(x, t) dx1

is absolutely convergent. Therefore (3.11) and (3.12) give (3.10). By similar
arguments for any x ∈ Rd,∫ ∞

ε

∂u

∂t
(x, t)

∂un

∂t
(x, t) dt

=
[
u(x, t)

∂un

∂t
(x, t)

]t=∞

t=ε

−
∫ ∞

ε
u(x, t)

∂2un

∂t2
(x, t) dt.

Both integrals are well defined for each x ∈ Rd. As before, the expression[
u(x, t)

∂un

∂t
(x, t)

]t=∞

should be understood as a limit and it equals 0. By repeated integration, it
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follows that the left hand side of (3.9) is

−
d∑

i=1

∫ ∞

ε

∫ ∞

−∞
. . .

∫ ∞

−∞︸ ︷︷ ︸
d integrals

u(x, t)
∂2un

∂x2
i

(x, t) dxi dx1, . . . , dxd︸ ︷︷ ︸
(d−1) times without dxi

dt

−
∫ ∞

−∞
. . .

∫ ∞

−∞
u(x, ε)

∂un

∂t
(x, ε) dx1, . . . , dxd

−
∫ ∞

−∞
. . .

∫ ∞

−∞

∫ ∞

ε
u(x, t)

∂2un

∂t2
(x, t) dt dx1, . . . , dxd.

By Fubini theorem this is

−
∫

Hε

u(x, t)∆un(x, t) dx dt −
∫

Rd

u(x, ε)
∂un

∂t
(x, ε) dx.

Since ∆un(x, t) = 0, we obtain (3.9). The use of Fubini theorem is justified
by the following observation. By (i) in Definition 3.1 and by (h) and (e) in
Lemma 3.3, we have∫

Hε

|u(x, ε)|
(∣∣∣∣∂2un

∂t2
(x, t)

∣∣∣∣ + d∑
i=1

∣∣∣∣∂2un

∂x2
1

(x, t)
∣∣∣∣
)

dx dt < ∞

and ∫
Rd

|u(x, ε)|
∣∣∣∣∂un

∂t
(x, ε)

∣∣∣∣ dx ≤
∫

Rd

||u||∞c(D,n, ε) dx

(ε2 + |x|2)(d+1)/2
< ∞.

This also shows that the right hand side of (3.9) is an absolutely convergent
integral.

Proposition 3.5. Let D ⊂ Rd be a bounded Lipschitz domain. If u : H → R

satisfies conditions (i)–(iii) of Definition 3.1, then for any n ∈ N we have

(3.13) lim
ε→0+

∫
Rd

u(x, ε)un(x, ε) dx =
∫

D
u(x, 0)ϕn(x) dx,

and

(3.14) lim
ε→0+

∫
Rd

|u(x, ε)||Pεrn(x)| dx = 0.

In particular,

(3.15) lim
ε→0+

∫
Rd

u(x, ε)
∂un

∂t
(x, ε) dx = −λn

∫
D

u(x, 0)ϕn(x) dx.
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Proof. Note that un(x, ε) → ϕn(x) as ε → 0+ for any x ∈ Rd (recall that ϕn

is extended to the whole of Rd). Similarly, by (i) in Definition 3.1 u(x, ε) →
u(x, 0) as ε → 0+ for all x ∈ Rd \ ∂D. Hence this limit exists for almost
all x ∈ Rd. By (i) in Definition 3.1 u is bounded and for any x ∈ Rd and
ε ∈ (0, 1) we have

|un(x, ε)| = |Pεϕn(x)| ≤ c(D)||ϕn||∞(1 + δD(x))−d−1.

Hence (3.13) follows by the bounded convergence theorem.
The proof of (3.14) is more complicated. By (2.6) and (3.1) we have

|rn(x)| ≤ c(n,D)r1(x), so to prove (3.14) it is sufficient to show that

(3.16) lim
ε→0+

∫
Rd

|u(x, ε)|Pεr1(x) dx = 0.

Fix h > 0 and put Dh = {x ∈ Rd : dist(x,D) ≤ h}. For x ∈ Rd, define

fh(x) = r1(x)1Dh
(x) and f̃h(x) = r1(x)1Dc

h
(x)

so that Pεr1 = Pεfh + Pεf̃h. Clearly, for any h, ε > 0 we have∫
Rd

|u(x, ε)|Pεfh(x) dx ≤ ||u||∞
∫

Rd

∫
Rd

p(ε, x, y)fh(y) dy dx(3.17)

= ||u||∞
∫

Rd

fh(y)
∫

Rd

p(ε, x, y) dx dy = ||u||∞||fh||1.

By (i) in Proposition 3.2 we see that r1 ∈ L1(Rd). Also, supp(r1) ⊂ Dc. It
follows that limh→0+ ||fh||1 = 0. Hence for any ε > 0 the left-hand side of
(3.17) tends to 0 as h → 0+. Thus by choosing a sufficiently small h > 0,
the integral on the left-hand side of (3.17) can be made arbitrarily small
independently of our choice of ε > 0. Therefore to prove (3.16) it suffices to
show that for each fixed h > 0 we have

(3.18) lim
ε→0+

∫
Rd

|u(x, ε)|Pεf̃h(x) dx = 0.

By Proposition 3.2 there exists β = β(D) ∈ (0, 1) such that for all x ∈
int(Dc),

f̃h(x) = r1(x)1Dc
h
(x) ≤ c(D,β)min(δβ−1

D (x), δ−d−1
D (x)).

It follows that f̃h ∈ L∞(Rd) ∩ L1(Rd).
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Let us denote by D′ = {x ∈ Dc : δD(x) ≤ diam(D)} and D′′ = {x ∈
Dc : δD(x) > diam(D)}. Let x ∈ D. For any y ∈ Dc

h we have |x − y| ≥ h
and |x − y| ≥ δD(y). It follows that

Pεf̃h(x) =
∫

Dc
h

cdε

(ε2 + |x − y|2) d+1
2

f̃h(y) dy

≤ εcd||f̃h||∞
∫

Dc
h∩D′′

dy

(δD(y))d+1
+ εcd||f̃h||∞

∫
Dc

h∩(D∪D′)

dy

hd+1
.

Hence Pεf̃h(x) ≤ c(D,h)ε for x ∈ D. Obviously,∫
D
|u(x, ε)|Pεf̃h(x) dx ≤ ||u||∞

∫
D

Pεf̃h(x) dx.

Therefore by the bounded convergence theorem,

(3.19) lim
ε→0+

∫
D
|u(x, ε)|Pεf̃h(x) dx = 0.

Let x ∈ D′\∂D. Then limε→0+ u(x, ε) = 0 and Pεf̃h(x) ≤ ||f̃h||∞. Recall
also that u is bounded and the Lebesgue measure of ∂D is zero. Hence by
the bounded convergence theorem again,

(3.20) lim
ε→0+

∫
D′

|u(x, ε)|Pεf̃h(x) dx = 0.

Now, let x ∈ D′′. Note that for y ∈ B(x, δD(x)/2) we have δD(y) ≥
δD(x)/2 and

f̃h(y) ≤ r1(y) ≤ c(D,β)δ−d−1
D (y) ≤ c′δ−d−1

D (x),

where c′ = 2d+1c(D,β). For y /∈ B(x, δD(x)/2) we have |x − y| ≥ δD(x)/2.
Therefore,

Pεf̃h(x) =
∫

Dc
h

cdε

(ε2 + |x − y|2) d+1
2

f̃h(y) dy

≤
∫

B(x,δD(x)/2)

cd εc′ dy

(ε2 + |x − y|2) d+1
2 δd+1

D (x)
+
∫

Bc(x,δD(x)/2)

cdεf̃h(y) dy

(δD(x)/2)d+1
.

The first integral is bounded by c′εδ−d−1
D (x) and the second one is bounded

by ε c(D)δ−d−1
D (x)||f̃h||1. The function δ−d−1

D (x) is integrable on D′′. Fi-
nally, for x ∈ D′′ we also have limε→0+ u(x, ε) = 0. Hence, by bounded
convergence theorem,

lim
ε→0+

∫
D′′

|u(x, ε)|Pεf̃h(x) dx = 0.
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This together with (3.19) and (3.20) gives (3.18). We have proved (3.14).
Finally, (3.15) follows from (3.13), (3.14) and (3.3).

Proposition 3.6. Let D ⊂ Rd be a bounded Lipschitz domain. Then∫
H
|∇un(x, t)|2 dx dt = λn, n ∈ N.

In particular, we conclude that un satisfies (iv) of Definition 3.1 and hence
un ∈ F .

Proof. Since un satisfies conditions (i)–(iii) we can apply (3.9) and (3.15).
This gives ∫

H
|∇un(x, t)|2 dx dt = lim

ε→0+

∫
Hε

|∇un(x, t)|2 dx dt

= − lim
ε→0+

∫
Rd

un(x, ε)
∂un

∂t
(x, ε) dx = λn

∫
D

un(x, 0)ϕn(x) dx = λn.

Proposition 3.7. Let D ⊂ Rd be a bounded Lipschitz domain and u ∈ F .
Then for any n ∈ N,

(3.21)
∫

H
∇u(x, t)∇un(x, t) dx dt = λn

∫
D

u(x, 0)ϕn(x) dx.

In particular, both integrals are finite.

We note that (3.21) is the “limiting” case of Proposition 3.4 and we
again interpret it as the statement that Green’s theorem can be applied in
the sense that∫

H
∇u(x, t)∇un(x, t) dx dt = −

∫
H

u(x, t)∆un(x, t) dx dt

−
∫

Rd

u(x, 0)
∂un

∂t
(x, 0) dx.

The identity (3.21) is a “polarized” version of Lemma 2, page 87 in [46],
customized for our purposes.
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Proof. Since u ∈ F , u(x, t) =
∑k

m=1 cmwm(x, t), where the functions wm

satisfy (i)–(iv) in Definition 3.1 and cm ∈ R, m = 1, . . . , k. Then

lim
ε→0+

∫
Hε

∇u(x, t)∇un(x, t) dx dt =
k∑

m=1

cm lim
ε→0+

∫
Hε

∇wm(x, t)∇un(x, t) dx dt.

By Propositions 3.4 and 3.5 this is equal to

−
k∑

m=1

cm lim
ε→0+

∫
Rd

wm(x, ε)
∂un

∂t
(x, ε) dx =

k∑
m=1

cmλn

∫
D

wm(x, 0)ϕn(x) dx

= λn

∫
D

u(x, 0)ϕn(x) dx.

Since un, u satisfy (iv),

lim
ε→0+

∫
Hε

∇u(x, t)∇un(x, t) dx dt =
∫

H
∇u(x, t)∇un(x, t) dx dt,

which proves the proposition.

We now define our “variational” spaces for the Cauchy processes. For
any u : H → R we put ũ(x) = u(x, 0), x ∈ Rd and

||ũ||2 =
(∫

D
ũ2(x) dx

)1/2

.

Let

F1(D) = {u ∈ F(D) : ||ũ||2 = 1},

and for n ≥ 2, let

Fn(D) = {u ∈ F(D) : ũ ⊥ ϕ1, . . . , ϕn−1; ||ũ||2 = 1}.

As before, if there is no danger of confusion, we simply write Fn for Fn(D).
Our variational formula for λn is

Theorem 3.8. Let D ⊂ Rd be a bounded Lipschitz domain. Then

λn = inf
u∈Fn

∫
H
|∇u(x, t)|2 dx dt,

for all n ∈ N.
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Proof. To simplify notation, set

(3.22) Q(u, v) =
∫

H
∇u(x, t)∇v(x, t) dx dt.

We must show that λn = infu∈Fn Q(u, u). By Proposition 3.6,

inf
u∈Fn

Q(u, u) ≤ Q(un, un) = λn.

It remains to show that infu∈Fn Q(u, u) ≥ λn. Fix u ∈ Fn. For any k ∈ N

and (x, t) ∈ H, set vk(x, t) =
∑k

m=1 cmum(x, t) where cm =
∫
D ũ(x)ϕm(x) dx.

Since F is a linear space, vk ∈ F . Therefore

(3.23) Q(u, u) = Q(vk, vk) + Q(u − vk, u − vk) + 2Q(u − vk, vk).

We have

Q(u − vk, vk) =
k∑

m=1

cmQ(u, um) −
k∑

m=1

cmQ(vk, um).

By Proposition 3.7 this is equal to

(3.24)
k∑

m=1

cmλm

∫
D

u(x, 0)ϕm(x) dx −
k∑

m=1

cmλm

∫
D

vk(x, 0)ϕm(x) dx.

But ∫
D

u(x, 0)ϕm(x) dx = cm

and for m = 1, . . . , k,∫
D

vk(x, 0)ϕm(x) dx =
k∑

l=1

∫
D

clϕl(x)ϕm(x) dx = cm.

So the expression in (3.24) must be 0. We also showed that Q(vk, vk) =∑k
m=1 c2

mλm.
Since u ∈ Fn, ||ũ||2 = 1 and c1 = . . . = cn−1 = 0 so we obtain∑∞

m=n c2
m = 1. Therefore for k ≥ n we get by (3.23)

Q(u, u) ≥ Q(vk, vk) =
k∑

m=n

c2
mλm ≥ λn

k∑
m=n

c2
m.

