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Abstract

We study Fourier multipliers which result from modulating jumps
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1 Introduction

One of the most basic examples of Calderón–Zygmund singular integrals in
Rd is the collection of Riesz transforms ([18]),

Rjf(x) =
Γ
(
d+1

2

)
π(d+1)/2

p.v.

∫
Rd

xj − yj
|x− y|d+1

f(y) dy , j = 1, 2, . . . , d .

They can be represented as Fourier multipliers with symbols iξj/|ξ|,

R̂jf(ξ) =
iξj
|ξ|
f̂(ξ) , f ∈ L2(Rd) .

Therefore the second order Riesz transforms R2
j satisfy

R̂2
jf(ξ) = −

ξ2
j

|ξ|2
f̂(ξ) , j = 1, 2, . . . , d . (1)

It follows from the general theory of singular integrals (see Stein [18]) that
there exist constants Cp and C ′p such that ‖Rjf‖p ≤ Cp‖f‖p and ‖R2

jf‖p ≤
C ′p‖f‖p for every 1 < p <∞. There has been considerable interest in recent
years in obtaining the best values for these constants. It was shown in [12]
that

‖Rjf‖p ≤ cot
(
π

2p∗

)
‖f‖p , f ∈ Lp(Rd) , (2)

and that cot
(

π
2p∗

)
is the best (smallest) possible constant for this inequality.

Here and below,

1 < p <∞ , q = p/(p− 1) , p∗ = max(p, q) , (3)

so that
p∗ − 1 = max{p− 1, (p− 1)−1}.

An alternative proof of (2) is given in [3] by applying the martingale trans-
form techniques of Burkholder ([4], [5]) to stochastic integrals obtained from
composing harmonic functions with Brownian motion. Using a similar ap-
proach, it is also proved in [3] that

‖RjRkf‖p ≤ (p∗ − 1)‖f‖p, j 6= k (4)

and that
‖R2

jf‖p ≤ (p∗ − 1)‖f‖p . (5)
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The above operators are closely related to the Beurling–Ahlfors operator

Bf(z) = − 1
π
p.v.

∫
C

f(ζ)
(z − ζ)2

dζ1dζ2 . (6)

Indeed, the Beurling–Ahlfors operator is a singular integral of even kernel
whose Fourier multiplier is ξ/ξ and hence B = −R2

1 + R2
2 + 2iR2R1 (see

[2]). The computation of the norm of B on Lp(C) has been a problem
of considerable interest for many years now. In [14], Lehto showed that
‖B‖p ≥ p∗ − 1 and T. Iwaniec conjectured in [11] that ‖B‖p = p∗ − 1.

In [3], the martingale inequalities of Burkholder, together with the repre-
sentation of the B as a conditional expectation of certain stochastic integrals,
were used to prove the bound ‖Bf‖p ≤ 4(p∗ − 1)‖f‖p, for general complex
valued f and that ‖Bf‖p ≤ 2

√
2(p∗ − 1)‖f‖p, for for real valued functions

f . In [19] Nazarov and Volberg improved the bound to 2(p∗− 1) for general
f and to

√
2(p∗ − 1) for real valued f using an analytic (Littlewood–Paley

inequalities) approach with Bellman functions that also rests on the mar-
tingale inequalities of Burkholder. A different proof of the Nazarov-Volberg
bounds was given in [2] using essentially the same proof as the one in [3] but
applied to space time Brownian martingales. In [8], Dragičević and Volberg
refined the Nazarov-Volberg techniques and obtained that for general f ,

‖Bf‖p ≤
√

2(p− 1)
(

1
2π

∫ 2π

0
| cos(θ)|pdθ

)− 1
p

‖f‖p, 2 ≤ p <∞, (7)

and that for real valued f ,

‖Bf‖p ≤ (p− 1)
(

1
2π

∫ 2π

0
| cos(θ)|pdθ

)− 1
p

‖f‖p, 2 ≤ p <∞. (8)

By a further refinement of the techniques in [2], it is proved in [1] that

‖Bf‖p ≤
√

2(p2 − p) ‖f‖p, 2 ≤ p <∞, (9)

for general complex valued f , and that

‖Bf‖p ≤
√
p2 − p ‖f‖p, 2 ≤ p <∞, (10)

for real valued f . Dividing both bounds in (7) and (9) by p and letting
this go to infinity both give

√
2. However, asymptotically the estimate (9)

is slightly better as can be easily checked. Interpolation and the bound
in (9) gives the general bound ‖B‖p ≤ 1.575(p∗ − 1) for the norm of the
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operator. For more information on Iwaniec’s conjecture and its connections
to quasiconformal mappings and other areas of nonlinear PDE, we refer the
reader to [12], [11], [3], [19], [8], [2], [1].

