MA 266 Practice problems for Exam 2

On which interval is the initial value problem

$$
\left\{\begin{array}{l}
(5-t) y^{\prime \prime}+(t-4) y^{\prime}+2 y=\ln t \\
y(2)=8
\end{array}\right.
$$

guaranteed to have a unique solution?

Find the general solution of the differential equation

$$
y^{\prime \prime}-10 y^{\prime}+27 y=0
$$

The function $y_{1}=e^{x}$ is a solution of

$$
(x-1) y^{\prime \prime}-2 x y^{\prime}+(x+1) y=0 .
$$

If we seek a second solution $y_{2}=e^{x} v(x)$ by reduction of order, then $v(x)=$
By the Method of Undetermined Coefficients, which of the following Y is the correct form of a particular solution to the equation

$$
y^{(4)}-3 y^{(3)}+2 y^{(2)}=4 t-e^{t}+3 e^{3 t} ?
$$

A. $Y=A t+B+C e^{t}+D e^{3 t}$
B. $Y=A t^{2}+B t+C t e^{t}+D e^{3 t}$
C. $Y=A t^{3}+B t^{2}+C t e^{t}+D e^{3 t}$
D. $Y=A t^{3}+B t^{2}+C t e^{t}+D t e^{3 t}$
E. None of the above.

Which of the following is the correct form of a particular solution to the equation

$$
y^{(4)}-y=2+3 t e^{-t}+2 \sin t \quad ?
$$

A. $A+(B+C t) e^{-t}+D \cos t+E \sin t$
B. $A+B t^{2} e^{-t}+t(C \cos t+D \sin t)$
C. $A+B t e^{-t}+C \sin t$
D. $A+t(B+C t) e^{-t}+t(D \cos t+E \sin t)$
E. $A+B t e^{-t}+(C+D t) \sin t$

Find the solution of the initial value problem

$$
y^{\prime \prime}+y^{\prime}-6 y=0, \quad y(0)=0, \quad y^{\prime}(0)=5 .
$$

A spring-mass system set in motion was determined by the initial value problem

$$
u^{\prime \prime}+100 u=0, \quad u(0)=1, \quad u^{\prime}(0)=-10 .
$$

What is the amplitude of the motion?
An undamped, free vibration $u^{\prime \prime}+9 u=0$ has initial conditions $u(0)=4, u^{\prime}(0)=9$. The solution of this initial value problem can be written as $u=R \cos (\omega t-\delta)$. What are R and δ ?

A spring system with external forcing term is represented by the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=4 \cos (t)+2 \sin (t) .
$$

Then the steady state solution of the system is given by

The homogeneous differential equation $t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0(t>0)$ has two solutions given by $y_{1}(t)=t^{2}$ and $y_{2}(t)=t^{3}$. Using the method of Variation of Parameters, find the general solution of the nonhomogeneous equation $t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=t^{3}$.

Find the general solution of

$$
y^{(4)}-10 y^{\prime \prime}+9 y=0 .
$$

Given that the function $y_{1}=t$ is a solution to the differential equation

$$
t^{2} y^{\prime \prime}-t y^{\prime}+y=0, \quad t>0
$$

choose a function y_{2} from the list below so that the pair $\left\{y_{1}, y_{2}\right\}$ is a fundamental set of the solutions to the differential equation above.
A. $y_{2}=t^{3}$
B. $y_{2}=t \ln t$
C. $y_{2}=t \sin t$
D. $y_{2}=t \cos t$
E. $y_{2}=t e^{t}$