Since k ≥ n is arbitrary, we conclude that Q(u, u) ≥ λn.
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With our variational formula established, our next goal is to prove an
analogue of the Courant-Hilbert nodal domain theorem for the Cauchy pro-
cess. We need the following definition. Each connected component of a set
on which un has constant sign will be called a nodal part for un. The nodal
domain for ϕn have already been defined in the introduction as a connected
component of a set on which ϕn has a constant sign. It is important to keep
in mind that a nodal part is a subset of H and that a nodal domain is a
subset of D.

We will also need the following auxiliary fact. The proof of this fact is
standard. We omit its proof.

Lemma 3.9. Let f ∈ L1(Rd) and assume that the Lebesgue measure in Rd

of the set {x ∈ Rd : f(x) �= 0} is positive. Let u(x, t) = Ptf(x), (x, t) ∈ H+.
Then the Lebesgue measure in Rd+1 of the set {(x, t) ∈ H+ : u(x, t) = 0} is
zero.

For any A ⊂ H we will set Ã = {x ∈ D : (x, 0) ∈ A}.
Lemma 3.10. Let D ⊂ Rd be a bounded Lipschitz domain. Let A be a nodal
part for un. Then 1Aun ∈ F and∫

H
|∇(1Aun)(x, t)|2 dx dt = λn

∫
Ã

ϕ2
n(x) dx.

Proof. If (x, t) ∈ H+ and ∇(1Aun)(x, t) does not exists, then (x, t) ∈ ∂A ∩
H+ so un(x, t) = (1Aun)(x, t) = 0. Now the fact that 1Aun ∈ F follows
easily from the fact that un ∈ F and Lemma 3.9. Note also that∫

H
|∇(1Aun)(x, t)|2 dx dt =

∫
H
∇(1Aun)(x, t)∇un(x, t) dx dt.

By Proposition 3.7 this equals

λn

∫
D

(1Aun)(x, 0)ϕn(x) dx = λn

∫
D

1A(x, 0)ϕ2
n(x) dx

= λn

∫
Ã

ϕ2
n(x) dx.

The next result is an analogue of the Courant-Hilbert nodal domain
theorem for our Steklov problem.

Theorem 3.11. Let D ⊂ Rd be a bounded Lipschitz domain. The function
un has no more than n nodal parts.
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Proof. Assume, for the purpose of contradiction, that un has at least n + 1
nodal parts. We denote these sets by A1, . . . , An+1. Observe that 1Amun ∈
F and that (1̃Amun) = 1Ãm

ũn for each m = 1, . . . , n. Put

u(x, t) =
n∑

m=1

bm(1Amun)(x, t), (x, t) ∈ H

so that

ũ(x) =
n∑

m=1

bm(1Ãm
ũn)(x), x ∈ Rd.

Let us choose b1, . . . , bn ∈ R such that ũ ⊥ ϕ1, . . . , ϕn−1 and ||ũ||2 = 1. Such
a choice is possible because 1Ã1

ũn, . . . , 1Ãn
ũn are linearly independent. From

the linear independence it follows that

1 = ||ũ||22 =
n∑

m=1

b2
m||1Ãm

ũn||22.

By linearity and Lemma 3.10,

Q(u, u) =
n∑

m=1

n∑
k=1

Q(bm1Amun, bk1Ak
un)(3.25)

=
n∑

m=1

b2
mQ(1Amun, 1Amun)

=
n∑

m=1

b2
mλn

∫
Ãm

ϕ2
n(x) dx

= λn

n∑
m=1

b2
m||1Ãm

ũn||22
= λn.

For any k ∈ N and (x, t) ∈ H put

vk(x, t) =
k∑

m=1

cmum(x, t)

where
cm =

∫
D

ũ(x)ϕm(x) dx.
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Then vk ∈ F and so

(3.26) Q(u, u) = Q(u − vk, u − vk) + Q(vk, vk) + 2Q(u − vk, vk).

The same argument as in the proof of Theorem 3.8 shows that Q(u−vk, vk) =
0 and Q(vk, vk) =

∑k
m=1 c2

mλm. Since ũ ⊥ ϕ1, . . . , ϕn−1, c1 = . . . = cn−1 =
0. Since ||ũ||2 = 1 ,

∑∞
m=n c2

m = 1. Therefore for k ≥ n we obtain by (3.26)

Q(u, u) ≥ Q(vk, vk) =
k∑

m=n

c2
mλm.

There are two cases to consider.
Case 1: There exists m0 > n, m0 ∈ N such that c2

m0
> 0. If this is so,

then for any k > m0 we obtain that

Q(u, u) =
k∑

m=n

c2
mλm > λn

k∑
m=n

c2
m.

Since
∑∞

m=n c2
m = 1 and k > m0 is arbitrary, it follows that Q(u, u) > λn

which is a contradiction to (3.25).
Case 2: For all m �= n, cm = 0. Then |cn| = 1. In this case for any k ≥ n

we have vk = un or vk = −un so Q(vk, vk) = Q(un, un) = λn. On the other
hand, for any k ≥ n we obtain

Q(u − vk, u − vk) = Q(u − un, u − un)

≥
∫

An+1

|∇(u − un)(x, t)|2 dx dt.

=
∫

An+1

|∇un(x, t)|2 dx dt

> 0,

where we used the fact that u(x, t) = 0 for any (x, t) ∈ An+1. Hence by
(3.26) we get

Q(u, u) = Q(u − vk, u − vk) + Q(vk, vk) > λn,

for all k ≥ n. This again is a contradiction to (3.25) and completes the proof
of the theorem.

With our variational characterization of λn and our Courant-Hilbert
nodal domain theorem, we can now prove several estimates for λn which
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are similar to the classical estimates for the eigenvalues of the Laplacian.
Such estimates will become useful in §5 below. To avoid confusion between
eigenvalues of different domains, we will write λn(D) in place of λn when
the possibility of such confusion arises.

Proposition 3.12. Let D ⊂ Rd be a bounded Lipschitz domain. Let A be
a nodal part for un for the set D. Assume there exists a bounded Lipschitz
domain Ω ⊂ Rd such that Ã ⊂ Ω. Then

(3.27) λn(D) ≥ λ1(Ω).

In particular, if Ã is a bounded Lipschitz domain itself, this holds for Ω = Ã.

Proof. Let v(x, t) = ||1Ãũn||−1
2 (1Aun)(x, t), (x, t) ∈ H. Note that v ∈ F(Ω).

Moreover, ||ṽ||2 = ||1Ãũn||−1
2 ||1Ãũn||2 = 1. Hence v ∈ F1(Ω). By Theorem

3.8,
λ1(Ω) = inf

u∈F1(Ω)
Q(u, u) ≤ Q(v, v).

On the other hand, by Lemma 3.10,

Q(v, v) = ||1Ãũn||−2
2

∫
H
|∇(1Aun)(x, t)|2 dx dt

= ||1Ãũn||−2
2 λn(D)

∫
Ã

ϕ2
n dx = λn(D).

This proves the proposition.

The following result is an analog of the Reylich-Ritz mini-max formula.

Proposition 3.13. Let D ⊂ Rd be a bounded Lipschitz domain. Let L be a
nonempty linear subspace of F and L̃ = {ũ : u ∈ L}. Put

(3.28) R(L) = sup
{∫

H
|∇u(x, t)|2 dx dt : u ∈ L, ||ũ||2 = 1

}
.

Then
λn = inf{R(L) : dim(L̃) = n}, n ∈ N.

Proof. Let Ln = Span{u1, . . . , un}. Then L̃n = Span{ϕ1, . . . , ϕn} and
dim(L̃n) = n. Hence

(3.29) inf{R(L) : dim(L̃) = n} ≤ R(Ln) = λn.
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On the other hand, let L be an arbitrary linear subspace of F such that
dim(L̃) = n. Then there exist v1, . . . , vn ∈ L such that

L̃ = Span{ṽ1, . . . , ṽn}.
Put w = c1v1 + . . . + cnvn. We have w̃ = c1ṽ1 + . . . + cnṽn. Let us choose
c1, . . . , cn so that w̃ ⊥ ϕ1, . . . , ϕn−1 and ||w̃||2 = 1. Such a choice is possible
because of the linear independence of ṽ1, . . . , ṽn. Then w ∈ Fn and it follows
that

(3.30) R(L) ≥ Q(w,w) ≥ inf
u∈Fn

Q(u, u) = λn.

The proposition follows from (3.29) and (3.30).

Let D ⊂ Rd be a bounded connected Lipschitz domain. Recall that
{ψn, µn} is the solution of the Dirichlet eigenvalue problem

(3.31)
{

∆ψn(x) = −µnψn(x), x ∈ D,
ψn(x) = 0, x ∈ ∂D,

as discussed in the Introduction. We assume, as we did in the Introduction,
that {ψn}∞n=1 is an orthonormal basis in L2(D) and recall that 0 < µ1 <
µ2 ≤ µ3 ≤ . . . and µn → ∞ as n → ∞. Multiplying the first part of the
equation in (3.31) by ψm and integrating gives∫

D
ψm(x)∆ψn(x) dx = −µn

∫
D

ψm(x)ψn(x) dx

Integrating by parts (apply Green’s theorem) and using the orthonormal
properties of the functions ψn, it follows that

(3.32)
∫

D
∇xψn(x)∇xψm(x) dx =

{
µn if m = n
0 if m �= n,

where

∇x =
(

∂

∂x1
, . . . ,

∂

∂xd

)
This identity in fact holds for a wider class of domains other than Lipschitz
but for our purpose this will suffice. Using this we have the following appli-
cation of Proposition 3.13 which gives a comparison of the higher eigenvalues
of the Dirichlet Laplacian to those of the Cauchy process. A Comparison
between the first eigenvalue of any symmetric stable process of of order
0 < α < 2 and the first eigenvalue for the Laplacian is given in [2]. Our
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result here shows that that comparison remains valid for the full spectrum
in the case of the Cauchy process. We of course expect this to be the case
for all α ∈ (0, 2) as well, with upper bound µ

α/2
n as in [2].

Theorem 3.14. Let D ⊂ Rd be a bounded connected Lipschitz domain.
Then for any n ∈ N

λn ≤ √
µn.

Proof. We extend ψn(x) to all of Rd by setting ψn(x) ≡ 0 for x ∈ Dc. Let
vn(x, t) = exp(−√

µnt)ψn(x), (x, t) ∈ H, n ∈ N. Then

|∇vn(x, t)|2 = |∇xvn(x, t)|2 +
∣∣∣∣∂vn

∂t
(x, t)

∣∣∣∣2
= exp(−2

√
µnt)|∇xψn(x)|2 + µn exp(−2

√
µnt)(ψn(x))2.

Integrating gives∫
H
|∇vn(x, t)|2 dx dt =

∫
D×[0,∞)

|∇vn(x, t)|2 dx dt

=
∫ ∞

0
exp(−2

√
µnt) dt

∫
D
|∇xψn(x)|2 dx +

+µn

∫ ∞

0
exp(−2

√
µnt) dt

∫
D

(ψn(x))2 dx =
√

µn.

For m �= n, m,n ∈ N,∫
H
∇vn(x, t)∇vm(x, t) dx dt =

∫
D×[0,∞)

∇xvn(x, t)∇xvm(x, t) dx dt

+
∫

D×[0,∞)

∂vn

∂t
(x, t)

∂vm

∂t
(x, t) dx dt.

The first integral on the right hand side equals∫ ∞

0
exp(−t(

√
µn +

√
µm)) dt

∫
D
∇xψn(x)∇xψm(x) dx

and the second integral equals

√
µn

√
µm

∫ ∞

0
exp(−t(

√
µn +

√
µm)) dt

∫
D

ψn(x)ψm(x) dx.

By the orthogonality of the functions ψn and (3.32), both of these quantities
are 0. Note that vn ∈ F , n ∈ N. Let L′

n = {v1, . . . , vn}. Then L̃′
n =
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{ψ1, . . . , ψn} and dim(L̃′
n) = n. Let w = c1v1 + . . . + cnvn be an arbitrary

function from L′
n such that ||w̃||2 = 1. Then

1 = ||w̃||22 =
n∑

m=1

c2
m||ψm||22 =

n∑
m=1

c2
m.

Therefore

Q(w,w) =
n∑

m=1

n∑
l=1

cmclQ(vm, vl) =
n∑

m=1

c2
m

√
µm ≤ √

µn

n∑
m=1

c2
m =

√
µn.

Hence R(L′
n) =

√
µn. By Proposition 3.13 we obtain

λn = inf{R(L) : dim(L̃) = n} ≤ R(L′
n) =

√
µn,

which completes the proof.

We now derive several results which will be needed in §5 when we study
the shape of ϕ2 and the zeros of ϕn for the interval (−1, 1). The next results
do not use the variational characterization of λn but follow instead more
directly from the fact that un is a solution of the mixed Steklov eigenvalue
problem (1.7)–(1.9) (Theorem 1.1). We will use the notation of Proposition
3.1.

Proposition 3.15. Let D ⊂ Rd be a bounded Lipschitz domain. Fix n ∈ N.
Assume that rn(x) ≥ 0 for all x ∈ Rd. Then

(i) The Lebesgue measure of the set {x ∈ Rd : rn(x) > 0} is positive. In
particular, for all (x, t) ∈ H+ we have Ptrn(x) > 0.

(ii) Suppose there is x0 ∈ Rd and t0 ≥ 0 such that un(x0, t0) ≥ 0. Then
for all t > t0, un(x0, t) > 0.

Proof. (i) Suppose on the contrary that the Lebesgue measure of the set
{x ∈ Rd : rn(x) > 0} is zero. Then for all (x, t) ∈ H+, Ptrn(x) = 0. Hence
by Proposition 3.2 (iii) we obtain

∂un

∂t
(x, t) = −λnun(x, t), (x, t) ∈ H+.