The purpose of the present paper is to explore martingale techniques
to study Fourier multipliers which arise when the Brownian motion (used
to study the Riesz transforms) is replaced by the more general symmetric
Lévy process. This leads to a large family of multipliers which generalize
the second order Riesz transforms. We obtain the upper bound p∗ − 1 for
their norms in Lp(Rd), which is the best known to date in the case of the
second order Riesz transforms R2

j .
Let V ≥ 0 be a Lévy measure on Rd, that is V ({0}) = 0, V 6= 0, and∫

Rd
min(|x|2, 1)V (dx) <∞ . (11)

Assume that V is symmetric: V (−B) = V (B). Let φ be complex-valued,
Borel measurable and symmetric: φ(−z) = φ(z), and assume that

|φ(z)| ≤ 1 , z ∈ Rd .

Theorem 1 The Fourier multiplier with the symbol

M(ξ) =

∫
Rd(cos ξ ·z − 1)φ(z)V (dz)∫

Rd(cos ξ ·z − 1)V (dz)
, (12)

is bounded on Lp(Rd) for 1 < p < ∞, with the norm at most p∗ − 1. That
is, if we define the operator M on L2(Rd) by

M̂f(ξ) = M(ξ)f̂(ξ),

then M has a unique bounded linear extension to Lp(Rd), 1 < p <∞, and

‖Mf‖p ≤ (p∗ − 1)‖f‖p. (13)

We note that the boundedness of our multipliers on Lp(Rd) does not fol-
low directly from the Hörmander multiplier theorem ([18], page 96) because
their symbols (12) generally lack sufficient differentiability. However, for cer-
tain special cases (such as those mentioned in (14) below), general Lp bounds
can be obtained from the Marcinkiewicz multiplier theorem, see Stein [18],
page 109. It should also be mentioned here that a probabilistic treatment
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of multipliers under the Hörmander condition is given by McConnell in [15].
While our motivation in this paper is to obtain explicit estimates on the Lp

constants, the motivation for the results in [15] is the desire to extend the
classical Hörmander multiplier theorem to functions taking values in Ba-
nach spaces with the unconditional martingale difference sequence property,
UMD spaces. The technique of [15] use to represent singular integrals and
other Fourier multiplies as a conditional expectation of stochastic integrals,
has its origins in the paper of Gundy and Varopoulos [10]. This is also the
underlying idea in this paper. We however note that all the previous works
(including [15], [2] and [1]) rely on the standard Brownian motion or the
space-time Brownian motion. To the best of our knowledge, the present pa-
per represents the first application of more general Lévy processes to obtain
such results.

A word about our notation. We always assume Borel measurability of
considered sets and functions below. By Lr = Lr(Rd), with 1 ≤ r <∞, we
will denote the set of complex-valued functions g such that

‖g‖r =
[∫

Rd
|g(x)|rdx

]1/r

<∞ ,

L∞ are those g for which ‖g‖∞ = supx∈Rd |g(x)| < ∞, and Cc consists
of continuous compactly supported functions g. For g ∈ L1 its Fourier
transform is defined as

Fg(ξ) = ĝ(ξ) =
∫

Rd
eiξ·zg(z)dz , ξ ∈ Rd .

By Plancherel’s Theorem ‖ĝ‖2 = (2π)d‖g‖2, and F extends to a continuous
linear bijection of L2. Thus the Fourier multiplierM of Theorem 1 has the
norm on L2 equal to ‖M‖∞ ≤ 1, see (12). Theorem 1 will be proved by
verifying that (13) holds for every f ∈ Cc. This yields thatM has a unique
bounded linear extension to Lp, denoted also M, satisfying (13) for every
f ∈ Lp.

To give an example, let α ∈ (0, 2) and j = 1, . . . , d. We have that (13)
holds when the multiplier has the symbol

M(ξ) =
|ξj |α

|ξ1|α + · · ·+ |ξd|α
, ξ = (ξ1, . . . , ξd) ∈ Rd . (14)

We also note that (13) extends to multipliers whose symbols may be obtained
as pointwise limits of symbols of the from (12). For instance, (5) can be
obtained by letting α→ 2 in (14), see (1).
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Here is the composition of the paper. The proof of Theorem 1 is given in
Section 2. In Section 3 we make some additional consideration, for example
we examine (14). The paper is essentially self-contained except for the Lp

estimates for differentially subordinate martingales, which in our case follow
form the work of G. Wang [20].

