- 1) A tank has the shape of an inverted circular cone with radius 2 m and height 8 m. If water is poured into the tank at a rate of 4 m^3 per minute, find the rate at which the water level is rising (in m per minute) when the water is 4 m deep.
 - A) $\frac{4}{\pi}$
 - B) $\frac{2}{\pi}$
 - C) $\frac{8}{3\pi}$
 - D) $\frac{3}{\pi}$
 - E) $\frac{4}{3\pi}$

- 2) Use a linear approximation to compute the approximate value of $\sqrt[3]{8.06}$.
 - A) 2.04
 - B) 2.02
 - C) 2.005
 - D) 2.01
 - E) 2.0025

- 3) If $f(x) = x^3 + x 1$ on the interval [0, 2], find a number c that satisfies the Mean Value Theorem.
 - A) $\frac{2}{\sqrt{3}}$
 - B) $\sqrt{2}$
 - C) $\sqrt{\frac{5}{3}}$
 - $D) \frac{\sqrt{3}}{3}$
 - E) $\frac{4}{\sqrt{3}}$

- 4) If m_1 is the minimum of $f(x) = x^3 + 3x^2 9x$ on [0, 2] and m_2 is the maximum, find $m_1 + m_2$.
 - A) 7
 - B) -3
 - C) 5
 - D) 2
 - E) -52

- 5) Let $f(x) = 2x^3 3x^2$. f has
- A) 1 local max and 2 points of inflection
- B) 1 local max and 1 point of inflection
- C) 1 local min and 2 points of inflection
- D) 1 local min and 1 point of inflection
- E) 1 local min, 1 local max and 1 point of inflection

6) If $f(t) = t^2 + 4\cos t$ on $(0, 2\pi)$ find the interval(s) where the graph of f is concave upward.

A)
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{11\pi}{6}, 2\pi\right)$$

B)
$$\left(\frac{\pi}{3}, \frac{5\pi}{3}\right)$$

C)
$$\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$$

$$D) \left(\frac{\pi}{6}, \frac{11\pi}{6} \right)$$

$$\mathrm{E})\left(0,\frac{\pi}{3}\right) \cup \left(\frac{5\pi}{3},2\pi\right)$$

7)
$$\lim_{x\to 0} \frac{\sin x - x}{\tan x - x} =$$

- A) $-\frac{1}{2}$
- B) -1
- C) 0
- D) $\frac{1}{2}$
- E) 1

8)
$$\lim_{x \to 0^+} (1 - 3x)^{1/5x} =$$

- A) 1
- B) e^{-15}
- C) $e^{-3/5}$
- D) $e^{-5/3}$
- E) $e^{-1/15}$

9) Let $f'(x) = (x+1)(x-1)^2(x-2)$. f has

- A) no local maxima and 2 local minima
- B) 2 local maxima and no local minima
- C) 1 local maximum and 2 local minima
- D) 2 local maxima and 1 local minimum
- E) 1 local maximum and 1 local minimum

10) The graph of f' is given below, $a \le x \le b$.

- A) f has exactly 2 points of inflection and exactly 4 local extrema.
- B) f has exactly 2 points of inflection and exactly 3 local extrema.
- C) f has exactly 4 points of inflection and exactly 3 local extrema.
- D) f has exactly 3 points of inflection and exactly 4 local extrema.
- E) f has exactly 3 points of inflection and exactly 5 local extrema.