1. (a) (5 points) Let $f : A \to B$, and let C, D be subsets of B. Prove

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D).$$

Assume XELHS. Show XERHS. V Assume XERHS. Show XELHS too. Done.

 $f^{-1}(C \cap D) = \xi x \in A : f(x) \in C \cap D \xi$

- MIT
- (b) (5 points) When E is a countable subset of \mathbb{R} , is the complement $\mathbb{R} \setminus E$ always uncountable? Explain why or why not.

Always uncountable. If R\E countable too, then $R = E U (IR \setminus E) \leftarrow Union of 2$ Countable sets (Q: R > N Countable! $Q_1: E \iff \mathbb{N}$ Q: RE CN $Q(N) = \begin{cases} Q_1(n) : N=2n \\ Q_2(n) : N=2n+1 \end{cases}$

(c) (5 points) When E is an uncountable subset of \mathbb{R} , is the complement $\mathbb{R} \setminus E$ always countable? Explain why or why not.

Examples: E= irvational #'s e- uncountable

 $E = \left[0, 1 \right]$ $\mathbb{R} \setminus E = (-\infty, 0) \cup (1, \infty)$

Union of 2 uncoutable sets is uncountable too.

- (b) For each of the following scenarios, give an example satisfying the stated property. Formal proofs are not required, but some explanation may be useful.
 - (i) (5 points) A sequence $\{x_n\}$ converging to 0 which is not monotonic.

(-1)ⁿ

(ii) (5 points) An unbounded sequence that has a convergent subsequence.

4. (a) Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences of real numbers. (i) (5 points) Prove that the sequence $\{x_n + y_n\}$ is bounded.

(ii) (5 points) Prove that

$$\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n.$$

$$\lim_{N \to \infty} \sup_{N \to \infty} \sup_{n$$

$$x_m + y_m \leq Sup x_u + Sup y_n$$

 $n \geq N$ $n \geq N$

$$if m \ge N$$

$$50 \quad Sup \{x_m + y_m\} \le I \quad Sup \le m \ge n$$

Lim left = Lim vight. Finally 8

(b) (5 points) Let E denote the set of all real numbers in (0, 1) with decimal expansion involving only 1's and 2's:

 $E = \{ x \in (0,1) : \forall j \in \mathbb{N}, \exists d_{-j} \in \{1,2\}, \text{ such that } x = 0.d_{-1}d_{-2}\ldots \}.$

Note that $0.2 \notin E$ but $0.222222... \in E$. Prove that 0.1111111... is a cluster point of E.

xo cluster pt means, given
$$\varepsilon > 0$$
,
there is a pt $x \in E$ with $x_0 \neq x$ such
that $|x_0 - x| < \varepsilon$.
Equiv to: There is a seq (x_n) in E
with $x_n \neq x_0$ for all n converging
to x_0 .

$$\chi_{\eta} = .1111...121... \qquad \chi = .1111...$$

 η
 η -th decimal

 $\chi_n - \chi = .0000...01000...$

$$= 10^{-n}$$

$$\frac{1}{10^{n}} \rightarrow 0 \text{ as } n \rightarrow \infty. \quad \text{So can make}$$

$$= 10^{-n}$$

$$= 10^{-n}$$

•

5. (a) (5 points) Suppose that for all $n \in \mathbb{N}$, $a_n > 0$, $b_n > 0$ and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0.$$

Prove that $\sum a_n$ converges if and only if $\sum b_n$ converges.

.

Compare tail ends of series