2 Proof of Theorem 1

We first describe the setup which will be used in the proof of the result. Let
ν ≥ 0 be a finite measure on Rd not charging the origin. Assume that ν
is symmetric: ν(−B) = ν(B), and |ν| = ν(Rd) > 0. Let ν̃ = ν/|ν|. Let
P and E be the probability and expectation for a family of independent
random variables Ti and Zi, i = ±1,±2, . . ., where each Ti is exponentially
distributed with ETi = 1/|ν|, and each Zi has ν̃ as the distribution. We
let Si = T1 + · · · + Ti for i = 1, 2, . . ., and Si = −(T−1 + · · · + Ti) for
i = −1,−2, . . .. For −∞ < s < t < ∞ we let Xs,t =

∑
s<Si≤t Zi, and

Xs,t− =
∑

s<Si<t
Zi. We note that N (B) = #{i : (Si, Zi) ∈ B} is a

Poisson random measure on R × Rd with intensity measure dv ν(dx), and
Xs,t =

∫
s<v≤t xN (dvdx) is the Lévy-Itô decomposition of X ([17]). Let

N(s, t) = N ((s, t]× Rd) be the number of signals Si such that s < Si ≤ t.
For the reader’s convenience we give an elementary proof of what

amounts to the Lévy system for X (see [7, VII.68] for more general results).

Lemma 1 If the Borel measurable function F : R×Rd×Rd → R is either
nonnegative or bounded, and s ≤ t, then

E
∑

s<Si≤t
F (Si, Xs,Si−, Xs,Si) = E

∫ t

s

∫
Rd
F (v,Xs,v−, Xs,v− + z)ν(dz)dv .

(15)

Proof: Since the arrival time of the n-th signal has the gamma distribution,

LHS =
∑

−∞<i<∞
E {F (Si, Xs,Si−, Xs,Si)1s<Si≤t}

=
∞∑
n=0

∫
Rd

∫
Rd

∫ t

s
F (v, y, y + z)

|ν|n+1(v − s)n

n!
e−|ν|(v−s)dvν̃∗n(dy)ν̃(dz)

=
∫ t

s

∫
Rd

∫
Rd
F (v, y, y + z)e−|ν|(v−s)e∗(v−s)ν(dy)ν(dz)dv .
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Here µ∗n is the n-fold convolution of a measure µ and e∗µ =
∑∞

n=0 µ
∗n/n!

denotes the convolution exponent of µ. In what follows we will use the
following two well-known facts.

1. First, conditionally on N(s, t) = n, the consecutive signals in (s, t] are
uniformly distributed on {(s1, . . . , sn) : s < s1 ≤ . . . ≤ sn ≤ t}.

2. Second, let s < v ≤ t. Let Tg(v) =
∫ t
v g(u)du for measurable and

bounded or nonnegative function g. By induction, for n = 1, 2, 3, . . .,

Tng(v) = T (Tn−1g)(v) =
1

(n− 1)!

∫ t

v
g(u)(u− v)n−1du .

We have

RHS =
∞∑
n=0

E
{∫ t

s

∫
Rd
F (v,Xs,v−, Xs,v− + z)ν(dz)dv|N(s, t) = n

}
|ν|n(t− s)n

n!
e−|ν|(t−s)

=
∞∑
n=0

|ν|n(t− s)n

n!
e−|ν|(t−s)

n!
(t− s)n

∫
Rd

∫
Rd

∫ t

s
ds1

∫ t

s1

ds2 . . .

∫ t

sn−1

dsn

n∑
k=0

∫ sk+1

sk

F (v, y, y + z)dvν̃∗k(dy)ν(dz) ,

where s0 = s and sk+1 = t for k = n. Changing notation involving v and sk
we obtain
∞∑
n=0

|ν|ne−|ν|(t−s)
∫

Rd

∫
Rd

n∑
k=0

∫ t

s
ds1 . . .

∫ t

sk

dsk+1F (sk+1, y, y + z)
(t− sk+1)n−k

(n− k)!
ν̃∗k(dy)ν(dz)

=
∞∑
n=0

|ν|n

n!
e−|ν|(t−s)

∫
Rd

∫
Rd

∫ t

s
F (v, y, y + z)

n∑
k=0

n!(v − s)kν̃∗k(dy)(t− v)n−k

k!(n− k)!
ν(dz)dv

=
∞∑
n=0

|ν|n

n!
e−|ν|(t−s)

∫
Rd

∫
Rd

∫ t

s
F (v, y, y + z) ((v − s)ν̃ + (t− v)δ0)∗n (dy)ν(dz)dv

=
∫ t

s

∫
Rd

∫
Rd
F (v, y, y + z)e−|ν|(t−s)e∗((v−s)eν+(t−v)δ0)|ν|(dy)ν(dz)dv

=
∫ t

s

∫
Rd

∫
Rd
F (v, y, y + z)e−|ν|(v−s)e∗(v−s)ν(dy)ν(dz)dv = LHS,

where δ0 is the Dirac measure at 0. �
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In particular, for s ≤ t and bounded measurable F we have

E
∑

s<Si≤t
[F (Si, Xs,Si−, Xs,Si)− F (Si, Xs,Si−, Xs,Si−)]

= E
∫ t

s

∫
Rd

[F (v,Xs,v−, Xs,v + z)− F (v,Xs,v−, Xs,v−)] ν(dz)dv .(16)

We will consider the filtration

Ft = σ{Xs,t ; s ≤ t} , t ∈ R .

