MATH 425 / 525, Exam 2

(20) 1. Find the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{n^{2}}
$$

Hint: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
(20) 2. Let C denote the unit circle parameterized in the counterclockwise direction. Compute

$$
\int_{C} \frac{e^{3 z}}{\left(z-\frac{1}{2}\right)^{4}} d z
$$

(20) 3. Convert the integral

$$
\int_{0}^{2 \pi} \frac{d t}{2+\sin t}
$$

into a contour integral of the form $\int_{C} f(z) d z$ where f is a rational function and C is the unit circle parameterized in the counterclockwise sense. Find f, but DO NOT COMPUTE the integral.
(40) 4. In this problem, you will compute the real integral

$$
I=\int_{0}^{\infty} \frac{x \ln x}{x^{4}+1} d x
$$

by integrating the complex valued function $f(z)=\frac{z \log z}{z^{4}+1}$ (where \log denotes the principal branch of the complex log function) around the closed contour γ that follows the real axis from the origin to $R>0$, then follows the circular arc $R e^{i t}$ as t ranges from zero to $\pi / 2$, then returns to the origin via the line segment joining $R e^{i \pi / 2}=i R$ to the origin, then letting $R \rightarrow \infty$.
a) Express the integral of $f(z)$ along the part of γ that follows the imaginary axis from $i R$ to zero in terms of real integrals.
b) Use the Basic Estimate to show that the integral of $f(z)$ along the circular part of the boundary of γ tends to zero as $R \rightarrow \infty$.
c) Compute the residue of f at the point $e^{i \pi / 4}$.
d) Use the Residue Theorem and let $R \rightarrow \infty$ to compute the value of I.

Exam 2 Solutions

1. Let $u_{n}=\frac{n^{n}}{n!} z^{n^{2}}$.

$$
\begin{aligned}
& \left|\frac{u_{n+1}}{u_{n}}\right|=\frac{\left(\frac{(n+1+1}{(n+1)!}\right)}{\left(\frac{n^{n}}{n!}\right)}\left|z^{(n+1)^{2}-n^{2}}\right| \\
& =\frac{(n+1)^{n}}{n^{n}}\left|z^{2 n+1}\right|=\left(1+\frac{1}{n}\right)^{n}|z|^{2 n+1}
\end{aligned}
$$

$\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$, so there is
a N such that $2<\left(1+\frac{1}{n}\right)^{n}<3$ if $n>N$.
Now $\left|\frac{u_{n+1}}{u_{n}}\right| \leq 3|z|^{2 n+1}$ if $n>N$ and this tends to zero as $n \rightarrow \infty$ if $|z|<1$. Ratio test \Rightarrow series converges if $\mid z<1$. $\left|\frac{u_{n+1}}{u_{n}}\right| \geq 2|z|^{2 n+1}$ if $n>N$ and this tends to ∞ as $n \rightarrow \infty$ if $|z|>1$.

Ratio test \Rightarrow series diverges if $|z|>1$.
So $R=1$.
2.

$$
\frac{e^{3 z}}{\left(z-\frac{1}{2}\right)^{4}}=\frac{a_{0}}{\left(z-\frac{1}{2}\right)^{4}}+\frac{a_{1}}{\left(z-\frac{1}{2}\right)^{3}}+\frac{a_{2}}{\left(z-\frac{1}{2}\right)^{2}}+\frac{{\frac{\left(a_{3}\right.}{3}}_{\operatorname{Ras}_{5}}^{z-\frac{1}{2}}+\cdots .}{}
$$

where $a_{3}=\left.\frac{\frac{d^{3}}{d^{3}}\left(e^{3 z}\right)}{3!}\right|_{z=\frac{1}{2}}=\frac{3^{3} e^{3 / 2}}{3 \cdot 2 \cdot 1}=\frac{9}{2} e^{3 / 2}$

$$
\begin{aligned}
\int_{c} \frac{e^{3 z}}{\left(z-\frac{1}{2}\right)^{4}} d z & =2 \pi i \operatorname{Res}_{\frac{1}{2}} \frac{e^{3 z}}{\left(z-\frac{1}{2}\right)^{4}} \\
& =2 \pi i\left(\frac{9}{2} e^{3 / 2}\right)=9 \pi i e^{3 / 2}
\end{aligned}
$$

