Math 428
Practice problems

1. Assume that $g(x)$ is a real valued C^{1}-smooth function on the whole real line such that $\int_{-\infty}^{\infty}|g(x)| d x$ is finite. Show that

$$
\alpha(w)=\int_{-\infty}^{\infty} g(x) \sin w x d x
$$

goes to zero as $w \rightarrow \infty$. Hint: Do integration by parts on a finite piece of the integral after showing that the part of the integral outside $[-N, N]$ goes to zero as $N \rightarrow \infty$.
2. Define a function $f(x)$ to be used in problems 2-4 as follows:

$$
f(x)= \begin{cases}0 & x \leq 0 \\ x & 0<x \leq 1 \\ 0 & 1<x\end{cases}
$$

Compute the complex Fourier transform

$$
\hat{f}(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i s x} d x
$$

and the Fourier sine transform

$$
\left[\mathcal{F}_{s} f\right](w)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin w x d x
$$

3. Solve the heat problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ on $[0, \infty)$ for $x \geq 0$ and $t \geq 0$, with $u(x, 0)=f(x)$ for $x \geq 0$, and $u(0, t)=0$ for all $t \geq 0$.
4. Solve the heat problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ on $(-\infty, \infty)$ for $-\infty \leq x \leq \infty$ and $t \geq 0$, with $u(x, 0)=f(x)$ for all x.
5. Prove Weyl's Criterion, that given a sequence of angles θ_{n}, the points $e^{i \theta_{n}}$ are equidistributed on the unit circle if and only if

$$
\frac{1}{N} \sum_{n=1}^{N} e^{i m \theta_{n}}
$$

tends to zero as N tends to infinitey for each positive integer m. Hints: The limit for a postive integer m implies the limit for negative integer $-m$ because one is the conjugate of the other. The $m=0$ case is special (and different). Follow the proof of Weyl's Theorem: true for Fourier basis functions implies true for trigonometric polynomials implies true for continuous 2π-periodic functions implies ...