For t ∈ R we define

pt = e∗t(ν−|ν|δ0) =
∞∑
n=0

tn

n!
(ν − |ν|δ0)∗n = e−t|ν|

∞∑
n=0

tn

n!
ν∗n . (17)

The series converges in the norm of absolute variation of measures. Clearly,
pt is symmetric,

∂

∂t
pt = (ν − |ν|δ0) ∗ pt , t ∈ R , (18)

and pt1 ∗ pt2 = pt1+t2 for t1, t2 ∈ R. We have pt ≥ 0 for t ≥ 0, see (17). In
fact, pu−t is the distribution of Xt,u, as well as of Xt,u−, whenever t ≤ u.
Let

Ψ(ξ) =
∫

Rd
(eiξ·z − 1)ν(dz) , ξ ∈ Rd , (19)

where ξ ·x denotes the usual inner product in Rd. By symmetry of ν,

Ψ(ξ) =
∫

Rd
(cos ξ ·z − 1)ν(dz) = Ψ(−ξ) ≤ 0

is real valued for all ξ. It is also bounded and continuous on Rd. We have

p̂t(ξ) =
∫

Rd
eiξ·xpt(dx) = etΨ(ξ) , ξ ∈ Rd . (20)

This is the Lévy-Khinchin formula–a direct consequence of (17)–and Ψ is
the corresponding Lévy-Khinchin exponent.

Let g ∈ L∞. For x ∈ Rd, t ≤ u, we define the parabolic extension of g by

Pt,ug(x) =
∫

Rd
g(x+ y)pu−t(dy) = g ∗ pu−t(x) .

This equals Eg(x+Xt,u). For s ≤ t ≤ u we define the parabolic martingale

Gt = Gt(x; s, u; g) = Pt,ug(x+Xs,t) .
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Lemma 2 Gt is a bounded {Ft}-martingale on s ≤ t ≤ u.

Proof: Independence of increments of X yields

E{g(x+Xs,u)|Ft} = E{g(x+Xs,t +Xt,u)|Ft} = Pt,ug(x+Xs,t) . �

Let φ be complex-valued and symmetric: φ(−z) = φ(z), and let |φ| ≤ 1.
For x ∈ Rd, s ≤ t ≤ u, and f ∈ Cc, we define Ft = Ft(x; s, u; f, φ) as∑

s<Si≤t
[PSi,uf(x+Xs,Si)− PSi,uf(x+Xs,Si−)]φ(Xs,Si −Xs,Si−)

−
∫ t

s

∫
Rd

[Pv,uf(x+Xs,v− + z)− Pv,uf(x+Xs,v−)]φ(z)ν(dz)dv .

Lemma 3 E|Ft|p <∞ for very p > 0.

Proof: Since Pv,uf is bounded for v ≤ u, the continuous (integral) part in
the definition of Ft is bounded. We also see that the jump part (the sum
above) is bounded by a constant multiple of N(s, t), which in fact yields
exponential integrability of Ft. �

In what follows we will denote ∆Xs,t = Xs,t −Xs,t−.

Lemma 4 {Ft} is an {Ft}-martingale for s ≤ t ≤ u.

Proof: By independence of arrivals of signals {Si} on disjoint time inter-
vals, and by Lemma 1, for s ≤ t1 ≤ t2 ≤ u we have

E


 ∑
t1<Si≤t2

(
PSi,uf(x+Xs,Si)− PSi,uf(x+Xs,Si−)

)
φ(∆Xs,Si)

 |Ft1


= E
∑

t1<Si≤t2

[
PSi,uf(x′ +Xt1,Si)− PSi,uf(x′ +Xt1,Si−)

]
φ(∆Xt1,Si)

= E
∫ t2

t1

∫
Rd

[
Pv,uf(x′ +Xt1,v− + z)− Pv,uf(x′ +Xt1,v−)

]
φ(z)ν(dz)dv ,

where x′ = x+Xs,t1 . This gives the martingale property of F . �

Lemma 5 Gt(x; s, u; g) = Ft(x; s, u; g, 1) + Ps,ug(x).
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Proof: Since t 7→ Gt is piecewise differentiable with almost surely finite
number of discontinuities of the first kind (that is, jumps), we have

