Math 428

Homework 7

1. Assume that $f(x)$ is a real valued C^{1}-smooth function on the whole real line such that $\int_{-\infty}^{\infty}|f(x)| d x$ is finite. Show that

$$
\alpha(w)=\int_{-\infty}^{\infty} f(x) \sin w x d x
$$

goes to zero as $w \rightarrow \infty$. Hint: Let $\epsilon>0$. Explain why there is a positive integer N such that the part of the integral defining $\alpha(w)$ outside $[-N, N]$ is less than $\epsilon / 2$ in absolute value. Next, use integration by parts (like you did in a previous homework problem) to show that the part of the integral on $[-N, N]$ goes to zero as $w \rightarrow \infty$, and hence can be made less than $\epsilon / 2$ as well.
2. Show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ is finite by using the estimate, $e^{-x^{2}}<e^{-|x|}$ when $|x|>1$.
3. Denote the value of the integral in problem 2 by c (which we have shown in class is equal to $\sqrt{\pi})$ and let $\phi(x)=(1 / c) e^{-x^{2}}$. For $t>0$, define $\phi_{t}(x)=(1 / t) \phi(x / t)$. Notice that $\int_{-\infty}^{\infty} \phi(x) d x=1$. Show that $\int_{-\infty}^{\infty} \phi_{t}(x) d x=1$ too. Graph ϕ_{t} for $t=1$ and $t=1 / 2$ on a single graph. Given $\delta>0$, show that

$$
\int_{\delta}^{\infty} \phi_{t}(x) d x
$$

tends to zero as $t \rightarrow 0$. (The same is true about the integral from $-\infty$ to $-\delta$.)
4. Using the same notation as in the previous problem, show that, if f is a bounded continuous function on the real line, then

$$
\int_{-\infty}^{\infty} f(x) \phi_{t}(x) d x
$$

tends to $f(0)$ as $t \rightarrow 0$. Hint: $\phi_{t}(x)$ has three key properties that make it act like a "good kernel."
5. Prove Weyl's Criterion, that given a sequence of angles θ_{n}, the points $e^{i \theta_{n}}$ are equidistributed on the unit circle if and only if

$$
\frac{1}{N} \sum_{n=1}^{N} e^{i m \theta_{n}}
$$

tends to zero as N tends to infinitey for each positive integer m.
Hints: The limit for a postive integer m implies the limit for negative integer $-m$ because one is the conjugate of the other. The $m=0$ case is special (and different). Follow the proof of Weyl's Theorem: true for Fourier basis functions implies true for trigonometric polynomials implies true for continuous 2π-periodic functions implies ...