Note that un(x, 0) = 0 for x ∈ Dc. So, from the above it follows that
un(x, t) = 0 for all x ∈ Dc and t > 0. The function un = Ptϕn is harmonic

37



in H+. Since it vanishes in Dc × [0,∞), it must vanish in H+. This gives a
contradiction to the fact that ϕn is not trivial.

(ii) This will follow, as we shall see, from the weaker statement:
(ii’) Suppose there is x0 ∈ Rd and t0 ≥ 0 such that un(x0, t0) > 0. Then

un(x0, t) > 0 for all t ≥ t0.
To see this, suppose there exists t > t0 such that un(x0, t) = 0. Let

t1 = inf{t > t0 : un(x0, t) = 0}. It follows that t0 < t1 < ∞, un(x0, t) > 0
for t ∈ [t0, t1) and un(x0, t1) = 0. Then

∂un

∂t
(x0, t1) = lim

h→0+

un(x0, t1 − h) − un(x0, t1)
−h

≤ 0.

On the other hand, un(x0, t1) = 0 and Pt1rn(x0) > 0 so by Proposition 3.2
(iii) we obtain

∂un

∂t
(x0, t1) = −λnun(x0, t1) + Pt1rn(x0) > 0,

which gives a contradiction. This proves (ii’).
With the weaker form (ii’) proved, we have to consider the case un(x0, t0) =

0. Let t1 = inf{t > t0 : un(x0, t) > 0} where we put t1 = ∞ if the set
{t > t0 : un(x0, t) > 0} is empty. If t1 = t0, that is, if there exists a sequence
{sk}∞k=1 such that sk > t0 and limk→∞ sk = t0, un(x0, sk) > 0, then by
(ii’) we obtain that for all t > t0, un(x0, t) > 0. So, we can assume that
t1 > t0. Let us take t2 such that t0 < t2 < t1. For all t ∈ [t0, t2] we have
un(x0, t) ≤ 0. By the mean value theorem there exists ξ ∈ (t0, t2) such that

un(x0, t2) − un(x0, t0) = (t2 − t0)
∂un

∂t
(x0, ξ).

Since un(x0, t2) ≤ 0 and un(x0, t0) = 0, ∂un
∂t (x0, ξ) ≤ 0. We also have

un(x0, ξ) ≤ 0, (ξ ∈ (t0, t2)). So, by Proposition 3.2 (iii) we get

∂un

∂t
(x0, ξ) = −λnun(x0, ξ) + Pξrn(x0) > 0,

which gives a contradiction.

We need the following well known lemma which can be proved from
the reflection principle and the Harnack inequality, or also from the general
boundary Harnack Principle in Lipschitz domains.

Lemma 3.16. Let r, h > 0 and let C = {(x, t) ∈ H : |x|2 ≤ r, t ∈ [0, h]}
be a cylinder in H. Let u : C → R be nonnegative, continuous in C and
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harmonic in the interior of C. Assume in addition that u is positive on
{(x, t) ∈ H : |x|2 ≤ r, t = h}. Then there exists c = c(r, h, u) > 0 such that

u(0, t) ≥ c t, t ∈ [0, h].

Proposition 3.17. Let D ⊂ Rd be a bounded Lipschitz domain. Let x0 ∈ D
and r, h > 0. Fix n ∈ N. Assume that un is positive on the set {(x, t) ∈ H :
|x − x0|2 ≤ r2, t ∈ (0, h]}. Then ϕn(x0) = un(x0, 0) > 0.

Proof. On the contrary, assume that un(x0, 0) = 0. By Lemma 3.16, we
obtain un(x0, t) ≥ c t for all t ∈ [0, h], where c > 0 depends on un, r, h, x0.
Hence

∂un

∂t
(x0, 0) = lim

t→0+

un(x0, t) − un(x0, 0)
t

≥ lim
t→0+

c t

t
= c > 0.

On the other hand,

∂un

∂t
(x0, 0) = −λnun(x0, 0) = 0,

which gives a contradiction.

In what follows we will often refer to “smooth bounded connected do-
mains.” By this we will mean a bounded connected domain which is at least
C2. Often these results hold for more general domains but their proofs are
more technical. For our purposes, smooth domains suffice. The next the-
orem is an auxiliary result but it will be crucial in identifying the second
eigenfunction for D = (−1, 1) in §5 below.

Theorem 3.18. Let D be a bounded Lipschitz domain. Let A be a nodal
part for un for the set D. Assume there exists a smooth bounded connected
domain Ω with Ω ⊂ D such that A ⊂ Ω × [0,∞). Then we have

λn(D) ≥
√

µ1(Ω),

where µ1(Ω) is the solution of the Dirichlet eigenvalue problem (3.31) for
the domain Ω.

In order to prove this theorem we will have to obtain a result similar to
Theorem 3.8 but for Ω× [0,∞) instead of H. Namely, we will show that for
each n ∈ N,

√
µn = inf

u∈Gn

∫ ∞

0

∫
Ω
|∇u(x, t)|2 dx dt,

for a suitably chosen class of functions Gn, where µn are eigenvalues for the
Dirichlet problem (3.31) for Ω. We first introduce the class of functions
G(Ω) = G for the variational characterization of

√
µn.
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Definition 3.2. Let Ω ⊂ Rd be a smooth bounded connected domain. We
define G(Ω) to be the collection of all finite linear combinations of functions
u : Ω × [0,∞) → R satisfying the following conditions:

(i) u is continuous and bounded on Ω × [0,∞) and for all t > 0 there
exists a constant ct such that for all x ∈ Ω,

|u(x, t)| ≤ ct δΩ(x).

(ii) ∇u(x, t) exists for almost all (x, t) ∈ Ω×(0,∞) and ∇u is a measurable
function. If (x, t) ∈ Ω × (0,∞) and ∇u(x, t) does not exists, then
u(x, t) = 0. Moreover for all t > 0, there is a c′t such that for all x ∈ Ω,

|∇u(x, t)| ≤ c′t,

for any (x, t) ∈ Ω × (0,∞) for which ∇u(x, t) exists.

(iii) ∫
Ω

u2(x, 0) dx < ∞

and

(iv) ∫ ∞

0

∫
Ω
|∇u(x, t)|2 dx dt < ∞.

We will just write G for G(Ω) whenever Ω is fixed. Recall that ∇ =
( ∂

∂x1
, . . . , ∂

∂xd
, ∂

∂t) and that ∇x = ( ∂
∂x1

, . . . , ∂
∂xd

). As before, set vn(x, t) =
exp(−√

µnt)ψn(x) for (x, t) ∈ Ω × [0,∞) where ψn is the Dirichlet eigen-
function corresponding to µn.

Lemma 3.19. Let Ω ⊂ Rd be a smooth bounded connected domain. Then

(i) For any n ∈ N, there exists constant C1(n,Ω) such that for all (x, t) ∈
Ω × [0,∞),

|∇vn(x, t)| ≤ C1(n,Ω).

(ii) If u ∈ G, t > 0, and n ∈ N, then there is a constant C2(u, t, n,Ω) such
that for x ∈ Ω and i = 1, 2, . . . , d,∣∣∣∣u(x, t)

∂2vn

∂x2
i

(x, t)
∣∣∣∣ ≤ C2(u, t, n,Ω).
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(iii) For any n ∈ N we have vn ∈ G and

(3.33)
∫ ∞

0

∫
Ω
|∇vn(x, t)|2 dx dt =

√
µn.

Proof. As before, a direct calculation gives,

|∇vn(x, t)| ≤ exp(−√
µnt)|∇xψn(x)| + √

µn exp(−√
µnt)|ψn(x)|.

By the smoothness of ∂Ω (C2 is enough here) and intrinsic ultracontractivity
we have

(3.34) |ψn(x)| ≤ c(n,Ω)ψ1(x) ≤ c(n,Ω)δΩ(x), x ∈ Ω.

Here we recall our convention that constants may change their value from
one use to the next even on the same line. By [22], Theorem 1

|∇ψn(x)| ≤ c(n,Ω) |ψn(x)| δ−1
Ω (x) ≤ c(n,Ω), x ∈ Ω,

and this proves (i).
One more application of the upper bound of [22] gives∣∣∣∣∂2ψn

∂x2
i

(x)
∣∣∣∣ ≤ c(n,Ω)

∣∣∣∣∂ψn

∂xi
(x)
∣∣∣∣ 1

δΩ(x)
≤ c(n,Ω)

1
δΩ(x)

and (ii) follows by (i) in Definition 3.2. We point out that Theorem 1, [22]
is stated for d ≥ 3. For d = 1 the only smooth bounded connected domain
Ω is an interval so the above inequalities follow from explicit expressions for
ψn. For d = 2 we may use Theorem 1, [22] by adding extra dimension. In
fact for d = 2 Theorem 1, [22] may be used for D × (0, R), for some R > 0
and function ψ̂n(x1, x2, x3) = ψn(x1, x2), (x1, x2) ∈ D, x3 ∈ (0, R).

The identity (3.33) was proved in the proof of Theorem 3.14. Continuity
and boundedness of vn are clear. The second part of the condition (i) in the
Definition 3.2 follows from (3.34). Condition (ii) is satisfied by (i) in this
lemma. Conditions (iii) and (iv) of Definition 3.2 follow easily.

Next we prove a result similar to Proposition 3.7.

Proposition 3.20. Let Ω ⊂ Rd be a smooth bounded connected domain and
u ∈ G. Then for any n ∈ N,

(3.35)
∫ ∞

0

∫
Ω
∇u(x, t)∇vn(x, t) dx dt =

√
µn

∫
Ω

u(x, 0)ψn(x) dx.
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We interpret this identity as the statement that Green’s theorem can be
applied in the sense that∫ ∞

0

∫
Ω
∇u(x, t)∇vn(x, t) dx dt = −

∫ ∞

0

∫
Ω

u(x, t)∆vn(x, t) dx dt(3.36)

−
∫ ∞

0

∫
∂Ω

u(x, t)
∂vn

∂ν
(x, 0) dx dt −

∫
Ω

u(x, 0)
∂vn

∂t
(x, 0) dx.

Here, ∂
∂ν is the inward normal derivative at ∂Ω. Note also (see (3.39)

below) that ∆vn(x, t) = 0 for (x, t) ∈ Ω × (0,∞). We will show (3.35) and
not (3.36). (3.36) is only an interpretation and is not fully precise. For
example, the functions u and vn are not defined on ∂Ω so the integral over
∂Ω should be understood in the sense of limits.

Proof. The integral on the left hand side of (3.35) equals∫ ∞

0

∫
Ω
∇xu(x, t)∇xvn(x, t) dx dt +

∫ ∞

0

∫
Ω

∂u

∂t
(x, t)

∂vn

∂t
(x, t) dx dt = I + II.

Since u, vn satisfies (iv) in the Definition (3.2), it follows that∫ ∞

0

∣∣∣∣∂u

∂t
(x, t)

∂vn

∂t
(x, t)

∣∣∣∣ dt < ∞

for almost all x ∈ Ω. For such an x,∫ ∞

0

∂u

∂t
(x, t)

∂vn

∂t
(x, t) dt

=
[
u(x, t)

∂vn

∂t
(x, t)

]t=∞

t=0

−
∫ ∞

0
u(x, t)

∂2vn

∂t2
(x, t) dt.

It follows that

II =
√

µn

∫
Ω

u(x, 0)ψn(x) dx −
∫ ∞

0

∫
Ω

u(x, t)
∂2vn

∂t2
(x, t) dx dt = III − IV.

Hence, to prove the proposition it remains to show that I− IV = 0. In fact,
it is enough to show that for each t > 0,

(3.37) V − VI =
∫

Ω
∇xu(x, t)∇xvn(x, t) dx −

∫
Ω

u(x, t)
∂2vn

∂t2
(x, t) dx = 0.

Notice that by condition (ii) in the Definition 3.2, for each t > 0 the integral
V is absolutely convergent. Similarly, by the boundedness of u (condition
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(i) in Definition 3.2) and the explicit expression for vn, the integral VI is
absolutely convergent.

Fix t > 0. Extend u and vn to all of H by putting u(x, t) = 0, vn(x, t) = 0
for (x, t) /∈ Ω × [0,∞). We have

V =
d∑

i=1

∫ ∞

−∞
. . .

∫ ∞

−∞

∂u

∂xi
(x, t)

∂vn

∂xi
(x, t)dx1 . . . dxd.

Now we need to show that

(3.38)
∫ ∞

−∞

∂u

∂xi
(x, t)

∂vn

∂xi
(x, t) dxi = −

∫ ∞

−∞
u(x, t)

∂vn

∂x2
i

(x, t) dxi.

Observe that the integral on the left is absolutely convergent by condition
(ii) in Definition 3.2 and the integral on the right is well defined by Lemma
3.19, (ii). The justification of (3.38) is almost the same as the justification
of (3.10) in the proof of Proposition 3.4 and therefore we omit it. It follows
that

V = −
d∑

i=1

∫
Ω

u(x, t)
∂vn

∂x2
i

(x, t) dx.

On the other hand,

(3.39) ∆vn(x, t) =
d∑

i=1

∂vn

∂x2
i

(x, t) +
∂vn

∂t2
(x, t) = 0.

This gives (3.37) and proves the proposition.