Pt,ug(x+Xs,t)− Ps,ug(x) =
∑

s<Si≤t
[PSi,ug(x+Xs,Si)− PSi,ug(x+Xs,Si−)]

+
∫ t

s

∂

∂v
Pv,ug(x′)dv ,

where x′ = x+Xs,v−. This may be considered a version of the Itô formula
([16]). The proof is concluded by using (18),

∂

∂v
Pv,ug(x′) = −

∫
Rd

(ν − |ν|δ0)(dz)Pv,ug(x′ + z)

= −
∫

Rd
[Pv,ug(x+Xs,v− + z)− Pv,ug(x+Xs,v−)]ν(dz) . �

Let s = t0 ≤ t1 ≤ . . . ≤ tn = t, and sup{ti − ti−1 : i = 1, . . . , n} → 0 as
n → ∞. Since Ft is square integrable, by orthogonality of increments we
have for s ≤ t ≤ u,

EF 2
t = E

n∑
i=1

(Fs,ti − Fs,ti−1)2

→ E
∑

s<Si≤t
[PSi,uf(x+Xs,Si)− PSi,uf(x+Xs,Si−)]2 φ2(∆Xs,Si) .

The convergence follows from the fact that the integral part of F is Lipschitz
continuous. Hence the quadratic variation process of F ([7]) is

[F, F ]t =
∑

s<Si≤t
[PSi,uf(x+Xs,Si)− PSi,uf(x+Xs,Si−)]2 φ2(∆Xs,Si) .

(21)
By Lemma 5, the quadratic variation of G is

[G,G]t = |Ps,ug(x)|2 +
∑

s<Si≤t
[PSi,ug(x+Xs,Si)− PSi,ug(x+Xs,Si−)]2 .

(22)
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By (21), polarization, and Lemma 1,

EFtGt = EFt(x; s, u; f, φ) [Gt(x; s, u; g)− Ps,ug(x)]

= E
∑

s<Si≤t
[PSi,uf(x+Xs,Si)− PSi,uf(x+Xs,Si−)]

[PSi,ug(x+Xs,Si)− PSi,ug(x+Xs,Si−)]φ(∆Xs,Si)

= E
∫ t

s

∫
Rd

[Pv,uf(x+Xs,v− + z)− Pv,uf(x+Xs,v−)]

[Pv,ug(x+Xs,v− + z)− Pv,ug(x+Xs,v−)]φ(z)ν(dz)dv

=
∫ t

s

∫
Rd
pv−s(dy)

∫
Rd

[Pv,ug(x+ y + z)− Pv,ug(x+ y)]

[Pv,uf(x+ y + z)− Pv,uf(x+ y)]φ(z)ν(dz)dv .

By Fubini’s Theorem, for any probability measure µ and h ∈ L1,∫
Rd

∫
Rd
h(x+ y)µ(dy)dx =

∫
h(x)dx . (23)

We define |F |t(x; s, u; f, φ) as∑
s<Si≤t

[
PSi,u|f |(x+Xs,Si) + PSi,u|f |(x+Xs,Si−)

]
|φ|(∆Xs,Si)

+
∫ t

s

∫
Rd

[
Pv,u|f |(x+Xs,v− + z) + Pv,u|f |(x+Xs,v−)

]
|φ(z)|ν(dz)dv .

By Lemma 1,

E|F |t = 2E
∫ t

s

∫
Rd

[
Pv,u|f |(x+Xs,v− + z) + Pv,u|f |(x+Xs,v−)

]
ν(dz)dv .

Using (23) we obtain∫
Rd

E|F |t(x; s, u; f, φ)dx

= 2
∫

Rd

∫
Rd

∫ t

s

∫
Rd

[
Pv,u|f |(x+ y + z) + Pv,u|f |(x+ y)

]
ν(dz) dv ps,v(dy) dx

= 4
∫ t

s
dv

∫
Rd
ν(dz)

∫
Rd
|f(x)|dx = 4(t− s)|ν|‖f‖1 <∞ (24)

(compare to Lemma 3). Thus, the following integral is absolutely convergent

Iφ(f, g) =
∫

Rd
EFt(x; s, u; f, φ)Gt(x; s, u; g)dx .
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We will now consider g = f . By (21), (22) and Lemma 5, Ft(x; s, u; f, φ) is
differentially subordinate to Gt(x; s, u; f) in that

0 ≤ [G,G]t − [F, F ]t is non-decreasing for t ∈ [s, u] .

