MATH 425, Exam I

Each problem is worth 20 points.

1. Show that if $\varphi(x, y)$ is a twice continuously differentiable real valued harmonic function on a domain, then

$$\frac{\partial \varphi}{\partial x} - i \, \frac{\partial \varphi}{\partial y}$$

is analytic there.

2. Find a harmonic conjugate on \mathbb{C} for

$$u(x,y) = x^2 - y^2 + xy + x + y_2$$

3. Compute

$$\int_{\gamma} \frac{1}{z} dz$$

where γ is any curve in the plane that starts at 3 + 4i and ends at -1 + i and that avoids the set $\{z : z = it, t \ge 0\}$ (i.e., the positive imaginary axis, including z = 0).

4. Define

$$I(a) = \int_C \frac{e^{5iz}}{(z-a)^4} dz,$$

where C is the unit circle parameterized in the counter clockwise direction and a is a complex number not on the unit circle. Compute $I(\frac{i}{3})$ and I(3i). Is I(a) an analytic function of a on the unit disc? Explain.

5. Show that

$$|e^{(z^2)}| \le e^{|z^2|}$$

and identify conditions for equality to hold. Is it true that $|e^{(z^2)}|$ tends to infinity as |z| tends to infinity?