We now define the “variational spaces” for the set Ω × [0,∞), where Ω
is a smooth bounded connected domain. For any u : Ω × [0,∞) → R, we
put ũ(x) = u(x, 0), x ∈ Ω and ||ũ||Ω = (

∫
Ω ũ2(x) dx)1/2. Let G1(Ω) = {u ∈

G(Ω) : ||ũ||Ω = 1} and for n ≥ 2, let

Gn(Ω) = {u ∈ G(Ω) : ũ ⊥ ψ1, . . . ψn−1; ||ũ||Ω = 1}

and as before, we will write Gn(Ω) for Gn when the set Ω is well understood.

Proposition 3.21. Let Ω ⊂ Rd be a smooth bounded connected domain.
Then √

µn = inf
u∈Gn

∫ ∞

0

∫
Ω
|∇u(x, t)|2 dx dt,

for all n ∈ N.
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This Proposition follows from Proposition 3.20 exactly in the same way
as Theorem 3.8 follows from Proposition 3.7 (see the proof of Theorem 3.8)
and we leave the details to the reader.

Proof of Theorem 3.18. For (x, t) ∈ Ω × [0,∞), consider the function

u(x, t) =
(∫

Ã
ϕ2

n(x) dx

)−1/2

(1Aun)(x, t).

By Lemma 3.10,∫ ∞

0

∫
Ω
|∇u(x, t)|2 dx dt =

∫
A
|∇u(x, t)|2 dx dt

=
(∫

Ã
ϕ2

n(x) dx

)−1 ∫
A
|∇(1Aun)(x, t)|2 dx dt = λn(D).

Since A ⊂ Ω × [0,∞), we see that u ∈ G. Note that ||ũ||Ω = 1, so u ∈ G1.
Hence by Proposition 3.21 we obtain√

µ1(Ω) ≤
∫ ∞

0

∫
Ω
|∇u(x, t)|2 dx dt = λn(D),

proving the theorem.

4 Eigenfunctions and Eigenvalues

In this section we will derive several results which will be of use in §5 below
and which are also of independent interest. Our first result, the real ana-
lyticity of eigenfunctions, is a basic regularity results that we believe should
be known, and as pointed out to us by A. Sá Barreto, it may follow from
general considerations of pseudo–differential operators as in [19]. However,
we have not been able to find an appropriate reference in the literature for it.
Therefore we provide the simple, although technical, proof here. We point
out that it is possible to generalize this result to all α ∈ (0, 2) but such
a proof would demand more technical details. For simplicity, and because
our main application here is to the Cauchy process we restrict ourselves to
α = 1. In a similar fashion, our second result (Theorem 4.3) which gives
the existence of an antisymmetric eigenfunction ϕ∗, could be generalized to
α ∈ (0, 2) and the assumptions on the domain in Theorem 4.3 such as Lip-
schitz boundary and connectedness of the domain are not necessary. Such
assumptions make the arguments less technical and give the results we will
need in our applications.
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Theorem 4.1. Let D ⊂ Rd be a bounded domain. The Cauchy eigenfunc-
tions ϕn are real analytic in D.

We need some auxiliary facts and additional notation. Let Λ be the set
of all multi-index β = (β1, . . . , βd) with βi ∈ {0, 1, 2, . . .} and as usual set
||β|| = β1 + . . . + βd. For any f : Rd → R and β ∈ Λ set

Dβ
xf(x) = Dβ1,...,βd

x f(x) =
∂β1

∂xβ1
1

. . .
∂βd

∂xβd
1

f(x)

whenever all the derivatives exist.
We will need some estimates on Dβ

xp(s, x, y). Set F (x) = (s2+|x|2)−(d+1)/2,
x ∈ Rd, s > 0.

Lemma 4.2. For any β ∈ Λ,

(4.1) Dβ
xF (x) = wβ(x)(s2 + |x|2)−||β||−(d+1)/2,

where wβ(x) =
∑

γ∈Λ: ||γ||≤||β|| cγ,β xγ1
1 . . . xγd

d and cγ,β ∈ R. For n = 0, 1, 2, . . .
set

an = max
β∈Λ: ||β||=n

(
∑

γ∈Λ: ||γ||≤||β||
|cγ,β|).

Then for any s ≤ 1 and n = 0, 1, 2 . . .

(4.2) an ≤ (d + 3)n(n!).

Also, for any β ∈ Λ, s ≤ 1 and x ∈ Rd,

(4.3) |Dβ
xF (x)| ≤ max(1, |x|−2||β||−d−1)(d + 3)||β||(||β||!).

In particular for β ∈ Λ, s ≤ 1, x, y ∈ Rd we obtain

(4.4) |Dβ
xp(s, x, y)| ≤ cd max(1, |x − y|−2||β||−d−1)(d + 3)||β||(||β||!).

Proof. We will prove (4.1) and (4.2) by induction. The proof is completely
elementary based on our explicit expression for F . We present it here for
completeness. Of course, for β = (0, . . . , 0) both formulas are true. Assume
that (4.1) and (4.2) are true for some β ∈ Λ. For any i ∈ {1, . . . , d} we see

that ∂(Dβ
xF )

∂xi
(x) is equal to[

(−||β|| − (d + 1)/2)2xiwβ(x) +
∂wβ

∂xi
(x)(s2 + x2

1 + . . . + x2
d)
]

(4.5)

×(s2 + |x|2)−||β||−1−(d+1)/2.
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This justifies the induction step for (4.1). (4.5) and the assumption that
s ≤ 1 also gives

an+1 ≤ (2||β|| + (d + 1))an + ||β||(d + 1)an

= an(||β||(d + 3) + d + 1) ≤ an(||β|| + 1)(d + 3),

and (4.2) follows.
Now (4.3) will follow from (4.1) and (4.2). In fact, for s ≤ 1 we have

(4.6) |wβ(x)| ≤
∑

γ∈Λ: ||γ||≤||β||
|cγ,β ||x1|γ1 . . . |xd|γd

and

(4.7) (s2 + |x|2)−||β||−(d+1)/2 ≤ |x|−2||β||−d−1

Also, if |x| ≤ 1 then the right hand side of (4.6) is bounded above by∑
γ∈Λ: ||γ||≤||β||

|cγ,β| ≤ a||β||

and (4.3) follows. On the other hand, if |x| > 1 then the right hand side
of (4.6) is no larger than |x|||β||a||β||. This also gives (4.3). (4.4) follows
trivially from (4.3) and our formula for p(s, x, y) as given in (1.1).

Proof of Theorem 4.1. Fix t > 0 and k ∈ N. For any x ∈ D, t > 0 and
k ∈ N,

e−λktϕk(k) = PD
t ϕk(x) = Ptϕk(x) −

∫
D

rD(t, x, y)ϕk(y) dy,

where rD(t, x, y) is given by (2.1). Of course, the function x → Ptϕk(x), is
real analytic in D. We must prove that the function

SDϕk(x) =
∫

D
rD(t, x, y)ϕk(y) dy

is also real analytic in D. Fix 0 < t ≤ 1. By (2.1) and the fact that
rD(t, x, y) = rD(t, y, x),

SDϕk(x) =
∫

D
Ey[t > τD; p(t − τD, x,X(τD))]ϕk(y) dy, x ∈ D.
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Fix an arbitrary z ∈ D and r ∈ (0, δD(z)/2]. We claim that

(4.8) Dβ
x(SDϕk)(x) =

∫
D

Ey[t > τD;Dβ
xp(t − τD, x,X(τD))]ϕk(y) dy,

for any β ∈ Λ and x ∈ B(z, r). In particular we claim that the left hand
side of (4.8) is well defined. On the set {t > τD}, we get by (4.4) (recall
t ∈ (0, 1]) that |Dβ

xp(t − τD, x,X(τD))| is bounded above by

cd max(1, |x − X(τD)|−2||β||−d−1)(d + 3)||β||(||β||!).

But |x−X(τD)| ≥ δD(z)/2 for x ∈ B(z, r), r ∈ (0, δD(z)/2]. Hence Dβ
xp(t−

τD, x,X(τD)) is bounded on B(z, r). Recall also that ϕk is bounded on D.
This gives that Dβ

x(SDϕk)(x) is well defined for x ∈ B(z, r) and that (4.8)
holds. Moreover, for x ∈ B(z, r) we get

|Dβ
x(SDϕk)(x)| ≤ c(D, k)max(1, (δD(z)/2)−2||β||−d−1)(4.9)

× (d + 3)||β||(||β||!).
Thus the function (SDϕk) is C∞ in B(z, r). We may therefore expand this
function into its Taylor’s series on B(z, r) about the point z and we must
show that the remainder goes to zero uniformly in B(z, r). Let us denote
this remainder by Rn(SDϕk). For any n ≥ 1 and x ∈ B(z, r) we have

|Rn(SDϕk)(x)| = | 1
n!

∑
β:||β||=n

[Dβ
x(SDϕk)(z + h(x − z))cβ

d∏
i=1

|xi − zi|βi ]|,

where h ∈ (0, 1) depends on x, z and n, cβ = ||β||!(β1! . . . βd!)−1. By (4.9)
applied to the point z + h(x− z) ∈ B(z, r) the above expression is bounded
above by

(4.10) c(D, k)max(1, (δD(z)/2)−2n−d−1)(d + 3)n
∑

β:||β||=n

cβ

d∏
i=1

|xi − zi|βi .

But

∑
β:||β||=n

cβ

d∏
i=1

|xi−zi|βi =

(
d∑

i=1

|xi − zi|
)n

≤
(

(d
d∑

i=1

|xi − zi|2)1/2

)n

< dn/2rn.

Thus it is clear that for sufficiently small r > 0, (4.10) goes to 0 as n goes
to ∞ and this completes the proof of the theorem.
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For any domain D ⊂ Rd, we set D+ = {x ∈ D : x1 > 0} and D− = {x ∈
D : x1 < 0}. For each x = (x1, x2, . . . , xd) we put x̂ = (−x1, x2, . . . , xd). We
say that D is symmetric relative to the x1–axis if x̂ ∈ D whenever x ∈ D.
If D ⊂ Rd is a connected bounded Lipschitz domain which is symmetric
relative to the x1–axis, it is easy to show that there exists an eigenfunction
ψ∗ with corresponding eigenvalue µ∗ for the Dirichlet Laplacian, which is
antisymmetric relative to the x1–axis ( ψ∗(x) = −ψ∗(x̂), x ∈ D) and (up to
a sign) ψ∗(x) > 0 for x ∈ D+ and ψ∗(x) < 0 for x ∈ D−. We wish to prove
a similar result for the Cauchy process.

Theorem 4.3. Let D ⊂ Rd be a connected, bounded Lipschitz domain which
is symmetric relative to the x1–axis. Then there exists an eigenfunction ϕ∗
for the Cauchy process with corresponding eigenvalue λ∗ which is antisym-
metric relative to the x1–axis ( ϕ∗(x) = −ϕ∗(x̂), x ∈ D) and (up to a sign)
ϕ∗(x) > 0 for x ∈ D+ and ϕ∗(x) < 0 for x ∈ D−. Moreover, if ϕ is any
eigenfunction with eigenvalue λ such that ϕ is antisymmetric relative to the
x1–axis and ϕ is different from ϕ∗ (ϕ /∈ Span{ϕ∗}) then λ∗ < λ. In other
words, ϕ∗ has the smallest eigenvalue among all eigenfunctions which are
antisymmetric relative to x1–axis.

We first need some lemmas. Let Rd
+ = {x ∈ Rd : x1 > 0}. For any

x, y ∈ Rd
+, t > 0, put p̃(t, x, y) = p(t, x, y) − p(t, x, ŷ). It is easy to check

that p̃(t, x, y) > 0. We wish to prove a similar result for the killed process.

Lemma 4.4. Let D be as in Theorem (4.3). Fix t > 0 and let 0 < t1 <
t2 < . . . tn < t. For x ∈ D+, y ∈ D define R[t1](x, y) = p(t1, x, y). Then

R[t1](x, y) − R[t1](x, ŷ) = p̃(t1, x, y).

For n ≥ 2, x ∈ D+, y ∈ D, define

R[t1, . . . , tn](x, y) =
∫

D
R[t1, . . . , tn−1](x, z)p(tn − tn−1, z, y) dz

=
∫

D
. . .

∫
D

p(t1, x, z1) . . . p(tn − tn−1, zn−1, y) dz1 . . . dzn−1.

Then for any x, y ∈ D+,

R[t1, . . . , tn](x, y) − R[t1, . . . , tn](x, ŷ) =∫
D+

. . .

∫
D+

p̃(t1, x, z1) . . . p̃(tn − tn−1, zn−1, y) dz1 . . . dzn−1.(4.11)
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Proof. For notational convenience, we will abbreviate R[t1, . . . , tn](x, y) to
Rn(x, y). We will show (4.11) by induction. The case n = 1 is obvious.
Assume (4.11) holds for n. For any x, y ∈ D+ we have

Rn+1(x, y) − Rn+1(x, ŷ)

=
∫

D+

Rn(x, z)(p(tn+1 − tn, z, y) − p(tn+1 − tn, z, ŷ)) dz

+
∫

D−
Rn(x, z)(p(tn+1 − tn, z, y) − p(tn+1 − tn, z, ŷ)) dz.(4.12)

The integral in (4.12) equals∫
D+

Rn(x, ẑ)(p(tn+1 − tn, ẑ, y) − p(tn+1 − tn, ẑ, ŷ)) dz.

