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(20) 3. a) Define a branch of a complex log function and use it to compute fv % ,Slz
where 7 is any curve that starts at 37 and ends at 2, avoiding the set Jifa
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(20) 4. Let Cg denote the half circle parametrized by z(t) = Re®, 0 <t < w. Use
careful estimates to show that
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6. Let C' denote the unit circle parameterized in the counterclockwise sense
3z

Compute/ (22 12z 2) dz. Explain.
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10. Compute the following path integrals

z where =y 18 the line from 0 to 1 1tollowed by the line from 1 to
N 2 dz wh is the line f 0 to 1 followed by the line f 1
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9. Compute [; €3 dt where ¢ is a real variable.
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3. Find a continuous real valued function u on the annulus {z : 1 < |2| < 2}
that is harmonic inside the annulus, equal to 20 on the inner boundary and
equal to 5 on the outer boundary.
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2. Show that u(z,y) = ze® cosy — ye® siny is harmonic on C and find a har-
monic conjugate for v on C.
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4. Use the Cauchy-Riemann equations to prove that a real valued analtyic
function on a domain must be constant.
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14. Find a one-to-one analytic function that maps the strip {z : 0 < Rez < 1}
onto the upper half plane.
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13. Determine a branch of log(z? + 4z + 1) that is analytic near z = —1 and
find its derivative there. V"
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