Therefore, by [20, Theorem 1], we have that

E|Ft(x; s, u; f, φ)|p ≤ (p∗ − 1)pE|Gt(x; s, u; f)|p , s ≤ t ≤ u . (25)

Here and below we assume (3), in particular 1 < p <∞.
We note that Gu(x; s, u; f) = f(x+Xs,u). Using (25) and (23) we obtain∫

Rd
E|Fu(x; s, u; f, φ)|pdx ≤ (p∗−1)p

∫
Rd

E|f(x+Xs,u)|pdx = (p∗−1)p‖f‖pp .

(26)
We consider the linear functional

Lq 3 g 7→
∫

Rd
EFu(x; s, u; f, φ)g(x+Xs,u)dx .

By Hölder’s inequality, (26) and (23) we have∫
Rd

E|Fu(x; s, u; f, φ)g(x+Xs,u)|dx ≤ (p∗ − 1)‖f‖p‖g‖q . (27)

Therefore there is a function h ∈ Lp such that∫
Rd

EFu(x; s, u; f, φ)g(x+Xs,u)dx =
∫

Rd
h(x)g(x)dx , g ∈ Lq , (28)

and
‖h‖p ≤ (p∗ − 1)‖f‖p . (29)

We also have that h ∈ L1, but the estimate of ‖h‖1 depends on |ν| by (24).
Consider ξ ∈ Rd, eξ(x) = eiξ·x, and Et(x; s, u; ξ) = Gt(x; s, u; eξ). To

bring about the properties of this martingale we note that by (20)

Pv,ueξ(x) =
∫

Rd
eiξ·(x+y)pu−v(dy) = eξ(x)e(u−v)Ψ(ξ) , v ≤ u .

We thus have

EFtEt =
∫ t

s

∫
Rd
pv−s(dy)

∫
Rd

[Pv,uf(x+ y + z)− Pv,uf(x+ y)] e(u−v)Ψ(ξ)

eiξ·(x+y)[eiξ·z − 1]φ(z)ν(dz)dv ,
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hence

I = Iφ(f, eξ) =
∫

Rd

∫ t

s

∫
Rd

∫
Rd

[Pv,uf(x+ y + z)− Pv,uf(x+ y)]

e(u−v)Ψ(ξ)eiξ·(x+y)[eiξ·z − 1]φ(z)ν(dz)pv−s(dy)dvdx .

The integral is absolutely convergent by (24). Using (23) and properties of
the Fourier transform we obtain

I =
∫ t

s

∫
Rd

∫
Rd

[Pv,uf(x+ z)− Pv,uf(x)] eiξ·xdx e(u−v)Ψ(ξ)[eiξ·z − 1]φ(z)ν(dz)dv

=
∫ t

s

∫
Rd

∫
Rd

[pu−v ∗ f(x+ z)− pu−v ∗ f(x)]eiξ·xdx e(u−v)Ψ(ξ)[eiξ·z − 1]φ(z)ν(dz)dv

=
∫ t

s

∫
Rd

[e−iξ·ze(u−v)Ψ(ξ)f̂(ξ)− e(u−v)Ψ(ξ)f̂(ξ)]e(u−v)Ψ(ξ)[eiξ·z − 1]φ(z)ν(dz)dv

= f̂(ξ)
∫ t

s
e2(u−v)Ψ(ξ)dv

∫
Rd
|eiξ·z − 1|2φ(z)ν(dz) .

We have |eiξ·z−1|2 = (cos ξ·z−1)2 + sin2 ξ·z = 2(1− cos ξz) = 2<(1− eiξ·z).
By symmetry of φν,

I = f̂(ξ)
[
e2(u−t)Ψ(ξ) − e2(u−s)Ψ(ξ)

] −1
Ψ(ξ)

∫
Rd

(1−eiξ·z)φ(z)ν(dz) , if Ψ(ξ) < 0 ,

and I = 0 if Ψ(ξ) = 0. We let t = u = 0, thus obtaining I = f̂(ξ)ms(ξ),
where s < 0, and

ms(ξ) =
[
1− e2|s|Ψ(ξ)

] ∫
Rd(e

iξ·z − 1)φ(z)ν(dz)
Ψ(ξ)

, if Ψ(ξ) 6= 0 , (30)

and ms(ξ) = 0 if Ψ(ξ) = 0. From (28) applied to g = eξ we obtain

ĥ(ξ) = ms(ξ)f̂(ξ) , ξ ∈ Rd . (31)

Consider the Fourier multiplierMs on L2 with symbol ms (bounded by 1).
By (29) the operator uniquely extends to Lp with norm at most p∗− 1. Let

m(ξ) =
∫

(eiξ·z − 1)φ(z)ν(dz)
Ψ(ξ)

=
∫

(cos ξ ·z − 1)φ(z)ν(dz)∫
(cos ξ ·z − 1)ν(dz)

, if Ψ(ξ) 6= 0 (32)
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and m(ξ) = 0 if Ψ(ξ) =
∫

(cos ξ·z − 1)ν(dz) = 0. Clearly, m = lims→−∞ms,
pointwise.