Note that for any s > 0, z, y ∈ Rd we have p(s, ẑ, y) = p(s, z, ŷ) and
p(s, ẑ, ŷ) = p(s, z, y). Consequently the integral in (4.12) equals∫

D+

Rn(x, ẑ)(p(tn+1 − tn, z, ŷ) − p(tn+1 − tn, z, y)) dz.

It follows that for any x, y ∈ D+

Rn+1(x, y) − Rn+1(x, ŷ)

=
∫

D+

(Rn(x, z) − Rn(x, ẑ))(p(tn+1 − tn, z, y) − p(tn+1 − tn, z, ŷ)) dz.

Now (4.11) for n + 1 follows from (4.11) for n.

Lemma 4.5. For any x, y ∈ D+, t > 0, put p̃D(t, x, y) = pD(t, x, y) −
pD(t, x, ŷ). Then we have p̃D(t, x, y) > 0.

Proof. Let x ∈ D+, t > 0. For any B(y0, r) ⊂ D+ we have∫
B(y0,r)

pD(t, x, y) dy = P x(Xt ∈ B(y0, r); t < τD)

= lim
n→∞P x(Xjt/n ∈ D, j = 1, 2, . . . n, Xt ∈ B(y0, r))(4.13)

= lim
n→∞

∫
B(y0,r)

R[t/n, . . . , (n − 1)t/n, t](x, y) dy

Similarly,∫
B(y0,r)

pD(t, x, ŷ) dy = lim
n→∞

∫
B(y0,r)

R[t/n, . . . , (n − 1)t/n, t](x, ŷ) dy.
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Therefore using Lemma 4.4 we obtain that
∫
B(y0,r) p̃D(t, x, y) dy equals

lim
n→∞

∫
B(y0,r)

∫
D+

. . .

∫
D+

p̃(t/n, x, z1) . . . p̃(t/n, zn−1, y) dz1 . . . dzn−1 dy.

The function y → p̃D(t, x, y) is continuous on D because y → pD(t, x, y)
is continuous. Since p̃(t, x, y) > 0 it follows that p̃D(t, x, y) ≥ 0 for all x, y ∈
D+, t > 0. However, to show that p̃D(t, x, y) is strictly positive requires
additional work. To do this we will use the fact that the Cauchy kernel may
be represented as the subordination of the Gaussian kernel p2(t, x, y) which,
to avoid confusion here, we shall denote by

g(t, x, y) = (4πt)−d/2 exp(−|x − y|2/4t),
by the one-sided stable transition function

ft(s) = π−1/2ts−3/2 exp(−t2/4s)1[0,∞)(s), t > 0, s ∈ R

of index 1/2. That is, we have

p(t, x, y) =
∫ ∞

0
g(s, x, y)ft(s) ds,

x, y ∈ Rd, t > 0. Similarly we have

p̃(t, x, y) =
∫ ∞

0
g̃(s, x, y)ft(s) ds,

x, y ∈ Rd
+, t > 0, where g̃(s, x, y) = g(s, x, y) − g(s, x, ŷ).

Let us now denote by gΩ(t, x, y), x, y ∈ Ω, t > 0 the heat kernel of the
Brownian motion Yt (running at twice the speed with kernel g(t, x, y)) killed
on Ω ⊂ Rd. It is trivial that for Ω1 ⊂ Ω2 we have gΩ1(t, x, y) ≤ gΩ2(t, x, y),
x, y ∈ Ω1, t > 0. In addition, one easily checks that g̃(t, x, y) = g

R
d
+
(t, x, y)

and in particular we have gD+(t, x, y) ≤ g
R

d
+
(t, x, y) and gD+(t, x, y) > 0,

x, y ∈ D+, t > 0. Let us put

uD+(t, x, y) =
∫ ∞

0
gD+(s, x, y)ft(s) ds.

Then by standard arguments uD+(t, x, y) satisfies the semigroup property.
That is,

(4.14) uD+(t1 + t2, x, y) =
∫

D
uD+(t1, x, z)uD+(t2, z, y) dz,
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for x, y ∈ D+, t1, t2 > 0. Indeed,∫
D+

∫ ∞

0
gD+(s1, x, z)ft1(s1) ds1

∫ ∞

0
gD+(s2, z, y)ft2(s2) ds2 dz

=
∫ ∞

0

∫ ∞

0
gD+(s1 + s2, x, y)ft1(s1) ds1ft2(s2) ds2

Substituting s = s1 + s2, ds = ds1 the previous expression equals∫ ∞

0

∫ ∞

0
gD+(s, x, y)1[s2,∞)(s)ft1(s − s2) dsft2(s2) ds2

=
∫ ∞

0
gD+(s, x, y)

∫ s

0
ft1(s − s2)ft2(s2) ds2 ds

But it is well known ([8], page 19) that ft1 ∗ ft2(s) = ft1+t2(s). This gives
(4.14). It also follows easily that for fixed t > 0, x ∈ D+, the function
y → uD+(t, x, y) is continuous on D+ and uD+(t, x, y) > 0 for x, y ∈ D+,
t > 0.

Now, for x, y ∈ D+ we have

p̃(t, x, y) =
∫ ∞

0
g

R
d
+
(s, x, y)ft(s) ds

≥
∫ ∞

0
gD+(s, x, y)ft(s) ds = uD+(t, x, y).

It follows that for B(y0, r) ⊂ D+, x ∈ D+, t > 0,∫
B(y0,r)

p̃D(t, x, y) dy

= lim
n→∞

∫
B(y0,r)

∫
D+

. . .

∫
D+

p̃(t/n, x, z1) . . . p̃(t/n, zn−1, y) dz1 . . . dzn−1 dy

≥ lim
n→∞

∫
B(y0,r)

∫
D+

. . .

∫
D+

uD+(t/n, x, z1) . . . uD+(t/n, zn−1, y) dz1 . . . dzn−1 dy

=
∫

B(y0,r)
uD+(t, x, y) dy,

where we used the semigroup property for uD+ in the last equality. From
this we see that

p̃D(t, x, y) ≥ uD+(t, x, y) > 0,

for all x, y ∈ D+, t > 0, and this completes the proof of the lemma.
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Lemma 4.6. For x, y ∈ D we have pD(t, x̂, y) = pD(t, x, ŷ) and pD(t, x̂, ŷ) =
pD(t, x, y).

Proof. This follows immediately from formula (4.13), the corresponding
properties for p(t, x, y) and the fact that D is symmetric relative to the
x1–axis.

Proof of Theorem 4.3. It is easy to check that the kernel p̃D(t, x, y) defines
a semigroup on L2(D+). Let us denote this semigroup by P̃D

t . By the
general theory of and the strict positivity of p̃D(t, x, y) ([27]) there exists
an orthonormal basis of eigenfunctions {Ψn} for L2(D+) and corresponding
eigenvalues {an} satisfying 0 < a1 < a2 ≤ a3 ≤ . . . for this operator. That is,
P̃D

t Ψn(x) = exp(−ant)Ψn(x), x ∈ D+, t > 0, n ∈ N. All the eigenfunctions
Ψn are bounded and continuous by the properties of the kernel p̃D(t, x, y). In
addition, strict positivity of p̃D(t, x, y) implies that the first eigenfunction
Ψ1 is strictly positive and a1 is simple. All this follows from the general
theory of heat semigroups as in [27].

Now define Ψn(x) = Ψn(x) for x ∈ D+, Ψn(x) = −Ψn(x̂) for x ∈ D−
and Ψn(x) = 0 for x ∈ D \ (D+ ∪ D−). It is easy to check that Ψn is an
eigenfunction for PD

t with corresponding eigenvalue an. That is,

PD
t Ψn(x) = exp(−ant)Ψn(x), x ∈ D, t > 0, n ∈ N.

In fact using Lemma 4.6 we get for x ∈ D−, t > 0, n ∈ N

e−antΨn(x) = −e−antΨn(x̂) = −P̃D
t Ψn(x̂)

= −
∫

D+

pD(t, x̂, y)Ψn(y) dy +
∫

D+

pD(t, x̂, ŷ)Ψn(y) dy

= −
∫

D+

pD(t, x, ŷ)Ψn(y) dy +
∫

D+

pD(t, x, y)Ψn(y) dy

=
∫

D−
pD(t, x, y)Ψn(y) dy +

∫
D+

pD(t, x, y)Ψn(y) dy = PD
t Ψn(x).

For x ∈ D \ (D+∪D−) and x ∈ D+, this property may be checked similarly.
Of course, a priori we do not know that Ψn is continuous for x ∈ D \ (D+ ∪
D−). Since all eigenfunctions for PD

t have continuous extensions and Ψn is
continuous on D+, we must have that Ψn (defined as above) is continuous
on D.

Analogously if ϕn is an eigenfunction which is antisymmetric relative to
the x1–axis (ϕn(x) = ϕn(x̂)) then we can show that ϕ̃n(x) = 1D+(x)ϕn(x),
x ∈ D+ is an eigenfunction for P̃D

t with corresponding eigenvalue λn. Thus
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there is one–to–one correspondence between the eigenfunctions for P̃D
t and

the antisymmetric eigenfunctions for PD
t . It follows that ϕ∗ = Ψ1 and

λ∗ = a1 and all the properties of ϕ∗ and λ∗ follow from the corresponding
properties for Ψ1 and a1. This completes proof of the theorem.

Theorem 4.7. Let D ⊂ Rd be a bounded Lipschitz domain and set

∆x =
n∑

i=1

∂2

∂x2
i

.

(i) For x ∈ D we have ∆xϕ1(x) ≤ 0.

(ii) If in addition D is connected and symmetric relative to the x1–axis,
then for x ∈ D+ we have ∆xϕ∗(x) ≤ 0.

Proof. Using Proposition 3.2 (iii) twice we obtain

∂2u1

∂t2
(x, t) = λ2

1u1(x, t) − λ1Ptr1(x) +
∂

∂t
(Ptr1(x)), (x, t) ∈ H+.

Since u1 is harmonic in H+,

∂2u1

∂t2
(x, t) = −∆xu1(x, t), (x, t) ∈ H+.

It follows that

(4.15) ∆xu1(x, t) = −λ2
1u1(x, t) + λ1Ptr1(x) − ∂

∂t
(Ptr1(x)), (x, t) ∈ H+.

We know that for x ∈ D we have u1(x, t) → ϕ1(x) > 0, as t → 0+. Since
r1 ∈ L1(Rd) and equals 0 on D, we get that Ptr1(x) → 0 for x ∈ D,
as t → 0+. To finish the proof of the first part of the theorem we must
show that for x ∈ D, limt→0+( ∂

∂tPtr1(x)) exists and is nonnegative and that
∆xu1(x, t) tends to ∆xϕ1(x) as t → 0+. To do this observe that for x ∈ D
and t > 0 we have

∂(Ptr1)
∂t

(x) =
∫

Rd

∂

∂t
p(t, x, y)r1(y) dy.

Using the formula for ∂
∂tp(t, x, y) (Lemma 3.3 (b)) and the fact that r1 ∈

L1(Rd) and supp(r1) ⊂ Dc, we obtain that for x ∈ D

(4.16) lim
t→0+

∂(Ptr1)
∂t

(x) = cd

∫
Rd

r1(y)
|x − y|d+1

dy.
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Since ϕ1(x) > 0 on D, r1(x) ≥ 0 on Rd so the limit in (4.16) is nonnegative.
Now we will show that for x ∈ D, ∆xu1(x, t) tends to ∆xϕ1(x) as t → 0+.

Fix x ∈ D, z ∈ D and r > 0 such that B(z, 3r) ⊂ D and x ∈ B(z, r).
Let f ∈ C∞(Rd) be such that f ≡ 1 on B(z, r) and f ≡ 0 on Bc(z, 2r).
Set g(y) = 1 − f(y), y ∈ Rd. Recall that p(t, x, y) = p(t, x − y) (where
p(t, y) = p(t, 0, y)). For any t > 0,

u1(x, t) =
∫

Rd

p(t, x − y)(ϕ1f)(y) dy +
∫

Rd

p(t, x − y)(ϕ1g)(y) dy

=
∫

Rd

p(t, y)(ϕ1f)(x − y) dy +
∫

Rd

p(t, x − y)(ϕ1g)(y) dy(4.17)

Note that ϕ1f = 0 on Bc(z, 2r). Since ϕ1 is real analytic on D it follows
that ϕ1f is C∞ on Rd. Therefore for any t > 0 we have

∆x(
∫

Rd

p(t, y)(ϕ1f)(x − y) dy) =
∫

Rd

p(t, y)∆x(ϕ1f)(x − y) dy.

However, the last integral tends to ∆x(ϕ1f)(x) = ∆xϕ1(x), as t → 0+.
On the other hand,

(4.18) ∆x(
∫

Rd

p(t, x − y)(ϕ1g)(y) dy) =
∫

Rd

∆xp(t, x − y)(ϕ1g)(y) dy

Note that ϕ1g ≡ 0 on B(z, r) and that ϕ1g is bounded and has compact
support. Using the formula for ∆xp(t, x − y) (Lemma 3.3 (c)) it is easy
to show that the integral on the right hand side of (4.18) tends to 0 as
t → 0+. Hence (4.17) gives that ∆xu1(x, t) tends to ∆xϕ1(x) as t → 0+

which finishes the proof of the first part of the theorem.
In the exact same way, we get (4.15) with u1 replaced by u∗, λ1 by

λ∗ and r1 by r∗, where u∗(x, t) = Ptϕ∗(x), r∗(x) = limt→0+(u∗(x, t)/t) for
x ∈ int(Dc) and r∗(x) = 0 for x ∈ D. Notice that r∗(x) = −r∗(x̂) and
r∗(x) ≥ 0 for x ∈ Rd

+ = {x ∈ Rd : x1 > 0}. It follows that for x ∈ D+

the expression on the right hand side of (4.16) with r1 replaced by r∗ is
nonnegative. The rest of the proof is the same as in (i). This proves (ii) and
completes the proof.

