Math 425

Exam 2

- 1. a) (10 pts) Suppose f has an isolated singularity at the origin and the limits $\lim_{t\to 0+} f(it)$ and $\lim_{t\to 0+} f(t)$ both exist, but are different. (t represents a real number here.) What must the type of the singularity of f be at z = 0? Explain.
 - b) (10 pts) If g is analytic on the unit disc and $g(1/n) = 1/n^2$ for each positive integer n > 1, find a formula for g. Explain.
- **2.** (20 pts) Use the Ratio Test to find the radius of convergence about z = 0 of the power series

$$\sum_{n=1}^{\infty} \frac{n^n}{3^n n!} \, z^{3n}.$$

Hint: $\left(1+\frac{1}{n}\right)^n \to e \text{ as } n \to \infty.$

3. (20 pts) Compute

$$\int_0^\infty \frac{1}{x^3 + 8} \ dx$$

by integrating $1/(z^3 + 8)$ around the contour that follows the real line from zero to R, then follows the circle Re^{it} from t = 0 to $t = 2\pi/3$, and then follows the line $te^{i2\pi/3}$ from t = R back to t = 0. Use the Residue Theorem and let $R \to \infty$.

4. (20 pts) Convert the integral

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos\theta}$$

into a contour integral of the form $\int_C f(z) dz$ where f is a rational function and C is the unit circle parameterized in the counterclockwise sense. Find f, then use the residue theorem to compute the integral.

5. (20 pts) Compute a) Resp. $\frac{e^{2z}}{-}$

a)
$$\operatorname{Res}_0 \frac{1}{z^4}$$

b) Res₂
$$\frac{e}{(z^2 - 4)^2}$$