Math 428

Homework 8

1. Assume that f(x) is a real valued continuous function on the whole real line such that $\int_{-\infty}^{\infty} |f(x)| dx$ is finite and $\epsilon > 0$. Show that

$$\int_{-\infty}^{\infty} f(x)e^{-\epsilon x^2} \, dx \to \int_{-\infty}^{\infty} f(x) \, dx$$

a $\epsilon \to 0$.

2. Let f(x) be the function defined to be zero for $x \le 1$, equal to x - 1 for $1 \le x \le 2$, equal to 3 - x for $2 \le x \le 3$, and equal to 0 for $x \ge 3$. Find the Fourier cosine and sine transforms of f. Use these two transforms to write down the complex Fourier transform of f given by

$$\hat{f}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-isx} \, dx.$$

- 3. Solve the one dimensional heat problem for a semi-infinite "hot wire" on $[0, \infty)$ that is kept insulated at the origin (which is the left endpoint of the wire), and that has an initial temperature given by the function in problem 2.
- 4. Solve the one dimensional heat problem for an infinite "hot wire" that has an initial temperature given by the function in problem 2.