Proposition 4.8. Let D ⊂ Rd be a connected bounded Lipschitz domain
which is symmetric relative to the x1–axis. Then

λ∗ ≤ √
µ∗.
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Proof. We have (Theorem 3.8)

λ∗ = inf
u∈F∗

∫
H
|∇u(x, t)|2 dx dt,

where

F∗ = {u ∈ F : ||ũ||2 = 1 and ũ is antisymmetric relative to the x1–axis}.

Put v∗(x, t) = exp(−√
µ∗t)ψ∗(x), (x, t) ∈ H. By direct calculations as in

the proof of Theorem 3.14, we get∫
H
|∇v∗(x, t)|2 dx dt =

√
µ∗.

It is easy to check that v∗ ∈ F∗ and from this it follows that

λ∗ ≤
∫

H
|∇v∗(x, t)|2 dx dt =

√
µ∗,

proving the proposition.

5 The One Dimensional Case

In this section we study the Cauchy eigenvalue problem in one dimension
for the set D = (-1,1). In such a simple case we will be able to prove
several detailed properties for the eigenfunctions functions ϕn similar to
those discussed in the introduction for the eigenfunctions of the Laplacian.
Our main result in this section is Theorem 5.3 which provides information
on the second eigenfunction.

First, let us recall that the first eigenvalue λ1 is simple, its correspond-
ing eigenvalue ϕ1 is positive (true for any domain of finite volume in any
dimension) and that by Corollary 2.2, 1 < λ1 < 3π/8. In addition to this,
we also have the following additional information on the shape of ϕ1.

Theorem 5.1. Let D = (−1, 1). Then ϕ1 is symmetric relative to the origin
and concave. It is nondecreasing on (−1, 0) and nonincreasing on (0, 1).

Proof. Put ϕ̂1(x) = ϕ1(x) + ϕ1(−x). It is easy to show that ϕ̂1 is also an
eigenfunction corresponding to λ1. Since λ1 has multiplicity 1 it follows that
ϕ1 is symmetric. The concavity of ϕ1 follows from Theorem 4.7. Since ϕ1 is
symmetric and concave on (−1, 1) it must be nondecreasing on (−1, 0) and
nonincreasing on (0, 1) and this completes the proof.
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For our next result we need to recall a few facts for the one dimensional
Cauchy process. In one dimension the transition densities are given by

(5.1) p(t, x, y) =
1
π

t

t2 + (x − y)2
,

where t > 0, x, y ∈ R. For any a > 0 and x ∈ (−a, a) we have, by (2.12),
that

(5.2) Ex(τ(−a,a)) =
√

a2 − x2.

The distribution of X(τ(a,b)) is given in [10] explicitly by the formula

(5.3) P x(X(τ(a,b)) ∈ B) =
1
π

∫
B

(r2 − |x − x0|2)1/2

(|y − x0|2 − r2)1/2|x − y| dy,

where a, b ∈ R, a < b, x ∈ (a, b), B ⊂ (a, b)c , x0 = (a + b)/2, r = (b − a)/2.

Lemma 5.2. (i) For any a ∈ (0, 1) and x ∈ (−1,−a),

P x(X(τ(−1,−a)) ∈ (a, 1)) ≤ (1 − a)2

8πa2
.

(ii) For any a ∈ [1/4, 1) and x ∈ (−1,−a) ∪ (a, 1),

1
Ex(τ(−1,−a)∪(a,1))

≥ g(a),

where

g(a) =
2

1 − a

(
1 − (1 − a)2

8πa2

)
=

8πa2 − (1 − a)2

4πa2(1 − a)
.

The function g is positive and increasing on [1/4, 1).

Proof. By (5.3) we get

(5.4) P x(X(τ(−1,−a)) ∈ (a, 1)) =
1
π

∫ 1

a

(r2 − |x − x0|2)1/2

(|y − x0|2 − r2)1/2|x − y| dy,

where r = (1 − a)/2 and x0 = (−1 − a)/2. For any x ∈ (−1,−a) and
y ∈ (a, 1) we have r2−|x−x0|2 ≤ r2, |y−x0|2−r2 ≥ (2a)2 and |x−y| ≥ 2a.
Therefore (i) follows from (5.4).

Let

q = sup
x∈(−1,−a)

Ex(τ(−1,−a)) = sup
x∈(a,1)

Ex(τ(a,1)) = (1 − a)/2
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and

p = sup
x∈(−1,−a)

P x(X(τ(−1,−a)) ∈ (a, 1)) = sup
x∈(a,1)

P x(X(τ(a,1)) ∈ (−a,−1))

≤ (1 − a)2/(8πa2).

By the strong Markov property we have that for any x ∈ (−1,−a) ∪ (a, 1)

Ex(τ(−1,−a)∪(a,1)) ≤
∞∑

k=0

qpk =
q

1 − p
.

Note also that for a ∈ [1/4, 1) we have (1 − a)2/(8πa2) < 1 (the interval
[1/4, 1) is not of course optimal). Therefore the estimate for Ex(τ(−1,−a)∪(a,1))
follows from the above bounds for p and q, and this proves (ii).

Theorem 5.3. Let D = (−1, 1). Then 2 ≤ λ2 ≤ π, it has multiplicity 1, its
eigenfunction ϕ2 is negative on (−1, 0), positive on (0, 1) and antisymmetric
relative to the origin. ϕ2 is convex on (−1, 0) and concave on (0, 1). In
particular, there is an a ∈ (0, 1) such that ϕ2 is nondecreasing on (−a, a)
and nonincreasing on (−1,−a) and (a, 1). The antisymmetric property is
inherited by u2 in the sense that u2(x, t) = −u2(−x, t), (x, t) ∈ H. In
addition, u2 has two nodal parts:

A = {(x, t) ∈ H : x < 0, t > 0} ∪ {(x, 0) ∈ H : x ∈ (−1, 0)}

and
B = {(x, t) ∈ H : x > 0, t > 0} ∪ {(x, 0) ∈ H : x ∈ (0, 1)}.

with u2(x, t) < 0 for (x, t) ∈ A and u2(x, t) > 0 for (x, t) ∈ B.

Figure 1. Nodal parts for u2.
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Remark 1. Of course, whenever ϕ2 is an eigenfunction with eigenvalue λ2

so is −ϕ2, hence the above statements should be interpreted “up to sign.”
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Proof. By Theorem 4.3 there exists an eigenfunction ϕ∗ with corresponding
eigenvalue λ∗ satisfying the following properties: ||ϕ∗||2 = 1, ϕ∗ is antisym-
metric, negative on (−1, 0) and positive on (0, 1). By Theorem 4.7 (ii), ϕ∗
is concave on (0, 1) and convex on (−1, 0). If we denote u∗(x, t) = Ptϕ∗(x),
(x, t) ∈ H+, then u∗ has two nodal parts A and B such as in the formulation
of the theorem.

By Proposition 4.8 we have λ∗ ≤ √
µ2, where µ2 is the second eigenvalue

of the Dirichlet Laplacian in D = (−1, 1). Hence λ∗ ≤ π. On the other
hand, note that Ã = (−1, 0) (recall that Ã = {x ∈ D : (x, 0) ∈ A}). So by
Proposition 3.12 and scaling we get

λ∗ ≥ λ1((−1, 0)) = 2λ1((−1, 1)) = 2λ1 ≥ 2.

We will now show that λ2 = λ∗ and that ϕ∗ is the unique eigenfunction
corresponding to λ2. Suppose on the contrary that there exists an eigen-
function ϕ (with ||ϕ||2 = 1) corresponding to λ2 which is different from ϕ∗.
That is, ϕ �= ϕ∗ and ϕ �= −ϕ∗. By Theorem 4.1 ϕ(x) is real analytic on D.
In particular, the zeros of ϕ(x) have no accumulation points in D. We will
say that a real analytic function f : D → R changes sign at the point x0 ∈ D
if there exists ε > 0 such that f(x) > 0 on (x0, x0 + ε) and f(x) < 0 on
(x0−ε, x0) or such that f(x) < 0 on (x0, x0 +ε) and f(x) > 0 on (x0−ε, x0).

Consider v(x, t) = Ptϕ(x), (x, t) ∈ H+ and v(x, 0) = ϕ(x), x ∈ Rd. By
Theorem 3.11 the function v has no more than two nodal parts. Since ϕ is
orthogonal to ϕ1 it must change its sign and hence v has exactly two nodal
parts.

We will show that ϕ changes sign at no more than two points in D.
Assume this is not the case. That is, ϕ changes sign at more than two
points. We may assume that ϕ changes the sign at 3 consecutive points a1,
a2, a3 (a1 < a2 < a3). We may also assume that ϕ(x) ≥ 0 for x ∈ (a0, a1)
and x ∈ (a2, a3) and ϕ(x) ≤ 0 for x ∈ (a1, a2) and x ∈ (a3, a4), where

−1 ≤ a0 < a1 < a2 < a3 < a4 ≤ 1.

Let us denote Ai = {(x, 0) ∈ H : x ∈ (ai−1, ai) and ϕ(x) �= 0}, i = 1, 2, 3, 4.
All sets A1, A2, A3, A4 are nonempty. Let P+ = {(x, t) ∈ H : v(x, t) > 0}
and P− = {(x, t) ∈ H : v(x, t) < 0}. Of course A1 ∪ A3 belongs to P+.
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Figure 2. Nodal parts for v.
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If P+ is connected then P− is not connected and v has more than two
nodal parts. If P+ is not connected then again v has more than two parts.
This gives a contradiction and shows that ϕ changes its sign at no more
than two points in D.

By Theorem 4.3, ϕ is not antisymmetric. This follows from the fact
that ϕ �= ϕ∗, ϕ �= −ϕ∗ and that every antisymmetric eigenfunction (with
norm 1) different from ϕ∗ (or −ϕ∗) has greater corresponding eigenvalue.
Set ϕ̂(x) = ϕ(x) + ϕ(−x). By the last remark ϕ̂ is not identically zero. It
easy to show that ϕ̂ is an eigenfunction with corresponding eigenvalue λ2.
Hence from our assumptions on ϕ, it follows that there exists a symmetric
eigenfunction with corresponding eigenvalue λ2. Therefore we assume that
ϕ is symmetric. We have shown that v = Ptϕ has two nodal parts and that ϕ
changes its sign at no more than two points in D. Since it must change sign
and is symmetric, it must change sign at exactly two points in D. Therefore
there is an a ∈ (0, 1) such that ϕ(a) = ϕ(−a) = 0 and ϕ change sign at
a and −a. We may assume that ϕ(x) ≥ 0 for x ∈ (−1,−a) ∪ (a, 1) and
ϕ(x) ≤ 0 for x ∈ (−a, a).

Figure 3. Nodal parts for v.
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Let us denote
U+ = {(x, t) ∈ H : v(x, t) > 0},

and
U− = {(x, t) ∈ H : v(x, t) < 0}.
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If U− is unbounded then U+ would not be connected and v would have more
than two nodal parts. Hence, U− is bounded. Denote by N = {(x, t) ∈ H+ :
v(x, t) = 0} the nodal line for v. Note that we have used H+ (and not
H) in the definition of N . The function ϕ is analytic in D, hence its zeros
have no accumulation points in D. Thus the zeros at points −a and a are
isolated. If N ∩ {(x, 0) : x ∈ R} is different from {−a, a}, then either U+ or
U− would not be connected and v would have more than 2 nodal parts. We
must therefore have N ∩ {(x, 0) : x ∈ R} = {−a, a}. Let

l+ = {(x, 0) : x > 1} and l− = {(x, 0) : x < −1}.
From the above it follows that for each point (x, 0) ∈ l+ ∪ l− there exist
s = s(x) > 0 such that for (y, t) ∈ {(y, t) ∈ H+ : |(y, t) − (x, 0)| < s}, we
have v(y, t) > 0. Let r(x) = limt→0+ v(x, t)/t for |x| > 1 and 0 for |x| ≤ 1.
This r(x) is nothing more than the function defined in Proposition 3.1 and
it follows that r(x) ≥ 0 for all x ∈ R.

We shall now apply Proposition 3.15 which is the key argument in this
proof. From this it follows that if for some (x0, t0) ∈ H we have v(x0, t0) ≥ 0,
then for all t > t0 we have v(x0, t) > 0. Recall that for x ∈ (−1,−a] ∪ [a, 1)
we have ϕ(x) = v(x, 0) ≥ 0 and for all |x| ≥ 1 we have ϕ(x) = v(x, 0) = 0.
Therefore for all |x| ≥ a and t ≥ 0 we get v(x, t) ≥ 0. Thus U− ⊂ (−a, a) ×
[0,∞). Since the first eigenvalue µ1 for the Dirichlet Laplacian in (−a, a) is
π2/4a2, it follows from Theorem 3.18 that λ2 ≥ π/2a. On the other hand,
for the interval (−1, 1) the second eigenvalue of the Dirichlet Laplacian is
π2 and hence Theorem 3.14 gives λ2 ≤ π. We conclude that

π

2a
≤ λ2 ≤ π.