Let M be the multiplier on L2 with symbol m. If f ∈ L2, then Msf →
Mf in L2 by Plancherel’s Theorem as s → −∞. By Fatou’s Lemma and
(29) it follows that ‖Mf‖p ≤ (p∗ − 1)‖f‖p. Therefore M extends uniquely
from Cc to Lp without increasing the norm, which proves Theorem 1 when
the Lévy measure is finite.

In the general case let ε > 0, and ν(B) = V (B ∩ {|x| > ε}). For
every ξ ∈ Rd, we have that cos ξ ·z − 1 ≈ −|z|2/2 if |z| is small. Using
(11) we conclude that m(ξ) of (32) tends to M(ξ) of (12) as ε → 0. The
latter is defined to be zero when its denominator vanishes (see below in this
connection). To complete the proof we use the argument as in the preceding
paragraph �

We like to remark that an antisymmetric φ, φ(−z) = −φ(z), yields zero
Fourier symbol in Theorem 1 thus our assumption of symmetry of φ results
in no loss of generality therein. The case of nonsymmetric V , vector-valued
φ, and space-inhomogeneous V and φ require a further development of the
method presented in this paper.

3 Miscellanea

If Ψ(ξ) =
∫

Rd(cos ξ ·z − 1)V (dz) = 0 for ξ 6= 0, then suppV ⊂ Aξ, where

Aξ = {z : ξ ·z = 2kπ for some integer k} .

In particular, Aξ is discrete in the direction of ξ. By Fubini’s theorem
{ξ : Ψ(ξ) = 0} has zero Lebesgue measure. Thus our convention that
M(ξ) = 0 when Ψ(ξ) = 0, does not influence the definition ofM on L2 or Lp.
In fact, M does not generally have a limit where Ψ(ξ) = 0–the behavior of
(14) at the origin is rather representative here. Indeed, assume for simplicity
of the discussion that V is finite, compactly supported and nondegenerate,
that is not concentrated on a proper subspace of Rd. Let ξ 6= 0 and assume
that Ψ(ξ) = 0. The gradient of Ψ(ξ) =

∫
(eiξ·z − 1)φ(z)V (dz) is

i

∫
Rd
zeiξ·zφ(z)V (dz) = i

∫
Aξ

zφ(z)V (dz) = 0 ,

and the Jacobian matrix is −
∫
zT z φ(z)V (dz). Here zT denotes the trans-

pose of z. Thus the first nonzero term in the Taylor expansion of Ψ(ξ + h)
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at ξ is −1
2

∫
(z ·h)2V (dz) < 0 if h 6= 0. We consider

−
∫

Rd(z ·h)2φ(z)V (dz)
−
∫

Rd(z ·h)2V (dz)
.

The limit of this expression exists if h = rη, η ∈ Rd \ {0}, and r → 0+, but
in general the limit depends on the direction of η, compare (14).

Example 1 We now examine (14). Let α ∈ (0, 2), j ∈ {1, . . . , d}, and

µ = δ(1,0,...,0) + δ(−1,0,...,0) + · · ·+ δ(0,0,...,1) + δ(0,0,...,−1) .

In polar coordinates we define the Lévy measure V (drdθ) = r−1−αdrµ(dθ)
(of the symmetric α-stable Lévy process with independent coordinates [17]).
We have

Ψ(ξ) = cα

∫
|ξ ·z|αµ(dz) (33)

= cα (|ξ1|α + · · ·+ |ξd|α) ,

where cα = −π/(2 sin πα
2 Γ(1+α)), see [17, Chapter 14]. Let φ(z1, . . . , zd) = 1

if zk = 0 for k 6= j and zj 6= 0, and let φ = 0 otherwise (we observe only
the jumps of the first coordinate process). The symbol (12) becomes (14)
with j = 1. By Theorem 1 the corresponding Fourier multiplier has norm
bounded by p∗−1. Letting α→ 2 we obtain (5) by Fatou’s Lemma (see the
end of the proof of Theorem 1). Considering φ = aj on the j-th coordinate
axis (except at the origin) for j = 1, . . . , d, we conclude that

‖
d∑
j=1

ajR
2
jf‖p ≤ (p∗ − 1)‖f‖p , (34)

is valid whenever |aj | ≤ 1. By considering µ concentrated on√
2/2(±1,±1) ∈ R2 and suitably chosen φ = ±1 we similarly obtain

‖2RjRkf‖p ≤ (p∗ − 1)‖f‖p , j 6= k . (35)

in dimension d = 2. From this, the upper bound 2(p∗ − 1) for the Beurling-
Ahlfors operator follows, see Introduction.

