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2. (a) Give explicit examples satisfying the stated conditions. Explanation, but not a formal
proof, for each case is required.

(i) (5 points) A continuous function on (0,1) with neither a global maximum nor
minimum.

\ ¢

=X
L :? A 7

(ii) (5 points) A function on [0, 1] with an absolute minimum at 0, absolute maximum
at 1 and such that there exists y € (f(0), f(1)) not in the range of f.
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(b) (5 points) Let f: S — R and ¢g : S — R be functions continuous at ¢ € S. Prove that
the product fg: S — R is continuous at ¢
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3. We say a subset K C R is compact if for every sequence {x,}, of elements of K, there
exists a subsequence {x,, }; and € K such that limj_,, x,, = x (every sequence has a
subsequence converging in K).

(a) (7 points) Let a < b. Prove that [a,b] is compact. Hint: A theorem named after two
men, one with an Italian surname and the other with a German surname, might be
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4. (a) (i) (5 points) Let a < b. Prove that if f: (a,b) — R is differentiable at ¢ € (a, b) then
f is continuous at c.
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(ii) (5 points) Give an explicit example of a function showing the converse of part (i)
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(b) (5 points) Let

B 22 sin (%) if x #0,
/@) {0 ifx=0.
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5. (a) (7 points) Let R > 0. Prove that for all x € [-R, R],
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6. (a) (5 points) Compute

/
/:clogxdx = hm / xlog xdzx. d\/

You may use without proof the following version of L’Hépital’s rule: if f,g: (0,1) — R,
g(x) # 0 for all z, f(x) - —o0, g(z) — o0 as z — 07, and L = lim,_,g+ f'(z)/q (x)
exists, then lim, ,o+ f(z)/g(x) =L
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(c) (5 points) Let f: [—m, 7] — R be a continuously differentiable function. Prove that

™

lim sin(nz) f(x)dz = 0.
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7. (a) (b points) Give an explicit example of a sequence of continuous functions on (0, 1) that
converges pointwise to a continuous function on (0, 1) but the convergence is not uniform.
Explanation, but not a formal proof, is required. Feel free to use pictures.
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(b) Suppose f: R — R is a differentiable function and there exists L > 0 such that
[f'(e)l <L, VeeR.

(i) (5 points) Prove that f: R — R is Lipschitz continuous on R.
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(ii) (5 points) Define a sequence of functions f,, : R — R by

fal@) = f (m + %) - ,Q L,’Fsaézﬂf%
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Prove that {f,}, converges to f uniformly on R.
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