¿From this it follows that a ≥ 1/2. Since ϕ(x) ≤ 0 for all x ∈ (−a, a), it
follows that Ũ+ ⊂ (−1,−a)∪ (a, 1), where Ũ+ = {x ∈ D : (x, 0) ∈ U+}. The
set (−1,−a)∪(a, 1) is trivially a bounded Lipschitz domain. By Proposition
3.12, the fact that a ≥ 1/2, and domain monotonicity of λ1, we obtain

λ2 ≥ λ1((−1,−a) ∪ (a, 1)) ≥ λ1((−1,−1/2) ∪ (1/2, 1)).

Put Ω = (−1,−1/2) ∪ (1/2, 1). From Proposition 2.1 and Lemma 5.2 we
conclude that

λ1(Ω) ≥ 1
supx∈Ω Ex(τΩ)

≥ 2
1 − 1/2

(
1 − (1 − 1/2)2

8π(1/2)2

)
= 4

(
1 − 1

8π

)
.

Thus
π ≥ λ2 ≥ λ1(Ω) ≥ (sup

x∈Ω
Ex(τΩ))−1 ≥ 4 − 1/(2π) > π,
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which gives a contradiction and completes the proof of the theorem.

When dealing with Brownian motion (the Laplacian) in D = (−1, 1), we
know the full set of eigenfunctions and eigenvalues. The above theorem gives
some information, although not as precise, on the second eigenvalue and the
second eigenfunction for the Cauchy process. It would be very desirable to
develop some general techniques to study properties of higher eigenvalues
and eigenfunctions for the Cauchy process and, in particular, to gain a better
understanding of their geometric properties. For general eigenfunctions this
goal seems too ambitious at this point. In the next theorem we aim to gain
some understanding for ϕ3 and for the corresponding Steklov function u3.
We hope that even some limited knowledge on ϕ3 and u3 can provide some
intuition about other eigenfunctions.

Theorem 5.4. Let D = (−1, 1). Then, 3.4 ≤ λ3 ≤ 3π/2, it has multiplicity
1, its eigenfunction ϕ3 is symmetric and has two zeros at −a, a, where a ∈
[1/3, 0.6]. Moreover, ϕ3 is positive on (−1,−a) ∪ (a, 1) and negative on
(−a, a). The corresponding Steklov function u3 satisfies u3(x, t) = u3(x,−t),
(x, t) ∈ H and has two nodal parts A and B. Assume that u3(x, t) > 0 for
(x, t) ∈ A and u3(x, t) < 0 for (x, t) ∈ B. Then B ⊂ (−a, a) × [0,∞) and
B is bounded. If u3(x0, t0) ≥ 0 for some (x0, t0) ∈ H then for all t ≥ t0 we
have u3(x0, t) > 0.

Figure 4. Nodal parts for u3.
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A remark similar to that after Theorem 5.3 applies here as well concern-
ing the sign of ϕ3.

Proof. By Theorem 3.11 u3 has at most 3 nodal parts. In follows from the
argument of Theorem 5.3 that if u3 has 2 nodal parts then it changes its
sign at no more than 2 points. In a similar way, it may be shown that if the
function u3 has 3 nodal parts then it changes sign at no more than 4 points.
From this we conclude that if u3 has 2 nodal parts then it changes sign at
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no more than 2 points and if u3 has 3 nodal parts then it changes sign at
no more then 4 points.

Next we show that ϕ3 is symmetric. Assume on the contrary that ϕ3 is
not symmetric. Put ϕ(x) = ϕ3(x)−ϕ3(−x), x ∈ D. Then ϕ is antisymmetric
and orthogonal to the antisymmetric eigenfunction ϕ2. Therefore ϕ must
change sign at least at 3 points (including the origin 0). Let v(x, t) = Ptϕ(x),
(x, t) ∈ H. Since ϕ is antisymmetric and changes sign at at least 3 points, v
must have at least 4 nodal parts, which gives a contradiction. Therefore ϕ3

is symmetric. From the above it follows that only the following cases can
occur:

• Case 1: u3 has 2 nodal parts and ϕ3 changes sign at 2 points.

• Case 2: u3 has 3 nodal parts and ϕ3 changes sign at 2 points.

• Case 3: u3 has 3 nodal parts and ϕ3 changes sign at 4 points.

Assume that Cases 2 and 3 do not occur. (These cases will be ruled out
later, they represent the most difficult part of the proof.) Since we have not
yet shown that λ3 has multiplicity 1, our assumption is the following: For
any eigenfunction corresponding to λ3, Case 2 and Case 3 can not happen.
Under this assumption we will show that the functions ϕ3 and u3 have the
properties asserted by the theorem.

As in the proof of Theorem 5.3, there exists an a ∈ (0, 1) such that
ϕ3(a) = ϕ3(−a) = 0 and ϕ3 change sign at a and −a. We may assume that
ϕ3(x) ≥ 0 for x ∈ (−1,−a) ∪ (a, 1) and ϕ3(x) ≤ 0 for x ∈ (−a, a). Put
A = {(x, t) ∈ H : u3(x, t) > 0} and B = {(x, t) ∈ H : u3(x, t) < 0} (see
Figure 4). Let r3(x) = limt→0+ u3(x, t) for |x| > 1 and r3(x) = 0 for |x| ≤ 1.
By the same arguments as in the proof of Theorem 5.3 we get that r3(x) ≥ 0
for all x ∈ R. Proposition 3.15 now yields that if for some (x0, t0) ∈ H we
have u3(x0, t0) ≥ 0, then for all t > t0 we have u3(x0, t) > 0. Note that for
all x ∈ (−1,−a) ∪ (a, 1) we have ϕ3(x) = u3(x, 0) ≥ 0 and for all |x| ≥ 1 we
have u3(x, 0) = 0. Therefore for all |x| ≥ a and t ≥ 0 we have u3(x, t) ≥ 0.
Hence B ⊂ (−a, a) × [0,∞). Of course, B must be bounded or else, as
before, A will not be connected.

From Proposition 3.17 we get that ϕ3(x) > 0 for all x ∈ (−1,−a)∪(a, 1).
We will also show that ϕ3(x) < 0 for all x ∈ (−a, a). We know that ϕ3(x) ≤ 0
for all x ∈ (−a, a). If ϕ3(x0) = 0 for some x0 ∈ (−a, a) then by Proposition
3.15, u3(x0, t) > 0 for all t > 0 and B will not be connected. Therefore the
eigenfunction ϕ3 on the set D has exactly 2 zeros at points −a and a.
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We next estimate λ3 and a. Since B ⊂ (−a, a) × [0,∞), Theorem 3.18
gives λ3 ≥ π/(2a). On the other hand, by Theorem 3.14 we have λ3 ≤√

µ3 =
√

(3π/2)2 = 3π/2 (as before, µ3 is the solution of the Dirichlet
eigenvalue problem (3.31)). Therefore π/(2a) ≤ 3π/2 and so a ≥ 1/3. This
gives the desired upper bound for λ3 and the lower bound for a.

We also have Ã = (−1,−a)∪(a, 1) (recall that Ã = {x ∈ D : (x, 0) ∈ A})
and by Proposition 3.12 we get

λ3 ≥ λ1(Ã) ≥ (sup
x∈Ã

Ex(τÃ))−1.

Since a ≥ 1/3, we obtain

λ3 ≥ (sup
x∈Ã

Ex(τÃ))−1 ≥ g(a),

where g is given in Lemma 5.2.
Put f(x) = π/(2x), x ∈ [1/3, 1]. We have

λ3 ≥ max{f(a), g(a)}.

We note that f , g are continuous on [1/3, 1), f is decreasing and g is in-
creasing. We also have f(1/3) = 3π/2, g(1/3) ≤ 2/(1 − 1/3) = 3 < 3π/2,
f(1) = π/2 and limb→1− g(b) = ∞. Therefore there is exactly one x0 ∈
(1/3, 1) such that f(x0) = g(x0). Moreover,

λ3 ≥ max{f(a), g(a)} ≥ f(x0)

and for any x ∈ (x0, 1) we have λ3 ≥ f(x0) ≥ f(x). We will show that
0.46 > x0. Indeed, g(0.46) > 3.48 and f(0.46) < 3.42. Hence f(0.46) <
g(0.46) which gives 0.46 > x0. Thus λ3 ≥ f(0.46) ≥ 3.4.

We will show that a ≤ 0.6. We have 3π/2 ≥ λ3 ≥ g(a). Since g is
increasing it suffices to show that g(0.6) > 3π/2. In fact, g(0.6) > 4.8 >
3π/2.

Next we prove that λ3 has multiplicity 1. As before, we argue by con-
tradiction. Assume there are two eigenfunctions Φ1, Φ2 corresponding to
λ3 which are orthogonal (

∫
D Φ1(x)Φ2(x) dx = 0) and ||Φ1||2 = ||Φ2||2 = 1.

Let us recall that we are under the assumption that Cases 2 and 3 do not
occur. Therefore both Φ1 and Φ2 satisfy the conditions of case 1. Hence the
functions Φ1 and Φ2 are symmetric and have exactly 2 zeros at points −ai,
ai. If a1 = a2 then Φ1 and Φ2 would not be orthogonal and this can not
happen.

63



We may assume that 0 < a1 < a2 < 1 and that for i = 1, 2, we have
Φi(x) > 0 for x ∈ (−1,−ai) ∪ (ai, 1) and Φi(x) < 0 for x ∈ (−ai, ai).
Consider functions ft = (1 − t)Φ2 − tΦ1, t ∈ [0, 1]. Of course, for each
t ∈ [0, 1] the function ft is also an eigenfunction corresponding to λ3. Note
that for x ∈ [−a2,−a1]∪ [a1, a2] ft(x) < 0. Of course, f0 = Φ2 and f0(x) < 0
for x ∈ [−a1, a1]. Let

s = inf{t ∈ [0, 1] : max{ft(x) : x ∈ [−a1, a1]} = 0}.

Since f1 = −Φ1, s < 1. We have max{fs(x) : x ∈ [−a1, a1]} = 0. Let us
denote the point at which this maximum is attained by y1. We have fs(y1) =
0 and fs(x) ≤ 0 for all x ∈ [−a1, a1]. Since for x ∈ [−a2,−a1] ∪ [a1, a2] we
have fs(x) < 0 and fs (as an eigenfunction for λ3) is orthogonal to ϕ1 > 0,
there exists y2 ∈ (−1,−a2) ∪ (a2, 1) such that fs(y2) > 0. Of course, fs

is symmetric so we may assume that y2 ∈ (a2, 1) and fs(−y2) = fs(y2) >
0. Now for sufficiently small ε > 0 we have fs+ε(−y2) = fs+ε(y2) > 0,
fs+ε(y1) > 0 and fs+ε(−a2) = fs+ε(a2) < 0 (because for all t ∈ (0, 1]
ft(a2) < 0) . Since −y2 < −a2 < y1 < a2 < y2 we obtain that fs changes
sign in more than at 2 points. But recalling again that we are under the
assumption of Case 1, this cannot happen. So, (under assumption that
Cases 2 and 3 can not occur) we obtain a contradiction, and conclude that
λ3 has multiplicity 1.

Our goal now is to show that for any eigenfunction corresponding to λ3,
Case 2 and Case 3 cannot happen. To obtain a contradiction let us assume
that there exists an eigenfunction corresponding to λ3, denote it again by
ϕ3, such that ϕ3 satisfies conditions of either Case 2 or Case 3. Recall that
in both cases we may assume that ϕ3 is symmetric. We look at each of the
two cases separately.

Case 2. u3 = Ptϕ3 has 3 nodal parts and ϕ3 changes sign at 2 points.
Let a ∈ (0, 1) and assume that ϕ3 changes sign at −a, a and ϕ3(x) ≥ 0 for
x ∈ (−1,−a) ∪ (a, 1) and ϕ3(x) ≤ 0 for x ∈ (−a, a). We will consider two
subcases.

Case 2a: The set {(x, t) ∈ H : u(x, t) > 0} is not connected.

Under this assumption, u3 has 2 nodal parts A, B, on which u3 > 0 and
a nodal part C on which u3 < 0, see Figure 5.
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Figure 5. Nodal parts for u3. Two possibilities in Case 2a.
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Since the set {(x, t) ∈ H : u(x, t) > 0} = A∪B is not connected the nodal
part C = {(x, t) ∈ H : u(x, t) < 0} is not bounded and by the symmetry of
ϕ3, we must have u3(0, t) < 0 for all t > 0. On the other hand, we know
that ϕ3 is orthogonal to ϕ1 and so∫ 1

−1
ϕ3(x)ϕ1(x) dx = 0.

Let us recall that ϕ1 is positive, non-constant, symmetric, nondecreasing on
(−1, 0) and nonincreasing on (0, 1). Therefore we get∫ 1

−1
ϕ3(x)ϕ1(a) dx > 0,

which implies ∫ 1

−1
ϕ3(x) dx > 0.

But for t > 0,

u3(0, t) = Ptϕ3(0) =
1
π

∫ 1

−1

t

t2 + y2
ϕ3(y) dy.

It follows that

tu3(0, t) → 1
π

∫ 1

−1
ϕ3(y) dy,

as t → ∞. Therefore for sufficiently large t we have u3(0, t) > 0 which
contradicts the fact that u3(0, t) < 0 for all t > 0 and Case 2a cannot occur.

Case 2b. The set {(x, t) ∈ H : u3(x, t) > 0} is connected.