3.

$$
\begin{aligned}
& \int_{0}^{2 \pi} \frac{1}{2+\left(\frac{\left(\frac{j t}{}-e^{-i t}\right.}{2 i}\right)} \frac{i e^{i t}}{i e^{j t}} d t \\
= & \int_{c} \frac{1}{2+\frac{1}{2 i}\left(z-\frac{1}{z}\right)} \cdot \frac{1}{i z} d z
\end{aligned}
$$

4.a

$$
\text { a. } \begin{aligned}
& L_{2} \int_{0}^{i R} \quad-L_{2}: z(t)=i t, 0 \leq t \leq R \\
& =-\int_{L_{2}}^{R} f(z) d z=-\int_{-L_{2}} f(z) d z \\
& =\int_{0}^{R} \frac{t(\ln t) \log (i t)}{(i t)^{4}+1} \cdot i d t \\
& =\int_{0}^{R} \frac{t \ln t}{t^{4}+1} d t+i \frac{\pi}{2} \int_{0}^{R} \frac{t}{t^{4}+1} d t
\end{aligned}
$$

b. $\cdot \stackrel{i}{ }$

Notice that

$$
\begin{aligned}
& |\log z|=|\ln | z|+i \operatorname{Arg} z| \\
& \leq \ln R+\operatorname{Arg} z \\
& \leq \operatorname{Ln} R+\frac{\pi}{2} \quad \text { if }|z|=R>1 .
\end{aligned}
$$

Also, $\quad\left|z^{4}+1\right| \geq\left||z|^{4}-|-1|\right|$

$$
\geqslant R^{4}-1 \text { if }|z|=R>1 \text {. }
$$

So the Basic estimate yields

$$
\begin{aligned}
& \left|\int_{C_{R}} f(z) d z\right| \leq\left(\operatorname{Max}_{C_{R}}\left|\frac{z \log z}{z^{4}+1}\right|\right) \underbrace{\operatorname{Length}\left(C_{R}\right)}_{\frac{\pi}{2} R} \\
& \leq \frac{R\left(\ln R+\frac{\pi}{2}\right)}{R^{4}-1}, \frac{\pi}{2} R \text { if } R>1 \\
& \xrightarrow{ } 0 \text { as } R \rightarrow \infty .
\end{aligned}
$$

c. Let $F(z)=z \log z$ and $G(z)=z^{4}+1$. G has a simple zero at $e^{i \pi / 4}$ because $G\left(e^{i \pi / 4}\right)=0$ and $G^{\prime}\left(e^{i \pi / 4}\right)=4\left(e^{i \pi / 4}\right)^{3} \neq 0$.

So

$$
\operatorname{Res}_{e^{i \pi / 4}} \frac{F(z)}{G(z)}=\frac{F\left(e^{i \pi / 4}\right)}{G^{\prime}\left(e^{i \pi / 4}\right)}
$$

$$
=\frac{\pi}{16}
$$

$$
\begin{aligned}
& \text { d) } \underset{L_{2}}{\sqrt[L]{1}_{1}^{T^{\prime}}}\left(\int_{L_{1}}+\int_{L_{2}}+\int_{C_{R}}\right)=2 \pi i \operatorname{Res}_{e^{i \pi / 4}} f \\
& \longrightarrow\left(\int_{0}^{\infty} \frac{t \ln t}{t^{4}+1} d t\right)+\left(\int_{0}^{\infty} \frac{t \operatorname{Ln} t}{t^{4}+1} d t+i \frac{\pi}{2} \int_{0}^{\infty} \frac{t}{t^{4}+1} d t\right)=\frac{\pi^{2}}{8} i
\end{aligned}
$$

We obtain: $\int_{0}^{\infty} \frac{t \ln t}{t^{4}+1} d t=0$
(and $\int_{0}^{\infty} \frac{t}{t^{4}+1} d t=\frac{2}{\pi} \cdot \frac{\pi^{2}}{8}=\frac{\pi}{4}$)