Example 2 Let d = 2 and j = 1 in (14). We have∣∣∣∣ ∂∂ξ1
M(ξ)

∣∣∣∣2 = α2

[
|ξ2|α

(|ξ1|α + |ξ2|α)2

]2

|ξ1|2(α−1) .

This function is not locally integrable at ξ1 = 0 if 0 < α < 1/2. Thus the
symbol does not satisfy the Hörmander condition ([18]).
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Denote M(ξ) = Ψφ(ξ)/Ψ(ξ), in (12). There is a tempered distribution,
say K, with Fourier transform M , such that Mφ = K ∗ φ for smooth
compactly supported φ. It is of interest to representM as a limit of integrals.
Let 0 < ε < T <∞. We will approximate M by

MT
ε (ξ) =

[
eεΨ(ξ) − eTΨ(ξ)

] Ψφ(ξ)
Ψ(ξ)

=
∫ T

ε
Ψφ(ξ)etΨ(ξ)dt

=
∫ T

ε
Ψφ(ξ)etΨφ(ξ)etΨ1−φ(ξ)dt =

∫ T

ε

[
d

dt
etΨφ(ξ)

]
etΨ1−φ(ξ)dt , (36)

where ε → 0 and T → ∞ (compare the proof of Theorem 1). Let KT
ε be

the (tempered) distribution with Fourier transform MT
ε . If 0 ≤ φ ≤ 1, we

consider convolution semigroups pφt and p1−φ
t of Lévy processes with Levy

measures φV and (1−φ)V , correspondingly. Motivated by (36) we consider

KT
ε =

∫ T

ε

[
d

dt
pφt

]
∗ p1−φ

t dt . (37)

If dpφt /dt is a finite measure for t = ε then it is a finite measure for all t ≥ ε
because |dpφt /dt| is non-increasing in t. Thus, KT

ε is a finite measure and

K = lim
ε→0,T→∞

KT
ε ,

as distributions. In passing we like to note that (37) gives an analytic
interpretation to our proof of Theorem 1.

Example 3 When d = 2, α = 1 and j = 1 in (14), the corresponding
multiplier is a singular integral

Mf(z) = p.v.

∫
R2

K(z − w)f(w)dw , z ∈ R2 , (38)

understood as above, with the kernel

K(x, y) =
−x2 + y2 + x2 log

∣∣x
y

∣∣− y2 log
∣∣ y
x

∣∣
π2(x2 − y2)2 , (x, y) ∈ R2 . (39)

To obtain (39), we denote

pt(x) =
1
π

t

t2 + x2
, t > 0 , x ∈ R . (40)
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It is the density function of the one-dimensional symmetric 1-stable Lévy
(Cauchy) process on the line. We have p̂t(ξ) = e−t|ξ| for ξ ∈ R, and

d

dt
pt(x) =

1
π

−t2 + x2

(t2 + x2)2
, (41)

which is integrable for every t > 0. Note that pt(x)pt(y), for (x, y) ∈ R2, is
the transition density of the Cauchy process with independent coordinates
on the plane, compare Example 1. Our discussion above, (40) and (41) yield

K(x, y) =
∫ ∞

0

t(−t2 + x2)
(t2 + x2)2(t2 + y2)

dt .

Of course, K(x, y) = K(|x|, |y|). By a change of variable,

K(hx, hy) = h−2K(x, y) if h > 0 . (42)

We will determine K(1, y), where y > 1. To this end we observe that

t(−t2 + 1)
(t2 + 1)2(t2 + y2)

=
2t

(t2 + 1)2(−1 + y2)
− t(1 + y2)

(t2 + 1)(−1 + y2)2 +
t(1 + y2)

(−1 + y2)2(t2 + y2)
.

Integration yields

K(1, y) =
−1 + y2 − (1 + y2) log y

π2(−1 + y2)2 ,

and (39) follows by (42).

We note a mild singularity of the kernel K(x, y) at y = 0 in the previous
example, in addition to the usual (critical) singularity at (0, 0) ([18]). We
remark that a stronger singularity may be obtained in higher dimensions
within the same setup. The resulting singularities seem amenable by the
Calderón-Zygmund theory ([6]), where L logL integrability and cancellation
of the kernel on the unit sphere are only required to prove the boundedness of
M on Lp, 1 < p <∞. The emphasis in our paper is, however, on obtaining
good estimates of the norm of the operator. Also, (12) goes much beyond
homogeneous symbols ([18]) and gives a wide and natural class of symbols
and singular integrals which deserve a further study. We finally note that
the Lp boundedness of our multipliers may have applications to embedding
results for anisotropic Sobolev spaces as in [9, Section 2.3], [13, Section 3.1].
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