Then u3 has 2 nodal parts A and B on which u3 < 0 and a nodal part
C on which u3 > 0, see Figure 6.
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Figure 6. Nodal parts for u3. Case 2b.
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As before, we have r3(x) ≥ 0 so (by Proposition 3.15) it follows that
A ⊂ (−a, 0) × [0,∞). Therefore by Theorem 3.18, λ3 ≥ π/a. Since 3π/2 ≥
λ3, we get 3π/2 ≥ π/a. Hence, a ≥ 2/3. Put Ω = (−1,−2/3) ∪ (2/3, 1) and
recall that

C̃ = {x ∈ D : (x, 0) ∈ C} ⊂ (−1,−a) ∪ (a, 1).

By Proposition 3.12 and domain monotonicity of λ1, we have

λ3 ≥ λ1((−1,−a) ∪ (a, 1)) ≥ λ1((−1,−2/3) ∪ (2/3, 1))

≥
(

sup
x∈Ω

Ex(τΩ)
)−1

≥ g(2/3) > 5 > 3π/2,

which gives a contradiction (g is given in Lemma 5.2).
It remains to rule out Case 3.
Case 3. u3 has 3 nodal parts and ϕ3 changes sign at 4 points. Let

a, b ∈ (0, 1), a < b and assume that ϕ3 changes sign at −b, −a, a, b and
that ϕ3(x) ≥ 0 for x ∈ (−1,−b) ∪ (−a, a) ∪ (b, 1) and ϕ3(x) ≤ 0 for x ∈
(−b,−a) ∪ (a, b). As above, we will consider 2 subcases.

Case 3a. The set {(x, t) ∈ H : u3(x, t) < 0} is connected.

Figure 7. Case 3a.

−1
�

0
�

1
�

−b
�

−a
�

a
�

b
�

� �
� �

+
−

+

Under this assumption, u3 has 2 nodal parts A, B on which u3 > 0 and
a nodal part C on which u3 < 0. Note that r3(x) ≥ 0 for all x ∈ R and
therefore by Proposition 3.15 we obtain that u3(x, t) has the following prop-
erty: If u3(x0, t0) ≥ 0 for some (x0, t0) ∈ H then for all t > t0, u3(x0, t) > 0.
This contradicts the connectedness of the set {(x, t) ∈ H : u3(x, t) < 0}.
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Case 3b. The set {(x, t) ∈ H : u3(x, t) < 0} is not connected.

Figure 8. Case 3b.
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This is the most difficult case to rule out. In this case u3 has 2 nodal
parts A, B on which u3 < 0 and a nodal part C on which u3 > 0. Note that
r3(x) ≥ 0 for all x ∈ R. Therefore by Proposition 3.15, A ⊂ (−b,−a)×[0,∞)
and B ⊂ (a, b) × [0,∞). By Proposition 3.17 we get that ϕ3(x) > 0 for
x ∈ (−1,−b) ∪ (b, 1). By Theorem 3.18 we get λ3 ≥ π/(b − a) and by
Theorem 3.14, λ3 ≤ 3π/2. Therefore b − a ≥ 2/3. Put Ω = (−1,−b). Then
τΩ ≤ τD and by (2.2) for x ∈ Ω we have

λ−1
3 ϕ3(x) = GDϕ3(x) = Ex

∫ τD

0
ϕ3(Xt) dt

= Ex

∫ τΩ

0
ϕ3(Xt) dt + Ex

∫ τD

τΩ

ϕ3(Xt) dt

= Ex

∫ τΩ

0
ϕ3(Xt) dt + Ex

((∫ τD

0
ϕ3(Xt) dt

)
◦ θτΩ

)
.

By the strong Markov property this is

Ex

∫ τΩ

0
ϕ3(Xt) dt + Ex

(
EX(τΩ)

∫ τD

0
ϕ3(Xt) dt;X(τΩ) ∈ D \ Ω

)
= GΩϕ3(x) + Ex(GDϕ3(X(τΩ));X(τΩ) ∈ D \ Ω)
= GΩϕ3(x) + λ−1

3 Ex(ϕ3(X(τΩ));X(τΩ) ∈ D \ Ω).

It follows that for x ∈ Ω we have

(5.5) λ3 =
ϕ3(x)

GDϕ3(x)
=

ϕ3(x)
GΩϕ3(x) + λ−1

3 Ex(ϕ3(X(τΩ));X(τΩ) ∈ D \ Ω)
.

We want to estimate Ex(ϕ3(X(τΩ));X(τΩ) ∈ D \Ω). Since ϕ3 is orthogonal
to ϕ1, ∫

D
ϕ3(y)ϕ1(y) dy = 0.
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Since ϕ1 is positive, symmetric on (−1, 1), nondecreasing on (−1, 0) and
nonincreasing on (0, 1), we obtain that

0 >

∫ b

−b
ϕ3(y)ϕ1(y) dy

≥
∫ −a

−b
ϕ3(y)ϕ1(a) dy +

∫ a

−a
ϕ3(y)ϕ1(a) dy +

∫ b

a
ϕ3(y)ϕ1(a) dy

and it follows that ∫ b

−b
ϕ3(y) dy < 0.

Using the density for P x(X(τΩ) ∈ ·) given by (5.3) we see that for x ∈ Ω
we have

(5.6) Ex(ϕ3(X(τΩ));X(τΩ) ∈ D \ Ω) =
∫

D\Ω
ϕ3(y)f(y) dy,

where

f(y) =
1
π

(r2 − |x − x0|2)1/2

(|y − x0|2 − r2)1/2|x − y| ,

r = (1 − b)/2 and x0 = (−1 − b)/2. Of course, f depends on x and y
but x may be treated as fixed. We have f(y) = cp(y)q(y), where c =
π−1(r2 −|x−x0|2)1/2, p(y) = (|y−x0|2 − r2)−1/2, q(y) = |x− y|−1. We may
assume that x < −b < y < 1. For such x, y we have

p′(y) = −(y − x0)((y − x0)2 − r2)−3/2 < 0,

p′′(y) = (2(y − x0)2 + r2)((y − x0)2 − r2)−5/2 > 0

and
q′(y) = −(y − x)−2 < 0, q′′(y) = 2(y − x)−3 > 0.

Therefore

f ′′(y) = c(p′′(y)q(y) + 2p′(y)q′(y) + p(y)q′′(y)) > 0.

In other words, f(y) is a convex function for y ∈ (−b, 1). Let 0 ≤ y < z < b.
We have f(z) − f(y) = (z − y)f ′(ξ), ξ ∈ (y, z) and f(−y) − f(−z) =
(z − y)f ′(η), η ∈ (−z,−y). By convexity we see that f ′(ξ) ≥ f ′(η), so
f(z) − f(y) ≥ f(−y) − f(−z). Therefore f(z) + f(−z) ≥ f(y) + f(−y) for
0 ≤ y < z < b.

68



We know that ϕ3 is symmetric, ϕ3(y) ≥ 0 for y ∈ (−a, a) and ϕ3(y) ≤ 0
for y ∈ (−b,−a) ∪ (a, b). Hence∫ b

−b
ϕ3(y)f(y) dy

=
∫ a

0
ϕ3(y)(f(y) + f(−y)) dy +

∫ b

a
ϕ3(y)(f(y) + f(−y)) dy

≤
∫ a

0
ϕ3(y)(f(a) + f(−a)) dy +

∫ b

a
ϕ3(y)(f(a) + f(−a)) dy

= (f(a) + f(−a))/2
∫ b

−b
ϕ3(y) dy.

But we know that the last integral is negative and therefore∫ b

−b
ϕ3(y)f(y) dy < 0.

Thus for x ∈ Ω = (−1,−b) we get by (5.6)

Ex(ϕ3(X(τΩ));X(τΩ) ∈ D \ Ω) ≤ Ex(ϕ3(X(τΩ));X(τΩ) ∈ (b, 1)).

Note also that for x ∈ Ω the denominator on the right hand side of (5.5) is
positive. Therefore for x ∈ Ω we get from (5.5)

(5.7) λ3 ≥ ϕ3(x)
GΩϕ3(x) + λ−1

3 Ex(ϕ3(X(τΩ));X(τΩ) ∈ (b, 1))
.

Let ||ϕ3||Ω = sup{ϕ3(x) : x ∈ Ω} and x∗ ∈ Ω be such that ϕ3(x∗) = ||ϕ3||Ω.
By symmetry, sup{ϕ3(x) : x ∈ (b, 1)} = ||ϕ3||Ω. Putting x = x∗ in (5.7) we
obtain

λ3 ≥ ||ϕ3||Ω
||ϕ3||ΩGΩ1(x∗) + λ−1

3 ||ϕ3||ΩP x∗(X(τΩ) ∈ (b, 1))

=
1

Ex∗(τΩ) + λ−1
3 P x∗(X(τΩ) ∈ (b, 1))

.(5.8)

By Lemma 5.2 (i), the formula (5.2) and the fact that b ∈ [2/3, 1), we get
Ex∗(τΩ) ≤ (1 − b)/2 ≤ 1/6 and

P x∗(X(τΩ) ∈ (b, 1)) ≤ (1 − b)2

8πb2
≤ 1

32π
.

Also, λ3 > λ2 ≥ 2. Therefore the expression in (5.8) is no smaller than
(1/6 + 1/(64π))−1 > 5. By (5.7) we get λ3 > 5 > 3π/2, which gives a
contradiction and completes the proof of the theorem.
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We conclude with a proposition providing some information for general
λn’s and general ϕn’s in D = (−1, 1).

Proposition 5.5. Let D = (−1, 1) and n ∈ N. Then λn ≤ nπ/2 and ϕn

has no more than 2n − 2 zeros in D.

Proof. The inequality λn ≤ nπ/2 follows from Theorem 3.14 and the fact
that for D = (−1, 1), µn = (nπ/2)2, where µn are the eigenvalues for the
Dirichlet Laplacian in D, problem (3.31).

For x0 ∈ D we will say that the Steklov function un changes the sign at
(x0, 0) ∈ H if for each r > 0 the set {(x, t) ∈ H : (x−x0)2+t2 < r2} contains
the points for which un(x, t) < 0 and the points for which un(x, t) > 0. By
Proposition 3.17 and Theorem 4.1 if ϕn(x0) = 0, x0 ∈ D, then un must
change sign at (x0, 0). If un changes sign at (x, 0), x ∈ D more than 2n − 2
times, then un would have more than n nodal parts (we omit the details
here). But this is impossible by Theorem 3.11. It follows that ϕn has no
more than 2n − 2 zeros in D as asserted by the proposition.
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and Prékopa-Leindler theorems,including inequalities for log concave
functions, and with an application to the diffusion equation, J. Func-
tional Analysis, 22(1976), 366–389

70



[5] R. D. DeBlassie, The first exit time of a two-dimensional symmetric
stable process from a wedge, Ann. Probab. 18(3) (1990), 1034–1070.

[6] M. van den Berg, On condensation in the free–boson gas and the spec-
trum of the Laplacian, J. Statist. Phys. , 31 (1983), 623–637.

[7] D. Betsakos, Symmetrization, symmetric stable processes, and Riesz
capacities, (preprint).

[8] R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential
Theory, Springer, New York, 1968.

[9] R.M. Blumenthal and R.K. Getoor, The asymptotic distribution of the
eigenvalues for a class of Markov operators Pacific J. Math. 9 (1959),
399–408.

[10] R.M. Blumenthal, R.K. Getoor, On the distribution of first hits for the
symmetric stable process, Trans. Amer. Math. Soc. 99 (1961), 540–554.

[11] K. Bogdan, The boundary Harnack principle for the fractional Lapla-
cian, Studia Math. 123(1) (1997), 43–80.

[12] K. Bogdan, Representation of α-harmonic functions in Lipschitz do-
mains, Hiroshima Math. J. 29(2) (1999), 227–243.

[13] K. Bogdan and T. Byczkowski, Potential theory for the α-stable
Schrödinger operator on bounded Lipschitz domains, Studia Math.
133(1) (1999), 53–92.

[14] K. Bogdan and T. Byczkowski, Potential theory of Schrödinger opera-
tor based on fractional Laplacian, Probab. Math. Statist. 20(2) (2000),
293–335.

[15] K. Bogdan and T. Byczkowski, Probabilistic proof of boundary Har-
nack principle for α-harmonic functions, Potential Anal. 11(2) (1999),
135–156.

[16] C. Borell, Geometric inequalities in option pricing, Convex and Geo-
metric Analysis Workshop (MSRI, 1996), 29–51, Math. Sci. Res. Inst.
Publ., 34, Cambridge Univ. Press, Cambridge, 1999.

[17] C. Borell, Diffusion equations and geometric inequalities, Potential
Anal. 12 (2000), 49–71.

71



[18] C. Borell, Examples of Brunn-Minkowski inequalities in diffusion the-
ory, (preprint).

[19] L. Boutet de Mouvel and P. Krée, Pseudo–differential operators and
Gevrey classes, Ann. Inst. Fourier, (Grenoble) 17 (1967), 295–323.

[20] K. Burdzy and T. Kulczycki, Stable processes have thorns, Ann.
Probab. 31(1), (2003).

[21] Z.Q. Chen, Multidimensional symmetric stable processes, Korean J.
Comput. Appl. Math. 6 (1999), 227-266

[22] M. Cranston, Z. Zhao, Some regularity results and eigenfunction es-
timates for the Schrödinger operator, Diffusion processes and related
problems in analysis, Vol. I (Evanston, IL, 1989), 139–147, Progr.
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