Math 428

Homework 2

1. Suppose that $f(x)$ is a C^{1}-smooth function on $[0, \pi]$. Use integration by parts to discover how the Fourier sine series coefficients for f^{\prime} are related to the Fourier cosine series coefficients for f.
2. Show that the three functions $1, x^{7}$, and $\cos 5 x$ form an orthogonal family on $[-\pi, \pi]$. (Use simple ideas to avoid lengthy computations.) Find an orthonormal basis for the linear span of these three functions. If

$$
f(x)=A+B x^{7}+C \cos 5 x
$$

find formulas for A, B, and C in terms of integrals involving f on $[-\pi, \pi]$. Finally, express

$$
\int_{-\pi}^{\pi} f(x)^{2} d x
$$

in terms of A, B, and C.
3. Find a simple and short formula for

$$
\sin x+\sin 2 x+\sin 3 x+\cdots+\sin N x
$$

by using de Moivre's formula and the formula for the partial sum of a geometric series. Simplify your formula to the point where there are no long summations and no complex numbers.
4. If $c=a+b i$ is a complex constant, show that

$$
\int_{\alpha}^{\beta} e^{c x} d x=\frac{1}{c}\left(e^{c \beta}-e^{c \alpha}\right)
$$

by writing out the real and imaginary parts of both sides. Now show that $e^{i n x}$ and $e^{i m x}$ are orthongal on $[-\pi, \pi]$ if n and m are unequal integers.

