PROBABILISTIC BEHAVIOR OF
HARMONIC FUNCTIONS
(Birkhäuser
1999)
Rodrigo
Bañuelos and Charls N. Moore
TABLE OF CONTENTS
- PREFACE
- CHAPTER 1. Introduction
- §1.1 Harmonic Functions and their basic
properties
- §1.2 The Poisson kernel and Dirichlet
problem for the ball
- §1.3 The Poisson kernel and Dirichlet
problem for the upper-half space
- §1.4 The Hardy-Littlewood and
nontangential maximal functions
- §1.5 Hp-theory for the upper
half-space
- §1.6 Some basics on singular integrals
- §1.7 The g-function and area function
- §1.8 Classical results on boundary
behavior
- CHAPTER 2. Decomposition into Martingales:
An Invariance Principle
- §2.1. Square function estimates for sums
of atoms
- §2.2. Decomposition of harmonic functions
- §2.3. Controlling errors: gradient
estimates
- CHAPTER 3. Kolmogorov's LIL for Harmonic
Functions
- §3.1. The proof of the upper-half
- §3.2. The proof of the lower-half
- §3.3. The sharpness of the Kolmogorov
condition
- §3.4. A related LIL for Littlewood-Paley
square functions
- CHAPTER 4. Sharp good-lambda Inequalities
for A and N
- §4.1. Sharp control of N by A
- §4.2. Sharp control of A by N
- §4.3. Applications I: A Chung-type LIL for
harmonic functions
- §4.4. Applications II: Sharp Lp-constants
and ratio inequalities
- CHAPTER 5. Sharp good-lambda Inequalities
for the Density of the Area Integral
- §5.1. Sharp control of N and A by D
- §5.2. Sharp control of D by N and A
- §5.3. Applications I: A Kesten-Type LIL
and sharp Lp-constants
- 5.4. Applications II: The
Brossard-Chevalier LlogL result
- CHAPTER 6. The classical LIL's in Analysis
- §6.1. LIL's for lacunary series
- §6.2. LIL's for Bloch function
- §6.3. LIL's for subclasses of Bloch
functions
- §6.4. On a question of Makarov and
Przytycki
- REFERENCES
- SUBJECT INDEX
- NOTATION INDEX