Math 428

Practice problems

1. Assume that g(x) is a real valued C^1 -smooth function on the whole real line such that $\int_{-\infty}^{\infty} |g(x)| dx$ is finite. Show that

$$\alpha(w) = \int_{-\infty}^{\infty} g(x) \sin wx \, dx$$

goes to zero as $w \to \infty$. Hint: Do integration by parts on a finite piece of the integral after showing that the part of the integral outside [-N, N] goes to zero as $N \to \infty$.

2. Define a function f(x) to be used in problems 2-4 as follows:

$$f(x) = \begin{cases} 0 & x \le 0\\ x & 0 < x \le 1\\ 0 & 1 < x \end{cases}$$

Compute the complex Fourier transform

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-isx} dx$$

and the Fourier sine transform

$$[\mathcal{F}_s f](w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin wx \ dx.$$

- **3.** Solve the heat problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ on $[0,\infty)$ for $x \ge 0$ and $t \ge 0$, with u(x,0) = f(x) for $x \ge 0$, and u(0,t) = 0 for all $t \ge 0$.
- **4.** Solve the heat problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ on $(-\infty, \infty)$ for $-\infty \le x \le \infty$ and $t \ge 0$, with u(x,0) = f(x) for all x.
- 5. Prove Weyl's Criterion, that given a sequence of angles θ_n , the points $e^{i\theta_n}$ are equidistributed on the unit circle if and only if

$$\frac{1}{N}\sum_{n=1}^{N}e^{im\theta_{n}}$$

tends to zero as N tends to infinitely for each positive integer m.

Hints: The limit for a postive integer m implies the limit for negative integer -m because one is the conjugate of the other. The m = 0 case is special (and different). Follow the proof of Weyl's Theorem: true for Fourier basis functions implies true for trigonometric polynomials implies true for continuous 2π -periodic functions implies ...